
Advanced Micro Devices

uProf User Guide

Publication # 57368 Revision # 4.2
Issue Date January 2024

© 2024 Advanced Micro Devices Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice.
While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies,
omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this
information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or
completeness of the contents of this document, and assumes no liability of any kind, including the implied
warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or
use of AMD hardware, software or other products described herein. No license, including implied or arising by
estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the
purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's
Standard Terms and Conditions of Sale.

Trademarks
AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Dolby is a trademark of Dolby Laboratories.

ENERGY STAR is a registered trademark of the U.S. Environmental Protection Agency.

HDMI is a trademark of HDMI Licensing, LLC.

HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.

Microsoft, Windows, Windows Vista, and DirectX are registered trademarks of Microsoft Corporation.

MMX is a trademark of Intel Corporation.

OpenCL is a trademark of Apple Inc. used by permission by Khronos.

PCIe is a registered trademark of PCI-Special Interest Group (PCI-SIG).

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

Dolby Laboratories, Inc.
Manufactured under license from Dolby Laboratories.

Rovi Corporation
This device is protected by U.S. patents and other intellectual property rights. The use of Rovi Corporation's copy
protection technology in the device must be authorized by Rovi Corporation and is intended for home and other limited
pay-per-view uses only, unless otherwise authorized in writing by Rovi Corporation.

Reverse engineering or disassembly is prohibited.

USE OF THIS PRODUCT IN ANY MANNER THAT COMPLIES WITH THE MPEG-2 STANDARD IS EXPRESSLY
PROHIBITED WITHOUT A LICENSE UNDER APPLICABLE PATENTS IN THE MPEG-2 PATENT PORTFOLIO,
WHICH LICENSE IS AVAILABLE FROM MPEG LA, L.L.C., 6312 S. FIDDLERS GREEN CIRCLE, SUITE 400E,
GREENWOOD VILLAGE, COLORADO 80111.

Contents 3

AMD uProf User Guide57368 Rev. 4.2 January 2024

Contents

Revision History .17

About this Document .18

Intended Audience .18
Conventions .18
Abbreviations. .18
Terminology. .20

Part 1:
Introduction .1
Chapter 1 Introduction .2

1.1 Overview .2

1.2 Specification .3

1.2.1 Processors .3

1.2.2 Operating Systems .3

1.2.3 Compilers and Application Environment .3

1.2.4 Virtualization Support .4

1.2.5 Container Support .4

1.3 Installing AMD uProf .5

1.3.1 Windows .5

1.3.2 Linux .5

1.3.3 FreeBSD .7

1.4 Sample Programs .7

1.5 Support .7

Part 2:
System Analysis .8
Chapter 2 Getting started with AMDuProfPcm .9

2.1 Overview .9

2.1.1 Prerequisite(s) .9

2.2 Options .10

2.3 Commands .24

4 Contents

57368 Rev. 4.2 January 2024AMD uProf User Guide

2.4 Examples .25

2.4.1 Linux and FreeBSD .25

2.4.2 Windows .26

2.5 BIOS Settings - Known Behavior .28

2.6 Monitoring without Root Privileges .28

2.7 Roofline Model .29

2.8 Pipeline Utilization .31

Chapter 3 Getting Started with AMDuProfSys .34

3.1 Overview .34

3.2 Supported Platforms .34

3.3 Supported Hardware Counters .34

3.4 Supported Operating Systems .34

3.5 Set up .35

3.5.1 Linux .35

3.5.2 Windows .35

3.6 Options .36

3.6.1 Generic .36

3.6.2 Collect Command .37

3.6.3 Report Command .38

3.7 Examples .38

3.8 Limitations .39

Part 3:
Application Analysis .41
Chapter 4 Workflow and Key Concepts .42

4.1 Workflow .42

4.1.1 Collect Phase .42

4.1.2 Translate and Report Phases .44

4.1.3 Analyze Phase .44

4.2 Predefined Sampling Configuration .44

4.3 Predefined View Configuration .46

Chapter 5 Getting Started with AMD uProf GUI .50

Contents 5

AMD uProf User Guide57368 Rev. 4.2 January 2024

5.1 User Interface .50

5.2 Launching GUI .51

5.3 Configure a Profile .52

5.3.1 Select Profile Target .52

5.3.2 Select Profile Type .53

5.3.3 Advanced Options .55

5.3.4 Start Profile .57

5.4 Translation Progress .58

5.5 Analyze the Profile Data .58

5.5.1 Overview of Performance Hotspots .59

5.5.2 Thread Concurrency Graph .63

5.5.3 Function HotSpots .64

5.5.4 Process and Functions .65

5.5.5 Source and Assembly .67

5.5.6 Top-down Callstack .68

5.5.7 Flame Graph .69

5.5.8 Call Graph .70

5.5.9 IMIX View .71

5.6 Importing Profile Database .72

5.7 Analyzing Saved Profile Session .73

5.8 Using Saved Profile Configuration .74

5.9 Settings .75

5.10 Shortcut Keys .77

Chapter 6 Getting Started with AMD uProf CLI .78

6.1 Overview .78

6.2 Starting a CPU Profile .79

6.2.1 List of Predefined Sample Configurations .80

6.2.2 Profile Report .81

6.3 Starting a Power Profile .82

6.3.1 System-wide Power Profiling (Live) .82

6.4 Collect Command .83

6 Contents

57368 Rev. 4.2 January 2024AMD uProf User Guide

6.4.1 Options .84

6.4.2 Windows Specific Options .87

6.4.3 Linux Specific Options .88

6.4.4 Examples .91

6.5 Report Command .94

6.5.1 Options .95

6.5.2 Windows Specific Options .97

6.5.3 Linux Specific Options .98

6.5.4 Examples .98

6.6 Translate Command .99

6.6.1 Options .100

6.6.2 Windows Specific Options .101

6.6.3 Linux Specific Options .101

6.6.4 Examples .102

6.7 Timechart Command .102

6.7.1 Options .103

6.7.2 Examples .103

6.8 Diff Command .104

6.8.1 Profile Comparison Eligibility Criteria .105

6.8.2 Options .105

6.8.3 Examples .107

6.9 Profile Command .109

6.9.1 Options .109

6.9.2 Windows Specific Options .115

6.9.3 Linux Specific Options .116

6.9.4 Examples .119

6.10 Info Command .122

6.10.1 Options .122

6.10.2 Examples .123

Chapter 7 Performance Analysis .125

7.1 CPU Profiling .125

Contents 7

AMD uProf User Guide57368 Rev. 4.2 January 2024

7.2 Analysis with Time-based Profiling .127

7.2.1 Configuring and Starting Profile .127

7.2.2 Analyzing Profile Data .128

7.3 Analysis with Event-based Profiling .128

7.3.1 Configuring and Starting Profile .128

7.3.2 Analyzing Profile Data .129

7.4 Analysis with Instruction-based Sampling .130

7.4.1 Configuring and Starting Profile .130

7.4.2 Analyzing Profile Data .131

7.5 Analysis with Call Stack Samples .131

7.5.1 Flame Graph .132

7.5.2 Call Graph .133

7.6 Profiling a Java Application .134

7.6.1 Launching a Java Application .134

7.6.2 Attaching a Java Process to Profile .135

7.6.3 Java Source View .135

7.6.4 Java Call Stack and Flame Graph .136

7.7 Cache Analysis .137

7.7.1 Supported Metrics .138

7.7.2 Cache Analysis Using GUI .138

7.7.3 Cache Analysis Using CLI .139

7.8 Custom Profile .141

7.8.1 Configuring and Starting Profile .141

7.8.2 Analyzing Profile Data .144

7.9 Advisory .145

7.9.1 Confidence Threshold .145

7.9.2 Issue Threshold .145

7.10 ASCII Dump of IBS Samples .146

7.11 Branch Analysis .146

7.12 Export Session .148

7.13 Limitations .148

8 Contents

57368 Rev. 4.2 January 2024AMD uProf User Guide

Chapter 8 Performance Analysis (Linux) .150

8.1 Threading Analysis .150

8.1.1 Threading Analyis Using CLI .150

8.1.2 pthread Synchronization APIs .154

8.1.3 libc System Call Wrapper APIs .154

8.1.4 Timeline Analysis GUI in Linux .156

8.2 OpenMP Analysis .160

8.2.1 Profiling OpenMP Application using GUI .161

8.2.2 Profiling OpenMP Application Using CLI .162

8.2.3 Environment Variables .164

8.2.4 Limitations .165

8.3 MPI Profiling .165

8.3.1 Collecting Data Using CLI .166

8.3.2 Analyzing the Data with CLI .167

8.3.3 Analyze the Data with GUI .168

8.3.4 Limitations .168

8.4 Profiling Support on Linux for perf_event_paranoid Values168

8.5 Profiling Linux System Modules .169

8.6 Profiling Linux Kernel .169

8.6.1 Enabling Kernel Symbol Resolution .169

8.6.2 Downloading and Installing Kernel Debug Symbol Packages170

8.6.3 Build Linux kernel with Debug Symbols .171

8.6.4 Analyzing Hotspots in Kernel Functions .171

8.6.5 Linux Kernel Callstack Sampling .171

8.6.6 Constraints .172

8.7 Kernel Block I/O Analysis .172

8.7.1 Kernel Block I/O Analysis Using CLI .173

8.8 GPU Offloading Analysis (GPU Tracing) .174

8.8.1 GPU Offload Analysis Using CLI .175

8.9 GPU Profiling .177

8.9.1 GPU Profiling Using CLI .178

Contents 9

AMD uProf User Guide57368 Rev. 4.2 January 2024

8.10 Other OS Tracing Events .180

8.10.1 Tracing Page Faults and Memory Allocations Using CLI180

8.10.2 Tracing Function Call Count using CLI .181

8.11 MPI Trace Analysis .182

8.11.1 MPI Light-weight Tracing Using CLI .183

8.11.2 MPI Full Tracing Using CLI .185

8.11.3 MPI FULL Tracing Using GUI .190

Chapter 9 Power Profile .195

9.1 Overview .195

9.2 Metrics .195

9.3 Using Profile through GUI .197

9.3.1 Configuring a Profile .197

9.3.2 Analyzing a Profile .198

9.4 Using CLI to Profile .199

9.4.1 Examples .200

9.5 AMDPowerProfileAPI Library .201

9.5.1 Using the APIs .201

9.6 Limitations .202

Chapter 10 Remote Profiling .203

10.1 Overview .203

10.2 Setting up Authorization .203

10.3 Launching AMDProfilerService .204

10.4 Connecting to Remote Target .205

10.5 Limitations .206

Chapter 11 AMD uProf Virtualization Support .208

11.1 OverView .208

11.2 CPU Profiling .209

11.2.1 Profiling of Guest VM from Guest VM .209

11.2.2 Profiling of Guest VM from Host System (KVM Hypervisor) 210

11.2.3 Preparing Host system to Profile Guest Kernel Modules210

11.2.4 AMD uProf CLI with Profiling Options .210

10 Contents

57368 Rev. 4.2 January 2024AMD uProf User Guide

11.2.5 Examples .211

11.3 AMDuProfPcm .212

11.4 AMDuProfSys .212

Chapter 12 Profile Control APIs .213

12.1 AMDProfileControl APIs .213

12.1.1 CPU Profile Control APIs .213

12.1.2 Using the APIs .214

12.1.3 Compiling Instrumented Target Application .215

12.1.4 Profiling Instrumented Target Application .215

12.1.5 Limitations .215

Chapter 13 Reference .216

13.1 Preparing an Application for Profiling .216

13.1.1 Generating Debug Information on Windows .216

13.1.2 Generating Debug Information on Linux .217

13.2 CPU Profiling .217

13.2.1 Hardware Sources .218

13.2.2 Profiling Concepts .219

13.2.3 Profile Types .220

13.2.4 Predefined Core PMC Events .221

13.2.5 IBS Derived Events .235

13.3 Useful URLs .248

List of Tables 11

AMD uProf User Guide57368 Rev. 4.2 January 2024

List of Tables

Table 1. Conventions. .18

Table 2. Abbreviations .18

Table 3. Terminology .20

Table 1. User Interface .2

Table 2. AMDuProfPcm Options .10

Table 3. Performance Metrics for AMD EPYCTM “Zen 2” .13

Table 4. Performance Metrics for AMD EPYCTM “Zen 3” .16

Table 5. Performance Metrics for AMD EPYCTM “Zen 4” .20

Table 6. AMDuProfPcm Options .24

Table 7. Level-1 Metrics .31

Table 8. Level-2 Metrics .32

Table 9. AMDuProfSys Generic Options .36

Table 10. AMDuProfSys Collect Command Options. .37

Table 11. AMDuProfSys Report Command Options .38

Table 12. Sampled Data .43

Table 13. Predefined Sampling Configurations .44

Table 14. Assess Performance Configurations .46

Table 15. Threading Configuration. .46

Table 16. Investigate Data Access Configurations .46

Table 17. Investigate Branch Configurations .47

Table 18. Assess Performance (Extended) Configurations. .47

Table 19. Investigate Instruction Access Configurations .47

Table 20. Investigate CPI Configurations .48

Table 21. Instruction Based Sampling Configurations .48

Table 22. Summary Overview .60

Table 23. Shortcut Keys .77

Table 24. Supported Commands .78

Table 25. AMDuProfCLI Collect Command Options .84

Table 26. AMDuProfCLI Collect Command – Windows Specific Options.87

12 List of Tables

57368 Rev. 4.2 January 2024AMD uProf User Guide

Table 27. AMDuProfCLI Collect Command – Linux Specific Options. .88

Table 28. AMDuProfCLI Report Command Options. .95

Table 29. AMDuProfCLI Report Command - Windows Specific Options 97

Table 30. AMDuProfCLI Report Command - Linux Specific Options .98

Table 31. AMDuProfCLI Translate Command Options. .100

Table 32. Translate Command - Windows Specific Options .101

Table 33. Translate Command - Linux Specific Options .101

Table 34. AMDuProfCLI Timechart Command Options .103

Table 35. AMDuProfCLI diff Command Options .105

Table 36. AMDuProfCLI profile Command Options .109

Table 37. AMDuProfCLI Windows profile Command Options. .115

Table 38. AMDuProfCLI Linux profile Command Options. .116

Table 39. AMDuProfCLI Info Command Options .122

Table 40. AMDuProfCLI Info Command - Linux Specific Options .123

Table 41. IBS OP Derived Metrics .138

Table 42. Sort-by Metric .140

Table 43. Supported CPU Events .158

Table 44. CPU Trace Categories .158

Table 45. Support Matrix .160

Table 46. MPI Profiling Support Matrix. .166

Table 47. Profiling perf_event_paranoid Values on Linux. .168

Table 48. I/O Operations. .172

Table 49. Supported Interfaces for GPU Tracing .174

Table 50. Supported Events for GPU Profiling. .177

Table 51. Supported Metrics for GPU Profiling .178

Table 52. Supported Events for OS Tracing .180

Table 53. Support Matrix .183

Table 54. List of Supported MPI APIs for Light-weight Tracing. .183

Table 55. MPI APIs. .186

Table 56. Family 17h Model 00h – 0Fh (AMD RyzenTM, AMD Ryzen ThreadRipperTM, and 1st
Gen AMD EPYCTM)195

List of Tables 13

AMD uProf User Guide57368 Rev. 4.2 January 2024

Table 57. Family 17h Model 10h – 1Fh (AMD RyzenTM and AMD RyzenTM PRO APU)196

Table 58. Family 17h Model 70h – 7Fh (3rd Gen AMD RyzenTM) .196

Table 59. Family 17h Model 30h – 3Fh (EPYC 7002). .196

Table 60. Family 19h Model 0h – 2Fh (EPYC 7003 and EPYC 9000) .197

Table 61. AMDProfilerService Options .204

Table 62. AMD uProf Virtualization Support. .208

Table 63. AMD uProf CLI Collect Command Options .210

Table 64. Predefined Core PMC Events .221

Table 65. Core CPU Metrics .233

Table 66. IBS Fetch Events. .236

Table 67. IBS Fetch Metrics .238

Table 68. IBS Op Events. .239

Table 69. IBS Op Metrics for AMD “Zen4” and AMD “Zen3” Server Platforms.245

14 List of Figures

57368 Rev. 4.2 January 2024AMD uProf User Guide

List of Figures

Figure 1. Sample Roofline Chart .31

Figure 2. Sample Report. .32

Figure 3. AMD uProf GUI .50

Figure 4. AMD uProf Welcome Screen .51

Figure 5. Start Profiling - Select Profile Target .53

Figure 6. Start Profiling - Select Profile Configuration .54

Figure 7. Start Profiling - Advanced Options 1 .55

Figure 8. Start Profiling - Advanced Options 2 .56

Figure 9. Profile Data Collection .57

Figure 10. Translation Progress .58

Figure 11. Summary - Hot Spots Screen .59

Figure 12. OS Trace .61

Figure 13. GPU Trace .61

Figure 14. Summary - Thread Concurrency Graph .63

Figure 15. ANALYZE - Function Hotspots. .64

Figure 16. Analyze - Metrics .65

Figure 17. SOURCES - Source and Assembly .67

Figure 18. Top-down Callstack .68

Figure 19. ANALYZE - Flame Graph .69

Figure 20. ANALYZE - Call Graph. .70

Figure 21. IMIX View .71

Figure 22. Import Session – Importing Profile Database. .72

Figure 23. PROFILE - Recent Session(s) .73

Figure 24. PROFILE - Saved Configurations .74

Figure 25. SETTINGS - Preferences .75

Figure 26. SETTINGS - Symbols .75

Figure 27. SETTINGS - Source Data. .76

Figure 29. Collect and Report Commands .79

Figure 30. Supported Predefined Configurations on Linux .80

List of Figures 15

AMD uProf User Guide57368 Rev. 4.2 January 2024

Figure 31. Supported Predefined Configurations on Windows .81

Figure 32. Output of timechart --list Command. .83

Figure 33. Execution of timechart .83

Figure 34. Time-based Profile – Configure .127

Figure 35. Event-based Profile – Configure. .129

Figure 36. IBS Configuration. .130

Figure 37. Start Profiling - Advanced Options .132

Figure 38. ANALYZE - Flame Graph .133

Figure 39. ANALYZE - Call Graph. .134

Figure 40. Java Method - Source View .136

Figure 41. Java Application - Flame Graph .137

Figure 42. Cache Analysis .139

Figure 43. Cache Analysis - Summary Sections .140

Figure 44. Cache Analysis - Detailed Report. .140

Figure 45. CPU Trace. .142

Figure 46. GPU Trace .143

Figure 47. Custom Config - Added Categories .144

Figure 48. CPI Metric - Threshold-based Performance .145

Figure 49. Branch Analysis Summary .147

Figure 50. Trace Report .152

Figure 51. Timeline Analysis GUI in Linux .157

Figure 52. Enable OpenMP Tracing .161

Figure 53. HPC - Overview .161

Figure 54. HPC - Parallel Regions .162

Figure 55. An OpenMP Report .163

Figure 56. Disk I/O Summary Tables .173

Figure 57. ANALYZE - Block I/O Stats .174

Figure 58. GPU Tracing Report .176

Figure 59. GPU Profile Report. .179

Figure 60. Pagefault and Memory Allocation Summary .181

Figure 61. Function Count Summary. .181

16 List of Figures

57368 Rev. 4.2 January 2024AMD uProf User Guide

Figure 62. LWT Report .185

Figure 63. MPI Communicator Summary Table .188

Figure 64. MPI Rank Summary Table .188

Figure 65. MPI API Summary Table .189

Figure 66. MPI Communication Matrix. .189

Figure 67. MPI Collective API Summary Table .189

Figure 68. Import Profile Session .190

Figure 69. MPI Communication Matrix. .190

Figure 70. MPI Rank Timeline .191

Figure 71. MPI P2P API Summary .192

Figure 72. MPI Collective API Summary .192

Figure 73. Live System-wide Power Profile .198

Figure 74. Timechart Page .199

Figure 75. --list Command Output .200

Figure 76. Timechart Run .200

Figure 77. Client ID .203

Figure 78. Remote Profiling Connection Establishment .204

Figure 79. Selecting IP .205

Figure 80. Connect to Remote Machine. .205

Figure 81. Remote Target Data .206

Figure 82. Disconnect Button. .206

Figure 83. AMDTClassicMatMul Property Page .217

Revision History 17

AMD uProf User Guide57368 Rev. 4.2 January 2024

Revision History

Date Revision Description

January 2024 4.2 Made some minor edits and updates
August 2023 4.1 Included AMD uProf 4.1 features
November 2022 4.0 Included AMD uProf 4.0 features
July 2022 3.6 Added the following:

• Chapters 11 and 12
• Sections 1.2.4, 1.2.5, 3.4, 4.2.1, 4.3, 5.4.8, 6.6, 8.10.2, and 13.1.5
Deleted Supported Counter categories for older APU families in chapter 9
Performed general edits and included release related updates

January 2022 3.5 Included AMD uProf 3.5 features
April 2021 Initial Documented AMD uProf 3.4 features

18 About this Document

57368 Rev. 4.2 January 2024AMD uProf User Guide

About this Document

This document describes how to use AMD uProf to perform CPU, GPU, and power analysis of
applications running on Windows®, Linux®, and FreeBSD® operating systems on AMD processors.

The latest version of this document is available in the AMD uProf web site (https://www.amd.com/en/
developer/uprof.html).

Intended Audience
This document is intended for the software developers and performance tuning experts who want to
improve the performance of their application. It assumes prior understanding of CPU architecture,
concepts of threads, processes, load modules, and familiarity with performance analysis concepts.

Conventions

The following conventions have been used in this document:

Abbreviations

The following abbreviations have been used in this document:

Table 1. Conventions
Convention Description

GUI element A Graphical User Interface element such as menu name or button
> Menu item within a Menu
[] Contents are optional in syntax
… Preceding element can be repeated
| Denotes “or”, like two options are not allowed together
File name Name of a file or path or source code snippet
Command Command name or command phrase
Hyperlink Links to external web sites

Table 2. Abbreviations
Abbreviation Description

APERF Actual Performance Frequency Clock Counter
ASLR Address Space Layout Randomization
CCD Core Complex Die that can contain one or more CCX(s) and GMI2

Fabric port(s) connecting to IOD

https://www.amd.com/en/developer/uprof.html
https://www.amd.com/en/developer/uprof.html

About this Document 19

AMD uProf User Guide57368 Rev. 4.2 January 2024

CLI Command Line Interface
CPI Cycles Per Instruction
CSV Comma Separated Values format
DC Data Cache
DIMM Dual In-line Memory Module
DRAM Dynamic Random Access Memory
DTLB Data Translation Lookaside Buffer
EBP Event Based Profiling, uses Core PMC events
GUI Graphical User Interface
IBS Instruction Based Sampling
IC Instruction Cache
IOD IO Die
IPC Instructions Per Cycle
ITLB Instruction Translation Lookaside Buffer
MPERF Maximum Performance Frequency Clock Counter
MSR Model Specific Register
NB Northbridge
OS Operating System
P0Freq P0 State Frequency
PMC Performance Monitoring Counter
PTI Per Thousand Instructions
RAPL Running Average Power Limit
SMU System Management Unit
TBP TimeBased Profiling
TSC Time Stamp Counter
UMC Unified Memory Controllers

Up to 8 UMCs, each supporting one DRAM channel per socket; each
channel can have up to 2 DIMMs

Table 2. Abbreviations
Abbreviation Description

20 About this Document

57368 Rev. 4.2 January 2024AMD uProf User Guide

Terminology

The following terms have been used in this document:
Table 3. Terminology

Term Description

AMD uProf The product name uProf.
AMDuProfGUI The name of the graphical user interface tool.
AMDuProfCLI The name of the command line interface tool.
AMDuProfPcm The name of the command line interface tool for System Analysis.
AMDuProfSys The name of the python based command line interface tool for System

Analysis.
Client Instance of AMD uProf or AMDuProfCLI running on a host system.
Core The logical core number, a core can contain one or two CPU(s) depending

on the SMT configuration.
Core Complex (CCX) Consists of one or many cores and a cache system.
CPU Logical CPU numbers as considered by the operating system.
Host system System in which the AMD uProf client process runs.
L1D, L1I Cache CPU exclusive data and instruction cache.
L2 Cache Shared by all the CPUs within the core.
L3 Cache Shared by all the CPUs within CCX.
Node Logical NUMA node.
Performance Profiling (or) CPU
Profiling

Identify and analyze the performance bottlenecks. Performance Profiling
and CPU Profiling denotes the same.

Socket The logical socket number, a socket can contain multiple nodes.
System Analysis Refers to AMDuProfPcm or AMDuProfSys tools.
Target system System in which the profile data is collected.

1

AMD uProf User Guide57368 Rev. 4.2 January 2024

Part 1:
Introduction

2 Introduction Chapter 1

57368 Rev. 4.2 January 2024AMD uProf User Guide

Chapter 1 Introduction

1.1 Overview

AMD uProf is a performance analysis tool for applications running on Windows and Linux operating
systems. It allows developers to understand and improve the runtime performance of their
application.

AMD uProf offers the following functionalities:

• Performance Analysis (CPU Profile)

To identify runtime performance bottlenecks of the application.

• System Analysis

To monitor system performance metrics, such as IPC and memory bandwidth.

• Live Power Profile

To monitor thermal and power characteristics of the system.

AMD uProf has the following user interfaces:

AMD uProf can effectively be used to:

• Analyze the performance of one or more processes/applications.

• Track down the performance bottlenecks in the source code.

• Identify ways to optimize the source code for better performance and power efficiency.

• Examine the behavior of kernels, drivers, and system modules.

• Observe system level thermal and power characteristics.

• Observe system metrics, such as IPC and memory bandwidth.

Table 1. User Interface
Executable Description Supported OS

AMDuProf GUI to perform CPU and Power Profile Windows and Linux
AMDuProfCLI CLI to perform CPU and Power Profile Windows, Linux, and FreeBSD
AMDuProfPcm CLI to perform System Analysis Windows, Linux, and FreeBSD
AMDPerf/
AMDuProfSys.py

Python script for System Analysis Windows and Linux

Chapter 1 Introduction 3

AMD uProf User Guide57368 Rev. 4.2 January 2024

1.2 Specification

AMD uProf supports the following specifications. For a detailed list of supported processors and
operating systems, refer to the AMD uProf Release Notes available at:

https://www.amd.com/en/developer/uprof.html

1.2.1 Processors

• AMD “Zen”-based CPU and APU Processors

• AMD InstinctTM MI100 and MI200 accelerators (for GPU kernel profiling and tracing)

• Intel® Processors (Time based profiling only)

1.2.2 Operating Systems

AMD uProf supports the 64-bit versions of the following operating systems:

• Microsoft

– Windows 10 and 11
– Windows Server 2019 and 2022

• Linux

– Ubuntu 16.04 and later
– RHEL 7.0 and later
– CentOS 7.0 and later
– openSUSE Leap 15.0
– SLES 12 and 15

• FreeBSD 12.2 and later

For OS support on AMD EPYCTM processors, refer to AMD website (https://www.amd.com/en/
processors/epyc-minimum-operating-system).

1.2.3 Compilers and Application Environment

AMD uProf supports the following application environments:

• Languages

– Native languages: C, C++, Fortran, and Assembly
– Non-native languages: Java and C#

https://www.amd.com/en/processors/epyc-minimum-operating-system
https://www.amd.com/en/developer/uprof.html

4 Introduction Chapter 1

57368 Rev. 4.2 January 2024AMD uProf User Guide

• Programs compiled with

– Microsoft compilers, GNU compilers, and LLVM
– AMD Optimizing C/C++ and Fortran Compilers (AOCC)
– Intel Compilers (ICC)

• Parallelism

– OpenMP
– MPI

• Debug info formats: PDB, COFF, DWARF, and STABS

• Applications compiled with and without optimization or debug information

• Single-process, multi-process, single-thread, and multi-threaded applications

• Dynamically linked/loaded libraries

• POSIX development environment on Windows

– Cygwin
– MinGW

1.2.4 Virtualization Support

AMD uProf can be used on virtualized environments. There could be limitations related to access to
hardware performance counters. For more information, refer to “AMD uProf Virtualization Support”
on page 208. The following virtualized environments are supported:

• VMware ESXi

• Linux KVM

• Citrix Xen

• Microsoft Hyper-V

1.2.5 Container Support

AMD uProf CPUProfiler can be used for analysis of applications running inside the Docker container
environments. This is supported only on Linux platforms. Choose one of the following approaches
for application analysis:

• Run AMD uProf inside the Docker container to analyze the application. CAP_SYS_ADMIN
permission (docker run --cap-add=CAP_SYS_ADMIN) is required to enable profiling. Both CLI
and GUI based profiling and analysis supported in this mode.

Chapter 1 Introduction 5

AMD uProf User Guide57368 Rev. 4.2 January 2024

• Run AMD uProf CLI outside the Docker container to profile and analyze the target application
running in the container:

– Attach uProf CLI to the containerized process using the --pid option during collection.
Alternatively, collect the system-wide data and filter by PID during report generation.

– During report generation, provide the path to the binary and source code (--bin-path and --
src-path) of the profiled application running in the container. AMD uProf GUI doesn't support
profiling and analysis in this mode.

1.3 Installing AMD uProf

Download the latest version of the AMD uProf installer package for the supported operating systems
from the AMD portal (https://www.amd.com/en/developer/uprof.html). You can install it using one of
the following methods.

1.3.1 Windows

Run the 64-bit Windows installer binary AMDuProf-x.y.z.exe.

After the installation is complete, the executables, libraries, and the other required files are installed
in the folder C:\Program Files\AMD\AMDuProf\.

1.3.2 Linux

1.3.2.1 Installing Using a tar File

Extract the tar.bz2 binary file and install AMD uProf using the following command:

Note: The Power Profiler Linux Driver must be installed manually.

1.3.2.2 Installing Using a RPM Package (RHEL)

Install the AMD uProf RPM package by using the rpm or yum command:

After the installation is complete, the executables, libraries, and the other required files will be
installed in the directory /opt/AMDuProf_X.Y-ZZZ/.

1.3.2.3 Installing Using a Debian Package (Ubuntu)

Install the AMD uProf Debian package by using the dpkg command:

After the installation is complete, the executables, libraries, and the other required files will be
installed in the directory /opt/AMDuProf_X.Y-ZZZ/.

$ tar -xf AMDuProf_Linux_x64_x.y.z.tar.bz2

$ sudo rpm --install amduprof-x.y-z.x86_64.rpm
$ sudo yum install amduprof-x.y-z.x86_64.rpm

$ sudo dpkg --install amduprof_x.y-z_amd64.deb

https://www.amd.com/en/developer/uprof.html

6 Introduction Chapter 1

57368 Rev. 4.2 January 2024AMD uProf User Guide

1.3.2.4 Installing Power Profiling Driver on Linux

While installing AMD uProf using RPM and Debian installer packages, the Power Profiler Linux
Driver build is generated and installed automatically. However, if you downloaded the AMD uProf
tar.bz2 archive, you must install the Power Profiler Linux Driver manually.

The GCC and MAKE software packages are prerequisites for installing Power Profiler Driver. If you
do not have these packages, you can install them using the following commands:

On RHEL and CentOS distros:

On Debian/Ubuntu distros:

Execute the following commands:

Installer will create a source tree for Power Profiler Driver in the directory /usr/src/
AMDPowerProfiler-<version>. All the source files required for module compilation are in this
directory and under MIT license.

To uninstall the driver run the following commands:

1.3.2.5 Linux Power Profiling Driver Support for DKMS

On Linux machines, Power profiling driver can also be installed with Dynamic Kernel Module
Support (DKMS) framework support. DKMS framework automatically upgrades the Power Profiler
Driver module whenever there is a change in the existing kernel. This saves you from manually
upgrading the power profiling driver module. The DKMS package must be installed on target
machines before running the installation steps mentioned in the above section.
AMDPowerProfilerDriver.sh installer script will automatically handle the DKMS related
configuration if the DKMS package is installed on the target machine.

Example (for Ubuntu distros):

If you upgrade the kernel version frequently, it is recommended to use DKMS for the installation.

1.3.2.6 Installing ROCm

Complete the steps in the ROCm installation guide (https://docs.amd.com/bundle/ROCm-
Installation-Guide-v5.5/page/Introduction_to_ROCm_Installation_Guide_for_Linux.html) to install
AMD ROCmTM v5.5 on the host system.

$ sudo yum install gcc make

$ sudo apt install build-essential

$ tar –xf AMDuProf_Linux_x64_x.y.z.tar.bz2
$ cd AMDuProf_Linux_x64_x.y.z/bin
$ sudo ./AMDPowerProfilerDriver.sh install

$ cd AMDuProf_Linux_x64_x.y.z/bin
$ sudo ./AMDPowerProfilerDriver.sh uninstall

$ sudo apt-get install dkms
$ tar –xf AMDuProf_Linux_x64_x.y.z.tar.bz2
$ cd AMDuProf_Linux_x64_x.y.z/bin
$ sudo ./AMDPowerProfilerDriver.sh install

https://docs.amd.com/bundle/ROCm-Installation-Guide-v5.5/page/Introduction_to_ROCm_Installation_Guide_for_Linux.html
https://docs.amd.com/bundle/ROCm-Installation-Guide-v5.5/page/Introduction_to_ROCm_Installation_Guide_for_Linux.html

Chapter 1 Introduction 7

AMD uProf User Guide57368 Rev. 4.2 January 2024

After ROCm 5.5 installation, make sure symbolic link of /opt/rocm/ points to /opt/rocm-5.5.0/.

AMD ROCm v5.5 installation is required for GPU tracing and profiling.

1.3.2.7 Installing BCC and eBPF

Complete the steps on the BCC website (https://github.com/iovisor/bcc/blob/master/INSTALL.md) to
install it.

After installing BCC, run the following command to validate the BCC installation:

If you install AMD uProf using RPM/DEB installer, the script is run by the installer and the info
about BCC installation and eBPF (Extended Berkeley Packet Filter) support on the host is provided.

1.3.3 FreeBSD

Extracting the tar.bz2 binary file and install AMD uProf:

1.4 Sample Programs

A few sample programs are installed along with the product for you to use with the tool:

• Windows

A sample matrix multiplication application

• Linux

– A sample matrix multiplication program with makefile

– An OpenMP example program and its variants with makefile

• FreeBSD

A sample matrix multiplication program with makefile

1.5 Support

For support options, the latest documentation, and downloads refer the AMD portal (https://
www.amd.com/en/developer/uprof.html).

$ ln -s /opt/rocm-5.5.0/ /opt/rocm/

$ cd AMDuProf_Linux_x64_x.y.z/bin
$ sudo ./AMDuProfVerifyBpfInstallation.sh

$ tar -xf AMDuProf_FreeBSD_x64_x.y.z.tar.bz2

C:\Program Files\AMD\AMDuProf\Examples\AMDTClassicMatMul\bin\AMDTClassicMatMul.exe

/opt/AMDuProf_X.Y-ZZZ/Examples/AMDTClassicMat/

/opt/AMDuProf_X.Y-ZZZ/Examples/CollatzSequence_C-OMP/

/<install dir>/AMDuProf_FreeBSD_x64_X.Y.ZZZ/Examples/AMDTClassicMat/

https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://www.amd.com/en/developer/uprof.html
https://www.amd.com/en/developer/uprof.html

8

57368 Rev. 4.2 January 2024AMD uProf User Guide

Part 2:
System Analysis

Chapter 2 Getting started with AMDuProfPcm 9

AMD uProf User Guide57368 Rev. 4.2 January 2024

Chapter 2 Getting started with AMDuProfPcm

2.1 Overview

The System Analysis utility AMDuProfPcm helps to monitor basic performance monitoring metrics
for AMD EPYCTM 7001, AMD EPYCTM 7002, AMD EPYCTM 7003, and AMD EPYCTM 9000 of
family 17h and 19h processors. This utility periodically collects the CPU Core, L3, and DF
performance event count values and reports various metrics. It is supported on Windows, Linux, and
FreeBSD.

2.1.1 Prerequisite(s)

2.1.1.1 Linux

• AMDuProfPcm requires the MSR driver and either root privileges or read write permissions for
dev/cpu/*/msr devices only when it is used with --msr for data collection.

• NMI watchdog must be disabled (echo 0 > /proc/sys/kernel/nmi_watchdog).

• Set /proc/sys/kernel/perf_event_paranoid to -1.

• Use the following command to load the msr driver:

• Roofline plotting script (AMDuProfModelling.py) requires python 3.x and python module
'matplotlib'

2.1.1.2 FreeBSD

AMDuProfPcm uses cpuctl module and requires either root privileges or read write permissions for /
dev/cpuctl* devices.

Synopsis:

<PROGRAM> — Denotes the launch application to be profiled.

<ARGS> — Denotes the list of arguments for the launch application.

Common Usages:

$ modprobe msr

AMDuProfPcm [<COMMANDS>] [<OPTIONS>] -- <PROGRAM> [<ARGS>]

$ AMDuProfPcm -h
AMDuProfPcm -m ipc -c core=0 -d 10 -o /tmp/pmcdata.txt
AMDuProfPcm -m memory -a -d 10 -o /tmp/memdata.txt -- /tmp/myapp.exe

10 Getting started with AMDuProfPcm Chapter 2

57368 Rev. 4.2 January 2024AMD uProf User Guide

2.2 Options

The following table lists all the options:
Table 2. AMDuProfPcm Options

Option Description

-h Displays this help information on the console/terminal.
-m <metric,...> Metrics to report, the default metric group is 'ipc'.

The supported metric groups and the corresponding metrics are
Platform, OS, and Hypervisor specific.
Run AMDuProfpcm -h to get the list of supported metrics.
The following metric groups are supported:
• ipc – reports metrics such as CEF, Utilization, CPI, and IPC
• fp – reports GFLOPS
• l1 – L1 cache related metrics (DC access and IC Fetch miss

ratio)
• l2 – L2D and L2I cache related access/hit/miss metrics
• l3 – L3 cache metrics like L3 Access, L3 Miss, and Average

Miss latency
• dc – advanced caching metrics such as DC refills by source

(supported only on AMD “Zen3” and AMD “Zen4”
processors)

• memory – approximate memory read and write bandwidths in
GB/s for all the channels

• pcie – PCIe bandwidth in GB/s (supported only on AMD
“Zen2” and AMD “Zen4” processors)

• xgmi – approximate xGMI outbound databytes in GB/s for all
the remote links

• dma – DMA bandwidth in GB/s (supported only on AMD
“Zen4” processors)

• swpfdc – software prefetch data cache from various nodes and
CCX (supported only on AMD “Zen3” and AMD “Zen4”
processors)

• hwpfdc – hardware prefetch data cache from various nodes and
CCX (supported only on AMD “Zen3” and AMD “Zen4”
processors)

• pipeline_util – top-down metrics to visualize the bottlenecks in
the CPU pipeline (supported only on AMD “Zen4” processors)

Chapter 2 Getting started with AMDuProfPcm 11

AMD uProf User Guide57368 Rev. 4.2 January 2024

-c <core|ccx|l3|ccd|package>=<n> Collect from the specified core | ccx | ccd | package. The default
is 'core=0'.
If 'ccx' or 'l3' is specified:
• The core events will be collected from all the cores of this ccx.
• The l3 and df events will be collected from the first core of this

ccx.
If 'ccd' is specified:
• The core events will be collected from all the cores of this die.
• The l3 events will be collected from the first core of all the

ccx's of this die.
• The df events will be collected from the first core of this die.
If 'package' is specified:
• The core events will be collected from all the cores of this

package.
• The l3 events will be collected from the first core of all the

ccx's of this package.
• The df events will be collected from the first core of all the die

of this package.
-a Collect from all the cores.

Note: Options -c and -a cannot be used together.

-C Prints the cumulative data at the end of the profile duration.
Otherwise, all the samples will be reported as timeseries data.

-A <system,package,ccd,ccx,core> Prints aggregated metrics at various component level.
The following granularities are supported:
• system – samples from all the cores in the system will be

aggregated
• package – samples from all the cores in the package will be

aggregated and reported for all the packages available in the
system; applicable for multi-package systems.

• ccd – samples from all the cores in CCD will be aggregated and
reported for all the CCDs.

• ccx – samples from all the cores in CCX will be aggregated and
reported for all the CCXs.

• core – samples from all the cores on which samples are
collected will be reported without aggregation.

Notes:
1. Option -a should be used along with this option to collect samples

from all the cores.
2. Comma separated list of components can be specified.

Table 2. AMDuProfPcm Options
Option Description

12 Getting started with AMDuProfPcm Chapter 2

57368 Rev. 4.2 January 2024AMD uProf User Guide

-i <config file> User defined XML config file that specifies Core|L3|DF counters
to monitor.
Refer sample files in <install-dir>/bin/Data/Config/ dir for the
format.
Notes:

1. Options -i and -m cannot be used together.
2. If option -i is used, all the events mentioned in the user defined config

file will be collected.

-d <seconds> Profile duration to run.
-t < multiplex interval in ms> The interval in which pmc count values will be read, the

minimum is 16 ms.
-o <output file> The output file name, it is in CSV format.
-D <dump file> The output file that contains the event count dump for all the

monitored events. It is in CSV format.
-p <n> Sets precision of the metrics reported, the default value is 2.
-q Hide CPU topology section in the output report.
-r Force resets the MSRs.
-k Prefixes 'pkg' in package level counters.
-s Displays time stamp in the time series report.
-l Lists the supported raw PMC events.
-z <pmc-event> Prints the name, description, and available unit masks for the

event.
-x <core-id,...> Core affinity for launched application, comma separated list of

core IDs.
Note: This is supported only on Linux.

-w <dir> Specifies the working directory. The default will be the path of
the launched application.

-v Print version.
-X Collect data using perf subsystem without root privileges.

Note: This is only supported on Linux.

-P <process ID> Specify the target process ID to monitor.
Note: This is only supported with the option -X on Linux.

-f <util:<n>> Filter the roofline data based on the utilization. For example, -f
util:90 will filter all data points with less than 90% utilization.
Note: This is a applicable only with the roofline command.

Table 2. AMDuProfPcm Options
Option Description

Chapter 2 Getting started with AMDuProfPcm 13

AMD uProf User Guide57368 Rev. 4.2 January 2024

Following are the performance metrics for AMD EPYCTM “Zen 2” core architecture processors:
Table 3. Performance Metrics for AMD EPYCTM “Zen 2”

Metric Group Metric Description

ipc

Utilization (%) Percentage of time the core was running, that is non-
idle time.

Eff Freq Core Effective Frequency (CEF) without halted cycles
over the sampling period, reported in GHz. The metric
is based on CEF = (APERF / TSC) * P0Freq. APERF is
incremented in proportion to the actual number of core
cycles while the core is in C6 state.

IPC Instructions Per Cycle (IPC) is the average number of
instructions retired per CPU cycle. This is measured
using Core PMC events PMCx0C0 [Retired
Instructions] and PMCx076 [CPU Clocks not Halted].
These PMC events are counted in both OS and User
mode.

CPI Cycles Per Instruction (CPI) is the multiplicative
inverse of IPC metric. This is one of the basic
performance metrics indicating how cache misses,
branch mis-predictions, memory latencies, and other
bottlenecks are affecting the execution of an
application. A lower CPI value is better.

Branch Mis-prediction Ratio The ratio between mis-predicted branches and retired
branch instructions.

fp
Retired SSE/AVX Flops
(GFLOPs)

The number of retired SSE/AVX FLOPs.

Mixed SSE/AVX Stalls Mixed SSE/AVX stalls.
This metric is in per thousand instructions (PTI).

l1
IC(32B) Fetch Miss Ratio Instruction cache fetch miss ratio.
DC Access All data cache (DC) accesses. This metric is in PTI.

14 Getting started with AMDuProfPcm Chapter 2

57368 Rev. 4.2 January 2024AMD uProf User Guide

l2

L2 Access All the L2 cache accesses. This metric is in PTI.
L2 Access from IC Miss The L2 cache accesses from IC miss. This metric is in

PTI.
L2 Access from DC Miss The L2 cache accesses from DC miss. This metric is in

PTI.
L2 Access from HWPF The L2 cache accesses from L2 hardware pre-fetching.

This metric is in PTI.
L2 Miss All the L2 cache misses. This metric is in PTI.
L2 Miss from IC Miss The L2 cache misses from IC miss. This metric is in

PTI.
L2 Miss from DC Miss The L2 cache misses from DC miss. This metric is in

PTI.
L2 Miss from HWPF The L2 cache misses from L2 hardware pre-fetching.

This metric is in PTI.
L2 Hit All the L2 cache hits. This metric is in PTI.
L2 Hit from IC Miss The L2 cache hits from IC miss. This metric is in PTI.
L2 Hit from DC Miss The L2 cache hits from DC miss. This metric is in PTI.
L2 Hit from HWPF The L2 cache hits from L2 hardware pre-fetching. This

metric is in PTI.

tlb

L1 ITLB Miss The instruction fetches the misses in the L1 Instruction
Translation Lookaside Buffer (ITLB), but hit in the L2-
ITLB plus the ITLB reloads originating from page table
walker. The table walk requests are made for L1-ITLB
miss and L2-ITLB misses. This metric is in PTI.

L2 ITLB Miss The number of ITLB reloads from page table walker
due to L1-ITLB and L2-ITLB misses. This metric is in
PTI.

L1 DTLB Miss The number of L1 Data Translation Lookaside Buffer
(DTLB) misses from load store micro-ops. This event
counts both L2-DTLB hit and L2-DTLB miss. This
metric is in PTI.

L2 DTLB Miss The number of L2 Data Translation Lookaside Buffer
(DTLB) missed from load store micro-ops. This metric
is in PTI.

Table 3. Performance Metrics for AMD EPYCTM “Zen 2”
Metric Group Metric Description

Chapter 2 Getting started with AMDuProfPcm 15

AMD uProf User Guide57368 Rev. 4.2 January 2024

l3

L3 Access The L3 cache accesses. This metric is in PTI.
L3 Miss The L3 cache miss. This metric is in PTI.
L3 Miss (%) The L3 cache miss percentage. This metric is in PTI.
Ave L3 Miss Latency Average L3 miss latency in core cycles.

Memory Mem Ch-A RdBw (GB/s)
Mem Ch-A WrBw (GB/s)
...

Memory Read and Write bandwidth in GB/s for all the
channels.

xgmi xGMI0 BW (GB/s)
xGMI1 BW (GB/s)
xGMI2 BW (GB/s)
xGMI3 BW (GB/s)

Approximate xGMI outbound data bytes in GB/s for all
the remote links.

pcie PCIe0 (GB/s)
PCIe1 (GB/s)
PCIe2 (GB/s)
PCIe3 (GB/s)

Approximate PCIe bandwidth in GB/s.

Table 3. Performance Metrics for AMD EPYCTM “Zen 2”
Metric Group Metric Description

16 Getting started with AMDuProfPcm Chapter 2

57368 Rev. 4.2 January 2024AMD uProf User Guide

Following are the performance metrics for AMD EPYCTM “Zen 3” core architecture processors:
Table 4. Performance Metrics for AMD EPYCTM “Zen 3”

Metric Group Metric Description

ipc

Utilization (%) Percentage of time the core was running, that is non-
idle time.

Eff Freq Core Effective Frequency (CEF) without halted cycles
over the sampling period, reported in GHz. The metric
is based on CEF = (APERF / TSC) * P0Freq. APERF is
incremented in proportion to the actual number of core
cycles while the core is in C6 state.

IPC Instructions Per Cycle (IPC) is the average number of
instructions retired per CPU cycle. This is measured
using Core PMC events PMCx0C0 [Retired
Instructions] and PMCx076 [CPU Clocks not Halted].
These PMC events are counted in both OS and User
mode.

CPI Cycles Per Instruction (CPI) is the multiplicative
inverse of IPC metric. This is one of the basic
performance metrics indicating how cache misses,
branch mis-predictions, memory latencies, and other
bottlenecks are affecting the execution of an
application. A lower CPI value is better.

Branch Mis-prediction Ratio The ratio between mis-predicted branches and retired
branch instructions.

fp
Retired SSE/AVX Flops
(GFLOPs)

The number of retired SSE/AVX FLOPs.

Mixed SSE/AVX Stalls Mixed SSE/AVX stalls.
This metric is in per thousand instructions (PTI).

l1

IC (32B) Fetch Miss Ratio Instruction cache fetch miss ratio.
Op Cache (64B) Fetch Miss
Ratio

Operation cache fetch miss ratio.

IC Access All instruction cache accesses. This metric is in PTI.
IC Miss The instruction cache miss. This metric is in PTI.
DC Access All the DC accesses. This metric is in PTI.

Chapter 2 Getting started with AMDuProfPcm 17

AMD uProf User Guide57368 Rev. 4.2 January 2024

l2

L2 Access All the L2 cache accesses. This metric is in PTI.
L2 Access from IC Miss The L2 cache accesses from IC miss. This metric is in

PTI.
L2 Access from DC Miss The L2 cache accesses from DC miss. This metric is in

PTI.
L2 Access from HWPF The L2 cache accesses from L2 hardware pre-fetching.

This metric is in PTI.
L2 Miss All the L2 cache misses. This metric is in PTI.
L2 Miss from IC Miss The L2 cache misses from IC miss. This metric is in

PTI.
L2 Miss from DC Miss The L2 cache misses from DC miss. This metric is in

PTI.
L2 Miss from HWPF The L2 cache misses from L2 hardware pre-fetching.

This metric is in PTI.
L2 Hit All the L2 cache hits. This metric is in PTI.
L2 Hit from IC Miss The L2 cache hits from IC miss. This metric is in PTI.
L2 Hit from DC Miss The L2 cache hits from DC miss. This metric is in PTI.
L2 Hit from HWPF The L2 cache hits from L2 hardware pre-fetching. This

metric is in PTI.

tlb

L1 ITLB Miss The instruction fetches the misses in the L1 Instruction
Translation Lookaside Buffer (ITLB), but hit in the L2-
ITLB plus the ITLB reloads originating from page table
walker. The table walk requests are made for L1-ITLB
miss and L2-ITLB misses. This metric is in PTI.

L2 ITLB Miss The number of ITLB reloads from page table walker
due to L1-ITLB and L2-ITLB misses. This metric is in
PTI.

L1 DTLB Miss The number of L1 Data Translation Lookaside Buffer
(DTLB) misses from load store micro-ops. This event
counts both L2-DTLB hit and L2-DTLB miss. This
metric is in PTI.

L2 DTLB Miss The number of L2 Data Translation Lookaside Buffer
(DTLB) missed from load store micro-ops. This metric
is in PTI.

All TLBs Flushed All the TLBs flushed. This metric is in PTI.

Table 4. Performance Metrics for AMD EPYCTM “Zen 3”
Metric Group Metric Description

18 Getting started with AMDuProfPcm Chapter 2

57368 Rev. 4.2 January 2024AMD uProf User Guide

dc

DC Fills from Same CCX The number of DC fills from local L2 cache to the core
or different L2 cache in the same CCX or L3 cache that
belongs to the CCX. This metric is in PTI.

DC Fills from different CCX
in same node

The number of DC fills from cache of different CCX in
the same package (node). This metric is in PTI.

DC Fills from Local Memory The number of DC fills from DRAM or IO connected
in the same package (node). This metric is in PTI.

DC Fills from Remote CCX
Cache

The number of DC fills from cache of CCX in the
different package (node). This metric is in PTI.

DC Fills from Remote
Memory

The number of DC fills from DRAM or IO connected
in the different package (node). This metric is in PTI.

All DC Fills The total number of DC fills from all the data sources.
This metric is in PTI.

l3

L3 Access The L3 cache accesses. This metric is in PTI.
L3 Miss The L3 cache miss. This metric is in PTI.
L3 Miss (%) The L3 cache miss percentage. This metric is in PTI.
Ave L3 Miss Latency The average L3 miss latency in core cycles.

Memory Mem Ch-A RdBw (GB/s)
Mem Ch-A WrBw (GB/s)
...

Memory Read and Write bandwidth in GB/s for all the
channels.

xgmi xGMI0 BW (GB/s)
xGMI1 BW (GB/s)
xGMI2 BW (GB/s)
xGMI3 BW (GB/s)

Approximate xGMI outbound data bytes in GB/s for all
the remote links.

Table 4. Performance Metrics for AMD EPYCTM “Zen 3”
Metric Group Metric Description

Chapter 2 Getting started with AMDuProfPcm 19

AMD uProf User Guide57368 Rev. 4.2 January 2024

swpfdc SwPf DC Fills from DRAM
or IO connected in remote
node (pti)
SwPf DC Fills from CCX
Cache in remote node (pti)
SwPf DC Fills from DRAM
or IO connected in local node
(pti)
SwPf DC Fills from Cache of
another CCX in local node
(pti)
SwPf DC Fills from L3 or
different L2 in same CCX
(pti)
SwPf DC Fills from L2 (pti)

Software prefetch data cache from various nodes and
CCX.

hwpfdc HwPf DC Fills from DRAM
or IO connected in remote
node (pti)
HwPf DC Fills from CCX
Cache in remote node (pti)
HwPf DC Fills from DRAM
or IO connected in local node
(pti)
HwPf DC Fills from Cache of
another CCX in local node
(pti)
HwPf DC Fills from L3 or
different L2 in same CCX
(pti)
HwPf DC Fills From L2 (pti)

Hardware prefetch data cache from various nodes and
CCX.

Table 4. Performance Metrics for AMD EPYCTM “Zen 3”
Metric Group Metric Description

20 Getting started with AMDuProfPcm Chapter 2

57368 Rev. 4.2 January 2024AMD uProf User Guide

Following are the performance metrics for AMD EPYCTM “Zen 4” core architecture processors:
Table 5. Performance Metrics for AMD EPYCTM “Zen 4”

Metric Group Metric Description

ipc

Utilization (%) Percentage of time the core was running, that is non-
idle time.

Eff Freq Core Effective Frequency (CEF) without halted cycles
over the sampling period, reported in GHz. The metric
is based on CEF = (APERF / TSC) * P0Freq. APERF is
incremented in proportion to the actual number of core
cycles while the core is in C6 state.

IPC Instructions Per Cycle (IPC) is the average number of
instructions retired per CPU cycle. This is measured
using Core PMC events PMCx0C0 [Retired
Instructions] and PMCx076 [CPU Clocks not Halted].
These PMC events are counted in both OS and User
mode.

CPI Cycles Per Instruction (CPI) is the multiplicative
inverse of IPC metric. This is one of the basic
performance metrics indicating how cache misses,
branch mis-predictions, memory latencies, and other
bottlenecks are affecting the execution of an
application. A lower CPI value is better.

Branch Mis-prediction Ratio The ratio between mis-predicted branches and retired
branch instructions.

fp
Retired SSE/AVX Flops
(GFLOPs)

The number of retired SSE/AVX FLOPs.

FP Dispatch Faults (PTI) The floating point instruction dispatch fault. This
metric is in per thousand instructions (PTI).

l1

IC (32B) Fetch Miss Ratio Instruction cache fetch miss ratio.
Op Cache Fetch Miss Ratio Operation cache (64B) fetch miss ratio.
IC Access (PTI) Instruction cache access in PTI.
IC Miss (PTI) Instruction cache Miss in PTI.
DC Access (PTI) All the data cache (DC) accesses. This metric is in PTI.

Chapter 2 Getting started with AMDuProfPcm 21

AMD uProf User Guide57368 Rev. 4.2 January 2024

l2

L2 Access All the L2 cache accesses. This metric is in PTI.
L2 Access from IC Miss The L2 cache accesses from IC miss. This metric is in

PTI.
L2 Access from DC Miss The L2 cache accesses from DC miss. This metric is in

PTI.
L2 Access from HWPF The L2 cache accesses from L2 hardware pre-fetching.

This metric is in PTI.
L2 Miss All the L2 cache misses. This metric is in PTI.
L2 Miss from IC Miss The L2 cache misses from IC miss. This metric is in

PTI.
L2 Miss from DC Miss The L2 cache misses from DC miss. This metric is in

PTI.
L2 Miss from HWPF The L2 cache misses from L2 hardware pre-fetching.

This metric is in PTI.
L2 Hit All the L2 cache hits. This metric is in PTI.
L2 Hit from IC Miss The L2 cache hits from IC miss. This metric is in PTI.
L2 Hit from DC Miss The L2 cache hits from DC miss. This metric is in PTI.
L2 Hit from HWPF The L2 cache hits from L2 hardware pre-fetching. This

metric is in PTI.

tlb

L1 ITLB Miss The instruction fetches the misses in the L1 Instruction
Translation Lookaside Buffer (ITLB), but hit in the L2-
ITLB plus the ITLB reloads originating from page table
walker. The table walk requests are made for L1-ITLB
miss and L2-ITLB misses. This metric is in PTI.

L2 ITLB Miss The number of ITLB reloads from page table walker
due to L1-ITLB and L2-ITLB misses. This metric is in
PTI.

L1 DTLB Miss The number of L1 Data Translation Lookaside Buffer
(DTLB) misses from load store micro-ops. This event
counts both L2-DTLB hit and L2-DTLB miss. This
metric is in PTI.

L2 DTLB Miss The number of L2 Data Translation Lookaside Buffer
(DTLB) missed from load store micro-ops. This metric
is in PTI.

All TLBs Flushed All the flushed TLBs.

Table 5. Performance Metrics for AMD EPYCTM “Zen 4”
Metric Group Metric Description

22 Getting started with AMDuProfPcm Chapter 2

57368 Rev. 4.2 January 2024AMD uProf User Guide

l3

L3 Access The L3 cache accesses. This metric is in PTI.
L3 Miss The L3 cache miss. This metric is in PTI.
L3 Miss (%) The L3 cache miss percentage. This metric is in PTI.
Ave L3 Miss Latency Average L3 miss latency in core cycles.

Memory

Total Memory Bw (GB/s) Total read and write memory bandwidth.
Local DRAM Read Data
Bytes (GB/s)
Local DRAM Write Data
Bytes (GB/s)

DRAM read and write data bytes for a local processor.

Remote DRAM Read Data
Bytes (GB/s)
Remote DRAM Write Data
Bytes (GB/s)

DRAM read and write data bytes for a remote
processor.

Mem Ch-A RdBw (GB/s)
Mem Ch-A WrBw (GB/s)
...

Memory read and write bandwidth in GB/s for all the
channels.

xgmi

Local Inbound Read Data
Bytes (GB/s)

Local inbound data bytes to the CPU, for example, read
data.

Local Outbound Write Data
Bytes (GB/s)

Local outbound data bytes from the CPU, for example,
write data.

Remote Inbound Read Data
Bytes (GB/s)

Remote socket inbound data bytes to the CPU, for
example, read data.

Remote Outbound Write Data
Bytes (GB/s)

Remote socket outbound data bytes from the CPU for
example, write data.

xGMI Outbound Data Bytes
(GB/s)

Total outbound data bytes in Gigabytes per second.

dma
(not available in
AMD “Zen1”,
AMD “Zen2”,
and AMD
“Zen3”
processors)

Total Upstream DMA Read
Write Data Bytes (GB/s)

Total upstream DMA including read and write.

Local Upstream DMA Read
Data Bytes (GB/s)

Local upstream DMA read data bytes.

Local Upstream DMA Write
Data Bytes (GB/s)

Local upstream DMA write data bytes.

Remote Upstream DMA
Read Data Bytes (GB/s)

Remote socket upstream DMA read data bytes

Remote Upstream DMA
Write Data Bytes (GB/s)

Remote socket upstream DMA write data bytes.

Table 5. Performance Metrics for AMD EPYCTM “Zen 4”
Metric Group Metric Description

Chapter 2 Getting started with AMDuProfPcm 23

AMD uProf User Guide57368 Rev. 4.2 January 2024

pcie PCIe0 (GB/s)
PCIe1 (GB/s)
PCIe2 (GB/s)
PCIe3 (GB/s)

Approximate PCIe bandwidth in GB/s.

swpfdc SwPf DC Fills from DRAM
or IO connected in remote
node (pti)
SwPf DC Fills from CCX
Cache in remote node (pti)
SwPf DC Fills from DRAM
or IO connected in local node
(pti)
SwPf DC Fills from Cache of
another CCX in local node
(pti)
SwPf DC Fills from L3 or
different L2 in same CCX
(pti)
SwPf DC Fills from L2 (pti)

Software prefetch data cache from various nodes and
CCX.

hwpfdc HwPf DC Fills from DRAM
or IO connected in remote
node (pti)
HwPf DC Fills from CCX
Cache in remote node (pti)
HwPf DC Fills from DRAM
or IO connected in local node
(pti)
HwPf DC Fills from Cache of
another CCX in local node
(pti)
HwPf DC Fills from L3 or
different L2 in same CCX
(pti)
HwPf DC Fills From L2 (pti)

Hardware prefetch data cache from various nodes and
CCX.

Table 5. Performance Metrics for AMD EPYCTM “Zen 4”
Metric Group Metric Description

24 Getting started with AMDuProfPcm Chapter 2

57368 Rev. 4.2 January 2024AMD uProf User Guide

2.3 Commands

The following table lists all the commands:

pipeline_util

Total_Dispatch_Slots Up to 6 instructions can be dispatched in one cycle.
SMT_Disp_contention Fraction of unused dispatch slots as other thread was

selected.
Frontend_Bound Fraction of dispatch slots that remained unused as the

frontend did not supply enough instructions/operations.
Bad_Speculation Fraction of unused dispatch slots as other thread was

selected.
Backend_Bound Fraction of dispatch slots that remained unused because

of the backend stalls.
Retiring Fraction of dispatch slots used by the retired

operations.
IPC Instructions per cycle.
Frontend_Bound.Latency Fraction of dispatch slots that remained unused because

of a latency bottleneck in the frontend, such as
Instruction Cache or ITLB misses.

Frontend_Bound.BW Fraction of dispatch slots that remained unused because
of a bandwidth bottleneck in the frontend, such as
decode bandwidth or Op Cache fetch bandwidth.

Bad_Speculation.Mispredicts Fraction of dispatched ops that were flushed due to
branch mis-predicts.

Bad_Speculation.Pipeline_R
estarts

Fraction of dispatched ops that were flushed due to the
pipeline restarts (resyncs).

Backend_Bound.Memory Fraction of dispatched slots that remained unused
because of stalls due to the memory subsystem.

Backend_Bound.CPU Fraction of dispatched slots that remained unused
because of stalls not related to the memory subsystem.

Retiring.Fastpath Fraction of dispatch slots used by the retired fastpath
operations.

Retiring.Microcode Fraction of dispatch slots used by the retired microcode
operations.

Table 6. AMDuProfPcm Options
Command Description

roofline Collects data required for generating roofline model.

Table 5. Performance Metrics for AMD EPYCTM “Zen 4”
Metric Group Metric Description

Chapter 2 Getting started with AMDuProfPcm 25

AMD uProf User Guide57368 Rev. 4.2 January 2024

2.4 Examples

2.4.1 Linux and FreeBSD

• Collect IPC data from core 0 for the duration of 60 seconds:

• Collect IPC/L3 metrics for CCX=0 for the duration of 60 seconds:

• Collect only the memory bandwidth across all the UMCs for the duration of 60 seconds and save
the output in /tmp/pcmdata.csv file:

• Collect IPC data for 60 seconds from all the cores:

• Collect IPC data from core 0 and run the program in core 0:

• Collect IPC data from cores 0-7 and run the application on cores 0-3:

• Collect IPC and data l2 data from core 0 and report the cumulative (not timeseries) and run the
program in core 0

• List the supported raw Core PMC events:

• Print the name, description, and the available unit masks for the specified event:

• Collect roofline data in root mode:

• Collect roofline data in non-root mode:

• Plot roofline data and generate a PDF in the output directory /tmp:

./AMDuProfPcm -m ipc -c core=0 -d 60 -o /tmp/pcmdata.csv

./AMDuProfPcm -m ipc,l3 -c ccx=0 -d 60 -o /tmp/pcmdata.csv

./AMDuProfPcm -m memory -a -d 60 -o /tmp/pcmdata.csv

./AMDuProfPcm -m ipc -a -d 60 -o /tmp/pcmdata.csv

./AMDuProfPcm -m ipc -c core=0 -o /tmp/pcmdata.csv -- /usr/bin/taskset -c 0 <application>

./AMDuProfPcm -m ipc -c core=0-7 -o /tmp/pcmdata.csv -- /usr/bin/taskset -c 0-3
<application>

./AMDuProfPcm -m ipc,l2 -c core=0 -o /tmp/pcmdata.csv -C -- /usr/bin/taskset -c 0
<application>

./AMDuProfPcm -l

./AMDuProfPcm -z pmcx03

sudo ./AMDuProfPcm roofline -o /tmp/roofline.csv <application>

./AMDuProfPcm roofline -X -o /tmp/roofline.csv <application>

AMDuProfModelling.py -i /tmp/roofline.csv -o /tmp/

26 Getting started with AMDuProfPcm Chapter 2

57368 Rev. 4.2 January 2024AMD uProf User Guide

2.4.2 Windows

Core Metrics

• Get the list of supported metrics:

• Collect IPC data from core 0 for the duration of 30 seconds:

• Collect IPC/L2 metrics for all the core in CCX=0 for the duration of 30 seconds:

• Collect IPC data for 30 seconds from all the cores in the system:

• Collect IPC data from core 0 and run the program:

• Collect IPC and data l2 data from all the cores and report the aggregated data at the system and
package level:

• Collect IPC and data l2 data from all the cores in CCX=0 and report the cumulative (not
timeseries):

• Collect IPC and data l2 data from all the cores and report the cumulative (not timeseries):

• Collect IPC and data l2 data from all the cores and report the cumulative (not timeseries) and
aggregate at system and package level:

L3 Metrics

• Collect L3 data from ccx=0 for the duration of 30 seconds:

• Collect L3 data from all the CCXs and report for the duration of 30 seconds:

• Collect L3 data from all the CCXs and aggregate at system and package level and report for the
duration of 30 seconds:

• Collect L3 data from all the CCXs and aggregate at system and package level and report for the
duration of 30 seconds; also report for the individual CCXs:

C:\> AMDuProfPcm.exe -h

C:\> AMDuProfPcm.exe -m ipc -c core=0 -d 30 -o c:\tmp\pcmdata.csv

C:\> AMDuProfPcm.exe -m ipc,l2 -c ccx=0 -d 30 -o c:\tmp\pcmdata.csv

C:\> AMDuProfPcm.exe -m ipc -a -d 30 -o c:\tmp\pcmdata.csv

C:\> AMDuProfPcm.exe -m ipc -c core=0 -o c:\tmp\pcmdata.csv myapp.exe

C:\> AMDuProfPcm.exe -m ipc,l2 -a -o c:\tmp\pcmdata.csv -d 30 -A system,package

C:\> AMDuProfPcm.exe -m ipc,l2 -c ccx=0 -o c:\tmp\pcmdata.csv -C -d 30

C:\> AMDuProfPcm.exe -m ipc,l2 -a -o c:\tmp\pcmdata.csv -C -d 30

C:\> AMDuProfPcm.exe -m ipc,l2 -a -o c:\tmp\pcmdata.csv -C -A system,package -d 30

C:\> AMDuProfPcm.exe -m l3 -c ccx=0 -d 30 -o c:\tmp\pcmdata.csv

C:\> AMDuProfPcm.exe -m l3 -a -d 30 -o c:\tmp\pcmdata.csv

C:\> AMDuProfPcm.exe -m l3 -a -d 30 -A system,package -o c:\tmp\pcmdata.csv

C:\> AMDuProfPcm.exe -m l3 -a -d 30 -A system,package,ccx -o c:\tmp\pcmdata.csv

Chapter 2 Getting started with AMDuProfPcm 27

AMD uProf User Guide57368 Rev. 4.2 January 2024

• Collect L3 data from all the CCXs for the duration of 30 seconds and report the cumulative data
(no timeseries data):

• Collect L3 data from all the CCXs and aggregate at system and package level and report
cumulative data (no timeseries data)

• Collect IPC data from core 0 for the duration of 30 seconds:

Memory Bandwidth

• Report memory bandwidth for all the memory channels for the duration of 60 seconds and save
the output in c:\tmp\pcmdata.csv file:

• Report total memory bandwidth aggregated at the system level for the duration of 60 seconds and
save the output in c:\tmp\pcmdata.csv file:

• Report total memory bandwidth aggregated at the system level and also report for every memory
channel:

• Report total memory bandwidth aggregated at the system level and also report for all the available
memory channels. To report cumulative metric value instead of the timeseries data:

Raw Event Count Dump

• Monitor events from core 0 and dump the raw event counts for every sample in timeseries
manner, no metrics report will be generated:

• Monitor events from all the cores and dump the raw event counts for every sample in timeseries
manner, no metrics report will be generated:

Custom Config File

A sample config XML file is available in <uprof-install-dir>\bin\Data\Config\SamplePcm-core.conf.
This file can be copied and modified to certain user-specific interesting events and formula to
compute metrics. All the metrics defined in that file will be monitored and reported.

C:\> AMDuProfPcm.exe -m l3 -a -d 30 -C -o c:\tmp\pcmdata.csv

C:\> AMDuProfPcm.exe -m l3 -a -d 30 -A system,package -C -o c:\tmp\pcmdata.csv

C:\> AMDuProfPcm.exe -m ipc -c core=0 -d 30 -o c:\tmp\pcmdata.csv

C:\> AMDuProfPcm.exe -m memory -a -d 60 -o c:\tmp\pcmdata.csv

C:\> AMDuProfPcm.exe -m memory -a -d 60 -o c:\tmp\pcmdata.csv -A system

C:\> AMDuProfPcm.exe -m memory -a -d 60 -o c:\tmp\pcmdata.csv -A system,package

C:\> AMDuProfPcm.exe -m memory -a -d 60 -o c:\tmp\pcmdata.csv -C -A system,package

C:\> AMDuProfPcm.exe -m ipc -d 60 -D c:\tmp\pcmdata_dump.csv

C:\> AMDuProfPcm.exe -m ipc -a -d 60 -D c:\tmp\pcmdata_dump.csv

C:\> AMDuProfPcm.exe -i SamplePcm-core.conf -a -d 60 -o c:\tmp\pcmdata.csv
C:\> AMDuProfPcm.exe -i SamplePcm-core-l3-df.conf -a -d 60 -o c:\tmp\pcmdata.csv

28 Getting started with AMDuProfPcm Chapter 2

57368 Rev. 4.2 January 2024AMD uProf User Guide

Miscellaneous

• List the supported raw Core PMC events:

• Print the name, description, and the available unit masks for the specified event:

2.5 BIOS Settings - Known Behavior

Following is the known behavior of L2 Hit/Miss from HWPF metrics based on the BIOS settings:

• AMDuProfPcm L2 Hit/Miss from HWPF metric doesn't collect any data when all following
options are disabled in BIOS:

– L1 Stream HW Prefetcher
– L1 Stride Prefetcher
– L1 Region Prefetcher
– L2 Stream HW Prefetcher
– L2 up/Down Prefetcher

• AMDuProfPcm L2 Hit/Miss from HWPF metric collects very less samples with the following
BIOS settings:

– L1 Stream HW Prefetcher: Disable
– L1 Stride Prefetcher: Disable
– L1 Region Prefetcher: Enable
– L2 Stream HW Prefetcher: Disable
– L2 up/Down Prefetcher: Disable

2.6 Monitoring without Root Privileges

On Linux, use the option -X to monitor the metrics without having a dependency on the "msr" module
and root access. This option collects Core, L3, and DF PMC events on AMD “Zen”-based processors.
The newer processors may require the latest kernel support.

Examples

• Timeseries monitoring of IPC of a benchmark, aggregate metrics per thread:

• Timeseries monitoring of IPC of a benchmark, aggregate metrics per processor package:

• Timeseries monitoring of IPC of a benchmark, aggregate metrics at system level:

C:\> AMDuProfPcm.exe -l

C:\> AMDuProfPcm.exe -z pmcx03

$ AMDuProfPcm -X -m ipc -o /tmp/pcm.csv -- /tmp/myapp.exe

$ AMDuProfPcm -X -m ipc -A package -o /tmp/pcm.csv -- /tmp/myapp.exe

$ AMDuProfPcm -X -m ipc -A system -o /tmp/pcm.csv -- /tmp/myapp.exe

Chapter 2 Getting started with AMDuProfPcm 29

AMD uProf User Guide57368 Rev. 4.2 January 2024

• Cumulative reporting of IPC metrics at the end of the benchmark execution:

• Cumulative reporting of IPC metrics at the end of the benchmark execution, aggregate metrics per
processor package:

• Cumulative reporting of IPC metrics at the end of the benchmark execution, aggregate metrics at
system level:

• Timeseries monitoring of memory bandwidth reporting at package and memory channels level:

• Timeseries monitoring of level-1 and level-2 top-down metrics (pipeline utilization):

• Cumulative reporting of level-1 and level-2 top-down metrics (pipeline utilization):

For better top-down results, disable NMI watchdog and run the following command as root:

2.7 Roofline Model

AMDuProfPcm provides basic roofline modeling that relates the application performance to memory
traffic and floating point computational peaks. This is a visual performance model offering insights
on improving the parallel software for floating point operations. This helps to characterize an
application and identify whether a benchmark is memory or compute bound.

The tool monitors the memory traffic and floating point operations when the profiled application is
running. Also, it computes the Arithmetic Intensity that is “operations per byte of DRAM traffic
[FLOPS/BYTE]”. The roofline chart is plotted as:

• X-axis: (AI) Arithmetic Intensity (FLOPS/byte) in logarithmic scale

• Y-axis: Throughput (GFLOPS/sec) in logarithmic scale

• Horizontal line showing peak theoretical floating-point performance of the system (HW Limit).

• Diagonal line showing peak memory performance. This line is plotted using the formula
Throughput = min (peak theoretical GFLOPS/Second, Peak theoretical Memory Bandwidth *
AI).

By default, the tool plots horizontal rooflines for:

• Single Precision Floating Point Peak ("SP FP Peak")

• Double Precision Floating Point Peak ("DP FP Peak")

The options available to plot the max peak horizontal (computational) peak rooflines are:

• Single precision noSIMD and noFMA

$ AMDuProfPcm -X -m ipc -C -o /tmp/pcm.csv -- /tmp/myapp.exe

$ AMDuProfPcm -X -m ipc -C -A package -o /tmp/pcm.csv -- /tmp/myapp.exe

$ AMDuProfPcm -X -m ipc -C -A system -o /tmp/pcm.csv -- /tmp/myapp.exe

$ AMDuProfPcm -X -m memory -a -A system,package -o /tmp/mem.csv

$ AMDuProfPcm -X -m pipeline_util -A system -o /tmp/td.csv -- /tmp/myapp.exe

$ AMDuProfPcm -X -m pipeline_util -C -A system -o /tmp/td.csv -- /tmp/myapp.exe

echo 0 > /proc/sys/kernel/nmi_watchdog

30 Getting started with AMDuProfPcm Chapter 2

57368 Rev. 4.2 January 2024AMD uProf User Guide

• Double precision noSIMD and noFMA

Generating the roofline chart of an application:

1. Collect the profile data using AMDuProfPcm:

On AMD “Zen4” 9xx4 Series processors, if the Linux kernel doesn't support accessing DF
counters, use the following command with root privilege:

2. To generate the roofline chart, run the following command:

The roofline chart is saved in the file /tmp/AMDuProf_roofline-2022-10-28-19h00m10s.pdf.

A few pointers for generating the roofline chart:

• While collecting the data, if the AMDuProfPcm is launched with non-root privilege, specify the
DRAM speed using -memspeed option. You can use dmidecode or lshw command to get the
memory speed.

• To plot additional computational horizontal peaks line, use the following options:

– --sp-roofs: Plot maximum peak roof for single-precision noSIMD and noFMA
– --dp-roofs: Plot maximum peak roof for double-precision noSIMD and noFMA
Example:

• Use -a <appname> option to specify the application name to print in the graph chart.

• As this tool uses the maximum theoretical peaks for memory traffic and floating-point
performance, you can use benchmarks such as STREAM to get the peak memory bandwidth and
HPL or GEMM for peak FLOPS. Those scores can be used to plot the roofline charts. Use the
following options:

– --stream <STREAM score>
– --hpl <HPL score>
– --gemm <SGEMM | DGEMM score>

$ AMDuProfPcm roofline -X -o /tmp/myapp-roofline.csv -- /tmp/myapp.exe

$ AMDuProfPcm roofline -o /tmp/myapp-roofline.csv -- /tmp/myapp.exe

$ AMDuProfModelling.py -i /tmp/myapp-roofline.csv -o /tmp/ --memspeed 3200 -a myapp

$ AMDuProfModelling.py -i /tmp/myapp-roofline.csv -o /tmp/ --memspeed 3200 -a myapp -dp-roofs

Chapter 2 Getting started with AMDuProfPcm 31

AMD uProf User Guide57368 Rev. 4.2 January 2024

A sample roofline chart is as follows:

Figure 1. Sample Roofline Chart

2.8 Pipeline Utilization

On AMD “Zen4”-based processors, AMDuProfPcm supports monitoring and reporting the pipeline
utilization (pipeline_util) metrics. This feature provides pipeline_util metrics to visualize the
bottlenecks in the CPU pipeline. Use the option -m pipeline_util to monitor and report the level-1
and level-2 top-down metrics.

The level-1 metrics are as follows:
Table 7. Level-1 Metrics

Metric Description

Total_Disp_Slots Total dispatch slots; up to six instructions can be dispatched in one cycle.
SMT_Disp_contention Unused dispatch slots as the other thread was selected.
Frontend_Bound Dispatch slots that remained unused because the frontend did not supply

appropriate instructions/ops.
Bad_Speculation Dispatched operations that did not retire.
Backend_Bound Dispatch slots that remained unused because of backend stalls.
Retiring Dispatch slots used by operations that retired.

32 Getting started with AMDuProfPcm Chapter 2

57368 Rev. 4.2 January 2024AMD uProf User Guide

The level-2 metrics are as follows:

Due to multiplexing, the reported metrics may be inconsistent. To minimize the impact of
multiplexing, use the option -X. For better results, use taskset to bind the monitored application to a
specific set of cores and monitor only the cores on which the monitored application is running.

Run the following command to collect the top-down metrics:

A sample report is as follows:

Figure 2. Sample Report

Table 8. Level-2 Metrics
Metric Description

Frontend_Bound.Latency Unused dispatch slots due to latency bottleneck in the frontend,
such as Instruction Cache or ITLB misses.

Frontend_Bound.BW Unused dispatch slots due to bandwidth bottleneck in the frontend,
such as decode bandwidth or Op Cache fetch bandwidth.

Bad_Speculation.Mispredicts Dispatched operations that were flushed due to branch mis-
predicts.

Bad_Speculation.Pipeline_Restarts Dispatched operations that were flushed due to pipeline restarts
(resyncs).

Backend_Bound.Memory Dispatched slots that remained unused because of stalls due to
memory subsystem.

Backend_Bound.CPU Dispatched slots that remained unused because of stalls not related
to the memory subsystem.

Retiring.Fastpath Dispatch slots used by fastpath operations that retired.
Retiring.Microcode Dispatch slots used by microcode operations that retired.

$ sudo AMDuProfPCm -m pipeline_util -c core=0 -A system -o /tmp/myapp-td.csv -- /usr/bin/
taskset -c 0 myapp.exe

(or, use the option -X that does not require root access)

$ AMDuProfPCm -X -m pipeline_util -A system -o /tmp/myapp-td.csv -- /usr/bin/taskset -c 0
myapp.exe

Chapter 2 Getting started with AMDuProfPcm 33

AMD uProf User Guide57368 Rev. 4.2 January 2024

Examples

• Timeseries monitoring of level-1 and level-2 top-down metrics (pipeline utilization) of a single-
threaded program:

• Timeseries monitoring of level-1 and level-2 top-down metrics of a multi-threaded program
running on all the cores:

• Cumulative monitoring of level-1 and level-2 top-down metrics of a multi-threaded program
running on all the cores:

AMDuProfPcm -m pipeline_util -c core=1 -o /tmp/td.csv -- /usr/bin/taskset -c 1 /tmp/
myapp.exe

AMDuProfPcm -m pipeline_util -a -A system -o /tmp/td.csv -- /tmp/myapp.exe

AMDuProfPcm -m pipeline_util -a -A system -C -o /tmp/td.csv -- /tmp/myapp.exe

34 Getting Started with AMDuProfSys Chapter 3

57368 Rev. 4.2 January 2024AMD uProf User Guide

Chapter 3 Getting Started with AMDuProfSys

3.1 Overview

AMDuProfSys is a python-based system analysis tool for AMD processors. It can be used to collect
the hardware events and evaluate the simple counter values or complex recipes using collected raw
events. The performance metrics are based on the profile data collected using Core, L3, DF, and UMC
PMCs. This tool can be used to get the overall performance details of the hardware blocks used in the
system.

3.2 Supported Platforms

AMDuProfSys supports AMD EPYCTM 7002, 7003, and 9000 Series processors with the following
variants:

• Family 17, model 0x30 - 0x3F

• Family 19, model 0x0 - 0xF

• Family 19, model 0x1 - 0x1F

• Family 19, model 0x20 - 0x2F

• Family 19, model 0xA0 - 0xAF

3.3 Supported Hardware Counters

• CORE PMC

• DF PMC

• L3 PMC

• UMC PMC

3.4 Supported Operating Systems

• Linux

• Windows

Chapter 3 Getting Started with AMDuProfSys 35

AMD uProf User Guide57368 Rev. 4.2 January 2024

3.5 Set up

Follow the installation steps in the section "Installing AMD uProf" on page 5.

3.5.1 Linux

If tar ball is used, uProf driver must be used manually. If you are not using uProf driver, optionally,
you can use Linux perf. However, you must ensure that Linux user space tool is installed and Perf
tools support the required PMC event monitoring. If uProf driver is not used, command line must
include the option --use-linux-perf.

To install user space perf tool:

NMI watchdog must be disabled, this requires root privileges:

Perf parameter should be set to -1 if system-wide profile data or DF and L3 metrics must be collected:

3.5.2 Windows

Setup file will install all the required components to run AMDuProfSys.

After installation, AMDuProfSys is available in the following directory:

<Installed Directory>/bin/AMDPerf/AMDuProfSys.py

Python Packages

AMDuProfSys requires Python to be installed on the target platform. Supported minimum Python
version is 3.6. When the tool is executed for the first time, it will prompt to install the following
Python modules:

• tqdm — use pip3 install tqdm to install

• xlsxwriter — use pip3 install XlsxWriter to install

• yaml — use apt-get install python-yaml or pip3 install pyyaml to install

• yamlordereddictloader — use pip3 install yamlordereddictloader to install

• rich — use pip3 install rich to install

Synopsis

<OPTIONS> — To collect, generate report, or get help for this tool

<PROGRAM> — Denotes a launch application to be profiled

<ARGS> — Denotes the list of arguments for the launch application

$ sudo apt-get install linux-tools-common linux-tools-generic linux-tools-`uname -r`

$ sudo echo 0 > /proc/sys/kernel/nmi_watchdog

$ sudo sh -c 'echo -1 >/proc/sys/kernel/perf_event_paranoid'

AMDuProfSys.py [<OPTIONS>] -- [<PROGRAM>] [<ARGS>]

36 Getting Started with AMDuProfSys Chapter 3

57368 Rev. 4.2 January 2024AMD uProf User Guide

Common Usages

• Display help:

• Default metrics (core, L3 and DF) collection:

• Collect and report all counters together:

• Collect any user defined custom metrics from command line:

• Collect core metrics for core 0 and run application on core:

• Generate the .csv format report from the session file generated during collection:

• Generate report in .xls format:

• Time series profile data for core metrics (core 0-5) with an interval of 1000 ms and set affinity of
running application to core 0:

Note: Time series profile data collection is available only with the option -use-linux-perf .

• Collect metrics for CORE, L3, DF and UMC metrics together:

3.6 Options

3.6.1 Generic

The following table lists the generic options:

AMDuProfSys.py -h

AMDuProfSys.py -o default -a -d 100

AMDuProfSys.py --config core,l3,df,umc -o all -a -d 100

./AMDuProfSys.py --metrics core/BrMisPredExTime="(0x4300C3)/(0x4300C2)",core/
ratio="((BrMisPredExTime * 0x430076)/0x4300C0)" -d 20

AMDuProfSys.py collect --config core -C 0 -o output taskset -c 0 <application>

AMDuProfSys.py report -i output_core.ses

AMDuProfSys.py report -i output_core.ses -f xls

AMDuProfSys.py --config core -C 0-5 -I 1000 --use-linux-perf -T -o output --affinity 0
<application>

AMDuProfSys.py collect --config core,l3,df,umc -C 0-10 <application>

Table 9. AMDuProfSys Generic Options
Option Description

 -h, --help Display the usage
 -v, --version Print the version
--system-info System information
--enable-irperf Enable irperf

Note: It is available only on Linux and requires root privilege.

--mux-interval-core <ms> Set the multiplexing interval in millisecond(s)

Chapter 3 Getting Started with AMDuProfSys 37

AMD uProf User Guide57368 Rev. 4.2 January 2024

3.6.2 Collect Command

The following table lists the collect command options:

--mux-interval-l3 <ms> Set the multiplexing interval in millisecond(s)
--mux-interval-df <ms> Set the multiplexing interval in millisecond(s), the default MUX interval

is 4 ms

Table 10. AMDuProfSys Collect Command Options
Option Description

--config To launch the given application and to monitor the raw events. Collect
commands can be configured to use predefined set of config files or a
single config file with its path.

-a, --all-cpus Collect from all the cores.
Note: Options -c and -a cannot be used together.

-C, --cpu <CPUs> List of CPUs to monitor. Multiple CPUs can be provided as a comma
separated list with no space: 0,1.
Ranges of CPUs: 5-10.

-d,--duration <seconds> Profile duration to run.
Note: It will not work if launch application is specified.

-t, --tid <tid> Monitor events on existing thread(s). Multiple TIDs can be provided as a
comma separated list.
Note: It is available only on Linux.

-p, --pid <pid> Monitor events on existing process(es). Multiple PIDs can be provided as
comma separated list.
Note: It is available only on Linux.

-o,--output <file> Output file name to save the raw event count values.
--no-inherit The child tasks will not be monitored.

Note: It is available only on Linux.

-I, --interval <n> Interval at which raw event count deltas will be stored in the file. This is a
must for collecting time series data.
Note: It is available only on Linux.

-V, --verbose Print verbose.
-r --collect-raw Collect events using raw events file. The report can be generated only at

AMD. This option helps collect bigger set of metrics.
--use-linux-perf This option can be used in Linux to collect the profile data using Linux

Perf instead of AMDuProf driver.
-m --metrics Collect user defined custom metrics through command line.

Table 9. AMDuProfSys Generic Options
Option Description

38 Getting Started with AMDuProfSys Chapter 3

57368 Rev. 4.2 January 2024AMD uProf User Guide

3.6.3 Report Command

To generate a profile report with computed metrics. The collect command generates a profile session
file with .ses extension and a raw counter data file for each type of profile collection. To generate the
report, you must provide the session file with -i option as shown in the following command options:

3.7 Examples

• Monitor the entire system to collect and generate metrics defined in config file and generate the
profile report:

• Launch the program with core affinity set to core 0 and monitor that core and generate profile
report:

• Launch the program and monitor it to generate the profile report:

Note: -a or -C option is mandatory for multiplexing to work.

--affinity Comma separated list of CPUs. Workload is run on the configured CPUs.

Table 11. AMDuProfSys Report Command Options
Option Description

-i, --input-file <file> Input the session file generated by collect command.
--config <file> Config file or options core, df, and l3 for event sets and metrics.
-o, --output <file> Output file name in .csv or .xls format as configured.
-f, --format Output file format in .xls or .csv. Default file format is .csv.
--group-by
<system,package,numa,ccx>

Aggregate result based on group selected. Default is none.

-T, --time-series Generate per core time series report. Only .csv format is supported.
Must be collected with -I option to generate the time series data.
Note: It is available only on Linux.

--set-precision <n> Set floating point precision for reported metrics, the default value is
2.

-V, --verbose Print verbose.

AMDuProfSys.py --config core -a sleep 50

AMDuProfSys.py --config core -C 0 taskset -c 0 /tmp/scimark2

AMDuProfSys.py --config core -a /tmp/scimark2

Table 10. AMDuProfSys Collect Command Options
Option Description

Chapter 3 Getting Started with AMDuProfSys 39

AMD uProf User Guide57368 Rev. 4.2 January 2024

• Collect and generate report in two steps:

a. To generate a binary datafile sci_perf.data containing raw event count values:

b. To generate a report file sci_perf.csv containing computed metrics:

• Collect using multiple config files and generate report in two steps:

a. To generate a binary datafile sci_perf.data containing raw event count values:

Note: -C, -a option can be used only with the core counters.

b. To generate a report file sci_perf.csv containing computed metrics:

• Update the multiplexing interval:

Note: --mux-interval-core option requires root access.

3.8 Limitations

• UMC profiling is not available in Linux for the following platforms:

– Family 17, model 0x30 - 0x3F
– Family 19, model 0x0 - 0xF

• Time series profile data collection is available only in Linux using the option --use-linux-perf.

AMDuProfSys.py collect --config data/0x17_0x3/configs/core/core_config.yaml -C 0 -o
sci_perf taskset -c 0 scimark2

AMDuProfSys.py report -i sci_perf/sci_perf.ses -o sci_perf

AMDuProfSys.py collect --config core,l3,df -C 0-10 -o sci_perf taskset -c 0 scimark2

AMDuProfSys.py report -i sci_perf/sci_perf.ses -o all_events

AMDuProfSys.py --mux-interval-core 16

40 Getting Started with AMDuProfSys Chapter 3

57368 Rev. 4.2 January 2024AMD uProf User Guide

41

AMD uProf User Guide57368 Rev. 4.2 January 2024

Part 3:
Application Analysis

42 Workflow and Key Concepts Chapter 4

57368 Rev. 4.2 January 2024AMD uProf User Guide

Chapter 4 Workflow and Key Concepts

4.1 Workflow

The AMD uProf workflow has the following phases:

1. Collect — Run the application program and collect the profile data.

2. Translate — Process the profile data to aggregate, correlate, and organize into database.

3. Analyze — View and analyze the performance data to identify the bottlenecks.

4.1.1 Collect Phase

Important concepts of the collect phase are explained in this section.

Profile Target

The profile target is one of the following for which profile data will be collected:

• Application — Launch application and profile that process and its children.

• System — Profile all the running processes and/or kernel.

• Process — Attach to a running application (native applications only).

Profile Type

The profile type defines the type of profile data collected and how the data should be collected. The
following profile types are supported:

• CPU Profile

• CPU Trace

• GPU Profile

• GPU Trace

• System-wide Power Profile

The data collection is defined by Sampling Configuration:

• Sampling Configuration identifies the set of Sampling Events, their Sampling Interval, and
mode.

• Sampling Event is a resource used to trigger a sampling point at which a sample (profile data)
will be collected.

• Sampling Interval defines the number of the occurrences of the sampling event after which an
interrupt will be generated to collect the sample.

Chapter 4 Workflow and Key Concepts 43

AMD uProf User Guide57368 Rev. 4.2 January 2024

• Mode defines when to count the occurrences of the sampling event – in User mode and/or OS
mode.

Type of profile data to collect – Sampled Data:

Sampled Data — the profile data that can be collected when the interrupt is generated (upon the
expiry of the sampling interval of a sampling event).

The following table shows the type of profile data collected and sampling events for a profile type:

For CPU Profiling, there are numerous micro-architecture specific events available to monitor. The
tool groups the related and interesting events to monitor called Predefined Sampling Configuration.
For example, Assess Performance is one such configuration used to get the overall assessment of the
performance and to find potential issues for investigation. For more information, refer “Predefined
View Configuration” on page 46.

A Custom Sampling Configuration is the one in which you can define a sampling configuration
with events of interest.

Profile Configuration

A profile configuration identifies all the information used to collect the measurement. It contains the
information about profile target, sampling configuration, data to sample, and profile scheduling
details.

The GUI saves these profile configuration details with a default name (for example, AMDuProf-TBP-
Classic), you can define them too. As the performance analysis is iterative, this is persistent (can be
deleted) and hence, you can also reuse the same configuration for the future data collection runs.

Table 12. Sampled Data
Profile Type Type of Profile Data Collected Sampling Events

CPU Profiling • Process ID
• Thread ID
• IP
• Callstack
• ETL tracing (Windows only)
• OpenMP Trace — OMPT (Linux)
• MPI Trace — PMPI (Linux)
• OS Trace — Linux BPF

• OS Timer
• Core PMC events
• IBS

CPU Tracing • User mode trace — Collects
syscall and pthread data

• OS trace — Collects schedule,
diskio, syscall, pthread, and
funccount data

Not applicable

GPU Profiling Perfmon Metrics Not applicable
GPU Tracing Runtime Trace — HIP and HSA Not applicable

44 Workflow and Key Concepts Chapter 4

57368 Rev. 4.2 January 2024AMD uProf User Guide

Profile Session (or Profile Run)

A profile session represents a single performance experiment for a profile configuration. The tool
saves all the profile and translated data (in a database) in the folder named as <profile config name>-
<timestamp>.

Once the profile data is collected, uProf processes the data to aggregate and attribute the samples to
the respective processes, threads, load modules, functions, and instructions. This aggregated data is
then written into an SQLite database used during the Analyze phase. This process of the translating
the raw profile data happens when CLI generates the profile report or GUI generates the visualization.

4.1.2 Translate and Report Phases

The collected raw profile data is processed to aggregate and attribute to the respective processes,
threads, load modules, functions, and instructions. The debug information for the launched
application generated by the compiler is needed to correlate the samples to functions and source lines.

This phase is performed automatically in the GUI after the profiling is stopped. In the CLI, the report
command implicitly processes (translates) the raw profile data and generates the report in CSV
format. Also, the CLI provides translate command to perform only the translation and the translated
data files can be imported to GUI for visualization.

4.1.3 Analyze Phase

View Configuration

A View is a set of sampled event data and computed performance metrics either displayed in the GUI
pages or in the text report generated by the CLI. Each predefined sampling configuration has a list of
associated predefined views.

The tool can be used to filter/view only specific configurations, which is called Predefined View. For
example, IPC assessment view lists metrics such as CPU Clocks, Retired Instructions, IPC, and CPI.
For more information, refer “Predefined Sampling Configuration” on page 44.

4.2 Predefined Sampling Configuration

The Predefined Sampling Configuration provides a convenient way to select a useful set of
sampling events for profile analysis. The following table lists all such configurations:
Table 13. Predefined Sampling Configurations

Profile Type Predefined Configuration
Name Abbreviation Description

Time-based
profile (TBP)

Time-based profile tbp To identify where the programs are
consuming time.

Chapter 4 Workflow and Key Concepts 45

AMD uProf User Guide57368 Rev. 4.2 January 2024

Notes:
1. The AMDuProf GUI uses the name of the predefined configuration in the above table.

2. The abbreviation (in Table 13 on page 44) is used with AMDuProfCLI collect command’s --
config option.

3. The supported predefined configurations and the sampling events used in them is based on
the processor family and model.

Event-based
profile (EBP)

Assess performance assess Provides an overall assessment of the
performance.

Assess performance (Extended) assess_ext Provides an overall assessment of the
performance with additional metrics.

Investigate data access data_access To find data access operations with poor
L1 data cache locality and poor DTLB
behavior.

Investigate instruction access inst_access To find instruction fetches with poor L1
instruction cache locality and poor
ITLB behavior.

Investigate branching branch To find poorly predicted branches and
near returns.

Investigate CPI cpi To analyze the CPI and IPC metrics of
the running application or the entire
system.

Threading Analysis threading To get an overall threading analysis and
find potential issues for further
investigation.
Note: This configuration is available only on

Linux. It is supported only on AMD
“Zen3” and AMD “Zen4” processors.

IBS

Instruction based sampling ibs To collect the sample data using IBS
Fetch and IBS OP. Precise sample
attribution to instructions.

Cache Analysis memory To identify the false cache-line sharing
issues. The profile data will be collected
using IBS OP.

Table 13. Predefined Sampling Configurations

Profile Type Predefined Configuration
Name Abbreviation Description

46 Workflow and Key Concepts Chapter 4

57368 Rev. 4.2 January 2024AMD uProf User Guide

4.3 Predefined View Configuration

A View is a set of sampled event data and computed performance metrics either displayed in the GUI
or in the text report generated by the CLI. Each predefined sampling configuration has a list of
associated predefined views.

Following is the list of predefined view configurations for Assess Performance:

Following table lists the threading configuration:

The following table lists the predefined view configurations for Investigate Data Access:

Table 14. Assess Performance Configurations
View Configuration Abbreviation Description

Assess Performance triage_assess This view gives the overall picture of performance,
including the instructions per clock cycle (IPC), data cache
accesses/misses, mis-predicted branches, and misaligned
data access. You can use it to find the possible issues for a
deeper investigation.

IPC assessment ipc_assess Find hot spots with low instruction level parallelism, it
provides performance indicators – IPC and CPI.

Branch assessment br_assess You can use this view to find code with a high branch
density and poorly predicted branches.

Data access
assessment

dc_assess Provides information about data cache (DC) access
including DC miss rate and DC miss ratio.

Misaligned access
assessment

misalign_assess You can use this to identify regions of code that access
misaligned data.

Table 15. Threading Configuration
View Configuration Abbreviation Description

IPC assessment ipc_assess Find hot spots with low instruction level parallelism, it
provides performance indicators – IPC and CPI.
Note: This configuration is available only on Linux. It is supported only

on AMD “Zen3” and AMD “Zen4” processors.

Table 16. Investigate Data Access Configurations
View configuration Abbreviation Description

IPC assessment ipc_assess Find hotspots with low instruction level parallelism. Provides
performance indicators – IPC and CPI.

Data access
assessment

dc_assess Provides information about data cache (DC) access including
DC miss rate and DC miss ratio.

Data access report dc_focus You can use this view to analyze L1 Data Cache (DC)
behavior and compare misses versus refills.

Chapter 4 Workflow and Key Concepts 47

AMD uProf User Guide57368 Rev. 4.2 January 2024

The following table lists the predefined view configurations for Investigate Branch:

The following table lists the predefined view configurations for Assess Performance (Extended):

The following table lists the predefined view configurations for Investigate Instruction Access:

Misaligned access
assessment

misalign_assess Identify regions of code that access misaligned data.

DTLB report dtlb_focus Provides information about L1 DTLB access and miss rates.

Table 17. Investigate Branch Configurations
View configuration Abbreviation Description

Investigate Branching Branch You can use this view to find code with a high branch density
and poorly predicted branches.

IPC assessment ipc_assess Find hotspots with low instruction level parallelism, provides
performance indicators – IPC and CPI.

Branch assessment br_assess You can use this view to find code with a high branch density
and poorly predicted branches.

Taken branch report taken_focus You can use this view to find the code with a high number of
taken branches.

Near return report return_focus You can use this view to find code with poorly predicted near
returns.

Table 18. Assess Performance (Extended) Configurations
View configuration Abbreviation Description

Assess Performance
(Extended)

triage_assess_ext This view gives an overall picture of performance. You can
use it to find possible issues for deeper investigation.

IPC assessment ipc_assess Find hotspots with low instruction level parallelism, provides
performance indicators – IPC and CPI.

Branch assessment br_assess Use this view to find code with a high branch density and
poorly predicted branches.

Data access
assessment

dc_assess Provides information about data cache (DC) access including
DC miss rate and DC miss ratio.

Misaligned access
assessment

misalign_assess Identify regions of code that access misaligned data.

Table 19. Investigate Instruction Access Configurations
View configuration Abbreviation Description

IPC assessment ipc_assess Find hotspots with low instruction level parallelism. Provides
performance indicators – IPC and CPI.

Table 16. Investigate Data Access Configurations

48 Workflow and Key Concepts Chapter 4

57368 Rev. 4.2 January 2024AMD uProf User Guide

The following table lists the predefined view configurations for Investigate CPI:

The following table lists the predefined view configurations for Instruction Based Sampling:

Instruction cache
report

ic_focus You can use this view to identify regions of code that miss in
the Instruction Cache (IC).

ITLB report itlb_focus You can use this view to analyze and break out ITLB miss
rates by levels L1 and L2.

Table 20. Investigate CPI Configurations
View configuration Abbreviation Description

IPC assessment ipc_assess Find hotspots with low instruction level parallelism. Provides
performance indicators – IPC and CPI.

Table 21. Instruction Based Sampling Configurations
View configuration Abbreviation Description

IBS fetch overall ibs_fetch_overall You can use this view to display an overall summary of the
IBS fetch sample data.

IBS fetch instruction
cache

ibs_fetch_ic You can use this view to display a summary of IBS
attempted fetch Instruction Cache (IC) miss data.

IBS fetch instruction
TLB

ibs_fetch_itlb You can use this view to display a summary of IBS
attempted fetch ITLB misses.

IBS fetch page
translations

ibs_fetch_page You can use this view to display a summary of the IBS L1
ITLB page translations for attempted fetches.

IBS All ops ibs_op_overall You can use this view to display a summary of all IBS Op
samples.

IBS MEM all load/
store

ibs_op_ls You can use this view to display a summary of IBS Op
load/store data.

IBS MEM data cache ibs_op_ls_dc You can use this view to display a summary of DC
behavior derived from IBS Op load/store samples.

IBS MEM data TLB ibs_op_ls_dtlb You can use this view to display a summary of DTLB
behavior derived from IBS Op load/store data.

IBS MEM locked ops
and access by type

ibs_op_ls_memacc You can use this view to display the uncacheable (UC)
memory access, write combining (WC) memory access,
and locked load/store operations.

IBS MEM translations
by page size

ibs_op_ls_page You can use this view to display a summary of DTLB
address translations broken out by page size.

IBS MEM forwarding
and bank conflicts

ibs_op_ls_expert You can use this view to display the memory access bank
conflicts, data forwarding, and Missed Address Buffer
(MAB) hits.

Table 19. Investigate Instruction Access Configurations

Chapter 4 Workflow and Key Concepts 49

AMD uProf User Guide57368 Rev. 4.2 January 2024

Notes:
1. The AMDuProf GUI uses the ‘View configuration’ name of the predefined configuration

mentioned in the above table.

2. The abbreviation is used in the CLI generated report file.

3. The supported predefined configurations and the sampling events used in them is based on
the processor family and model.

IBS BR branch ibs_op_branch You can use this view to display the IBS retired branch op
measurements including mis-predicted and taken
branches.

IBS BR return ibs_op_return You can use this view to display the IBS return op
measurements including the return mis-prediction ratio.

IBS NB local/remote
access

ibs_op_nb_access You can use this view to display the number and latency of
local and remote accesses.

IBS NB cache state ibs_op_nb_cache You can use this view to display the cache owned (O) and
modified (M) state for NB cache service requests.

IBS NB request
breakdown

ibs_op_nb_service You can use this view to display the breakdown of NB
access requests.

New Views in AMD “Zen3” and AMD “Zen4” Processors
IBS Load Op Analysis ibs_op_ld You can use this view to analyze the memory load

performance issues of an application.
IBS Load Op Analysis
(ext)

ibs_op_ld_ext You can use this view to analyze the memory load
performance issues of an application.

IBS Branch Overview mibs_op_br_overvie
w

You can use this view to analyze the branch metrics.

IBS Load Latency
Analysis

ibs_op_ld_lat You can use this view to analyze the memory load latency
performance issues of an application.

IBS Memory
Overview

ibs_op_ls_overview You can use this view to understand the memory access
pattern of an application.

IBS Perf Overview ibs_op_overview You can use this view to understand the performance
characteristics of an application.

Table 21. Instruction Based Sampling Configurations
View configuration Abbreviation Description

50 Getting Started with AMD uProf GUI Chapter 5

57368 Rev. 4.2 January 2024AMD uProf User Guide

Chapter 5 Getting Started with AMD uProf GUI

5.1 User Interface

The AMD uProf GUI provides a visual interface to profile and analyze the performance data. It has
various pages and each page has several sub-windows. You can navigate the pages through the top
horizontal navigation bar. When a page is selected, its sub-windows will be listed in the leftmost
vertical pane as follows:

Figure 3. AMD uProf GUI

1. The menu names in the horizontal bar such as HOME, PROFILE, SUMMARY, and
ANALYZE are called pages.

2. Each page has its sub-windows listed in the leftmost vertical pane. For example, HOME page has
various windows such as Welcome, Recent Session(s), Import Session, and so on.

3. Each window has various sections. These sections are used to specify various inputs required for
a profile run, display the profile data for analysis, buttons and links to navigate to associated
sections. In the Welcome window, Quick Links section has two links that allows you to start a
profile session with minimal configuration steps.

Chapter 5 Getting Started with AMD uProf GUI 51

AMD uProf User Guide57368 Rev. 4.2 January 2024

5.2 Launching GUI

To launch the AMDuProf GUI program:

Windows

Launch GUI from C:\Program Files\AMD\AMDuProf\bin\AMDuProf.exe or using the Desktop
shortcut.

Linux

Launch GUI from /opt/AMDuProf_X.Y-ZZZ/bin/AMDuProf binary.

The Welcome screen is displayed as follows:

Figure 4. AMD uProf Welcome Screen

It has many sections as follows:

1. Start Here section provides quick links to start profile for the various profile targets.

2. Recently used profile configurations are listed in Recently Used Configuration(s) section. You
can click on this configuration to reuse that profile configuration for subsequent profiling.

3. Recently opened profile sessions are listed in Recently Opened Session(s) section. You can click
on any one of the sessions to load the corresponding profile data for further analysis.

4. Quick Links section contains two entries which lets you to start profiles with minimal
configuration.

52 Getting Started with AMD uProf GUI Chapter 5

57368 Rev. 4.2 January 2024AMD uProf User Guide

c. Click See what’s keeping your System busy to start a system-wide time-based profiling until
you stop it and then display the collected data.

d. Click See what’s guzzling power in your System to select various power and thermal related
counters and display a live view of the data through graphs.

5. AMD uProf Resources section provides links to the AMD uProf release page and AMD server
community forum for discussions on profiling and performance tuning.

5.3 Configure a Profile

To perform a collect run, first you should configure the profile by specifying the:
1. Profile target

2. Profile type

a. What profile data should be collected (CPU Profile, CPU Trace, GPU Trace, or Power Profile)
b. Monitoring events - how the data should be collected
c. Additional profile data (if needed) - callstack samples, profile scheduling, and so on

This is called profile configuration “Profile Configuration” on page 43 that identifies all the
information used to perform a collect measurement.

Note: The additional profile data to be collected depends on the selected profile type.

5.3.1 Select Profile Target

To start a profile, either click the PROFILE page at the top navigation bar or Profile an
Application? link in HOME page Welcome screen. The Start Profiling screen is displayed. Select
Profile Target is available in the Start Profiling window as follows:

Chapter 5 Getting Started with AMD uProf GUI 53

AMD uProf User Guide57368 Rev. 4.2 January 2024

Figure 5. Start Profiling - Select Profile Target

You can select the one of the following profile targets from the Select Profile Target drop-down:

• Application: Select this target when you want to launch an application and profile it (or launch
and do a system-wide profile). The only compulsory option is a valid path to the executable. (By
default, the path to the executable becomes the working directory unless you specify a path).

• System: Select this if you do not wish to launch any application but perform either a system-wide
profile or profile specific set of cores.

• Process(es): Select this if you want to profile an application/process which is already running.
This will bring up a process table which can be refreshed. Selecting any one of the processes from
the table is mandatory to start profile.

Once profile target is selected and configured with valid data, the Next button will be enabled to go
the next screen of Start Profiling.

Note: The Next button will be enabled only if all the selected options are valid.

5.3.2 Select Profile Type

Once profile target is selected and configured, click the Next button. The Select Profile
Configuration screen is displayed as follows:

54 Getting Started with AMD uProf GUI Chapter 5

57368 Rev. 4.2 January 2024AMD uProf User Guide

Figure 6. Start Profiling - Select Profile Configuration

This screen lets you to decide the type of profile data collected and how the data should be collected.
You can select the profile type based on the performance analysis that you intend to perform. In the
above figure:

1. Select one of the following tabs:

– Predefined Configs consists of all the predefined configurations, such as Time-based
Profiling, Cache Analysis, and Assess Performance.

– Live Power Profiling consists of options to perform real-time power profiling.
– Custom Configs has options to perform Custom CPU Profile, CPU Tracing, and GPU

Tracing.
2. Once you select a profile type, the left vertical pane within this window will list the options

corresponding to the selected profile type. For CPU Profile type, all the available predefined
sampling configurations will be listed.

3. Modify event options are available only for the predefined configurations.

4. Click Advanced Options button to proceed to the Advanced Options screen and set the other
options such as the Call Stack Options, Profile Scheduling, Sources, Symbols, and so on.

5. The details in “Profile Configuration” on page 43 are persistent and saved by the tool with a name
(here, it is AMDuProf-EBP-ScimarkStable). You can define this name and navigate to PROFILE
> Saved Configurations to reuse/select the same configuration later.

Chapter 5 Getting Started with AMD uProf GUI 55

AMD uProf User Guide57368 Rev. 4.2 January 2024

6. The Next and Previous buttons are available to navigate to various screen of the Start Profiling
screen.

The CLI command is available at the bottom of this page, which displays the CLI version of the
GUI option selected on the Select Profile Configuration page.

5.3.3 Advanced Options

Click the Advanced Options button in Select Profile Type screen. The Advanced Options screen is
displayed as follows:

Figure 7. Start Profiling - Advanced Options 1

56 Getting Started with AMD uProf GUI Chapter 5

57368 Rev. 4.2 January 2024AMD uProf User Guide

Figure 8. Start Profiling - Advanced Options 2

You can set the following options on the Advanced Options screen:

1. Enable Thread Concurrency to collect the profile data and to show Thread Concurrency Chart
in Windows.

2. Call Stack Options to enable callstack sample data collection. This profile data is used to show
Top-Down Callstack, Flame Graph, and Call Graph views.

3. Profile Scheduling to schedule the profile data collection.

4. The Next and Previous buttons are available to navigate to various fragments within the Start
Profiling screen.

5. Sources line-edit to specify the path(s) to locate the source files of the profiled application.

6. Symbols to specify the Symbols servers (Windows only) and to specify the path(s) to locate the
symbol files of the profiled application.

You can also provide Download timeout for symbol file download from the server.

Chapter 5 Getting Started with AMD uProf GUI 57

AMD uProf User Guide57368 Rev. 4.2 January 2024

5.3.4 Start Profile

Once all the options are set correctly, click the Start Profile button to start the profile and collect the
profile data. After the profile initialization the following screen is displayed:

Figure 9. Profile Data Collection

1. The time elapsed during the data collection is displayed.

2. When the profiling is in progress, you can:

• Click the Stop button to stop the profiling.

• Clicking Cancel button to cancel the profiling. It will take you back to Select Profile Target
screen of PROFILE.

• Click the Pause button to pause the profiling. The profile data will not be collected and you
can click the Resume button to continue the profiling.

58 Getting Started with AMD uProf GUI Chapter 5

57368 Rev. 4.2 January 2024AMD uProf User Guide

5.4 Translation Progress

Figure 10. Translation Progress

This screen displays:

1. The percentage of translation completed.

2. Profile Logs display the currently loaded symbol and the corresponding download percentage it is
being downloaded.

3. Cancel Symbol Download button to stop the symbol download from the server provided in the
symbol settings page.

Note: This option is available only on Windows.

5.5 Analyze the Profile Data

When the profiling stopped, the collected raw profile data will be processed automatically and you
can analyze the profile data through various UI sections to identify the potential performance
bottlenecks:

• SUMMARY page to look at overview of the hotspots for the profile session.

• ANALYZE page to examine the profile data at various granularities.

• SOURCES page to examine the data at source line and assembly level.

• MEMORY page to examine the cache-line data for potential false cache sharing.

• HPC page to examine the OpenMP tracing data for potential load imbalance issue.

Chapter 5 Getting Started with AMD uProf GUI 59

AMD uProf User Guide57368 Rev. 4.2 January 2024

• TIMECHART page to visualize the MPI API trace, OS event trace, and information as a timeline
chart.

The sections available depends on the profile type. The CPU Profile will have SUMMARY,
ANALYZE, MEMORY, HPC, TIMECHART, and SOURCES pages to analyze the data.

5.5.1 Overview of Performance Hotspots

When the translation is complete, the SUMMARY page will be populated with the profile data and
Hot Spots screen will be displayed. The SUMMARY page provides an overview of the hotspots for
the profile session through various screens such as Hot Spots and Session Information.

In the Hot Spots screen, hotspots will be displyed for functions, modules, process, and threads.
Processes and threads will be displayed only if there are more than one.

The following figure shows the Hot Spots screen:

Figure 11. Summary - Hot Spots Screen

In the above Hot Spots screen:

1. The top 5 hottest functions, processes, modules and threads for the selected event are displayed.

2. The Hot Functions pie chart is interactive in nature. You can click on any section and the
corresponding function's source will open in a separate tab in the SOURCES page.

3. The hotspots are shown per event and the monitored event can be selected from drop-down in the
top-right corner. You can change it to any other event to update the corresponding hotspot data.

60 Getting Started with AMD uProf GUI Chapter 5

57368 Rev. 4.2 January 2024AMD uProf User Guide

4. From the Select Summary View drop-down, select one of the following:

– Hot Threads
– Hot Processes
– Hot Functions
– Hot Modules
Based on the selection, one donut will be displayed at a time.

Summary Overview

Based on the selection, the Summary Overview screen will look similar to the following:
Table 22. Summary Overview

Data
Collected Table Present Description Timing Details

OS Trace Schedule Summary Summary of per thread running/wait time
(percentages).

• Profile Duration
• Parallel Time
• Serial Time
• Wait Time
• Sleep Time

Wait Object
Summary

Time spent in operations related to several
types of synchronization objects, that is, locks,
mutexes, condition variables, and so on.

Wait Function
Summary

Time spent in several types of pthread blocking
functions, that is, pthread_join, and so on.

Syscall Summary Time spent in syscall(s)

GPU Trace GPU Kernel
Summary

Time spent per GPU kernel in execution in the
enqueued device.

• Profile Duration

Data Transfer
Summary

Time spent in GPU data copy operations.

MPI Trace MPI P2P API
Summary

Time spent in various MPI P2P API across all
ranks of the profile.

• Profile Duration
• Parallel Time
• Serial Time
• MPI Time

MPI Collective API
Summary

Time spent in various MPI collective
communication API across all ranks of the
profile.

CPU Profile Hot Functions Hottest functions based on CPU profile. • Profile Duration
• Parallel Time
• Serial Time

Hot Modules Hottest modules based on CPU profile.
Hot Threads Hottest threads based on CPU profile.
Hot Processes Hottest processes based on CPU profile.

Chapter 5 Getting Started with AMD uProf GUI 61

AMD uProf User Guide57368 Rev. 4.2 January 2024

OS Trace

The OS Trace screen will look as follows:

Figure 12. OS Trace

GPU Trace

The GPU Trace screen will look as follows:

Figure 13. GPU Trace

62 Getting Started with AMD uProf GUI Chapter 5

57368 Rev. 4.2 January 2024AMD uProf User Guide

MPI Trace

The MPI Trace screen will look as follows:

CPU Profile

The CPU Profile screen will look as Figure 11.

Chapter 5 Getting Started with AMD uProf GUI 63

AMD uProf User Guide57368 Rev. 4.2 January 2024

5.5.2 Thread Concurrency Graph

Click ANALYZE > Thread Concurrency to view the following graph to analyze the thread
concurrency of the profiled application:

Figure 14. Summary - Thread Concurrency Graph

The thread concurrency graph displays the duration (in seconds) of the specific number of threads
that were running simultaneously.

Bucketization approach is used for this graph. Instead of showing the Elapsed Time for each core,
the weighted average based on the bucket size will be taken. The bucket size will be determined based
on the cores and number of available pixels available. This is done to avoid the horizontal scrolling.

64 Getting Started with AMD uProf GUI Chapter 5

57368 Rev. 4.2 January 2024AMD uProf User Guide

5.5.3 Function HotSpots

Click ANALYZE on the top horizontal navigation bar to go to Function Hotspots screen, which
displays the hot functions across all the profiled processes and load modules as follows:

Figure 15. ANALYZE - Function Hotspots

Function Hotspots screen contains the following:

1. Process and thread wise breakdown of data is available if the entries are expanded in Function
Hotspots View. The Functions table lists the hot functions. The IP samples are aggregated and
attributed at the function-level granularity. On the table, you can do the following:

• Double-click on a function entry to navigate to the corresponding SOURCE view of that
function.

• Right-click to view the following options:

– Copy selected row(s) to copy the highlighted row to clipboard.
– Copy all rows to copy all the rows to clipboard.

2. Filters and Options pane allows you filter the profile data as follows:

• You can click the Select View drop-down to control the counters that are displayed. The
relevant counters and their derived metrics are grouped in predefined views.

• You can use the Value Type drop-down to display the counter values as follows:

– Sample Count is the number of samples attributed to a function.
– Event Count is the product of sample count and sampling interval.
– Percentage is the percentage of samples collected for a function.

• You can use the System Modules option to either Exclude or Include the profile data
attributed to system modules.

3. If callstack is enabled, the unique hot call-paths for the selected function is displayed in the
Functions column.

Chapter 5 Getting Started with AMD uProf GUI 65

AMD uProf User Guide57368 Rev. 4.2 January 2024

4. Event Timeline is the line graph showing the number of aggregated sample values over the
period of time. You can use it to identify the hot functions within a profile region. From the Select
Metric drop-down you can select the event for which event timeline must be plotted.

All the entries will not be loaded for a profile. To load more than the default number of entries,
click the vertical scroll bar on the right. When the entries are expanded, process and thread-wise
breakdown of data is available.

5.5.4 Process and Functions

Click ANALYZE > Grouped Metrics to display the profile data table at various program unit
granularities - Process, Load Modules, Threads, and Functions. This screen contains data in two
different formats as follows:

Figure 16. Analyze - Metrics

66 Getting Started with AMD uProf GUI Chapter 5

57368 Rev. 4.2 January 2024AMD uProf User Guide

The above figure consists of the following:

1. The upper tree represents samples grouped by Process. You can expand the tree to view the child
entries for each parent (that is for a process). The Load Modules and Threads are child entries
for the selected process entry.

You can right-click to view the following options:

• Expand All Entries to list the modules and threads of all the processes.

• Collapse All Entries to list only the top-level entries.

• Copy selected row(s) to copy the highlighted row to clipboard.

• Copy all rows to copy all the rows to clipboard.

2. The lower Functions table contains samples attributed to corresponding functions. The function
entries depend on what is selected in the upper tree. For more specific data, you can select a child
entry from the upper tree and the corresponding function data will be updated in the lower tree.-
You can do any of the following:

• Double-click on a function entry to navigate to the corresponding SOURCE view.

• Right-click to view the following options:

– Copy selected row(s) to copy the highlighted row to clipboard.
– Copy all rows to copy all the rows to clipboard.

3. You can use the Filters and Options pane to filter the profile data displayed by various controls.

• The Select View controls the counters that are displayed. The relevant counters and their
derived metrics are grouped in predefined views. You can select the views from the Select
View drop-down.

• The Group By drop-down is used to group the data by Process, Module, and Thread. By
default, the sample data is grouped-by Process.

• Click the ValueType drop-down to display the counter values as follows:

– Sample Count is the number of samples attributed to a function.
– Event Count is the product of sample count and sampling interval.
– Percentage is the percentage of samples collected for a function.

• You can use the System Modules option to Exclude or Include the profile data attributed to
system modules.

4. Confidence level — The metrics that cannot be calculated reliably due to low number of samples
collected for a program unit will be grayed out.

All entries will not be loaded for a profile. To load more than the default number of entries, click
the vertical scroll bar on the right.

Chapter 5 Getting Started with AMD uProf GUI 67

AMD uProf User Guide57368 Rev. 4.2 January 2024

5.5.5 Source and Assembly

Double-click on any entry in the Functions table in the Metrics screen to load the source tab for the
corresponding function in SOURCES page. If the GUI can find the path to the source file for that
function, then it will try to open the file, failing which you will be prompted to locate it.

The following figure depicts the source and assembly screen:

Figure 17. SOURCES - Source and Assembly

Following section are present in the SOURCES screen:

1. The source lines of the selected function are listed and the corresponding metrics are populated in
various columns against each source line. If no samples are collected when a source line was
executed, the metrics column will be empty.

2. The assembly instruction of the corresponding highlighted source line. The tree will also show the
offset for each assembly instruction along with metrics.

3. Heatmap – overview of the hotspots at source level.

68 Getting Started with AMD uProf GUI Chapter 5

57368 Rev. 4.2 January 2024AMD uProf User Guide

4. Filters pane lets you filter the profile data by providing the following options.

• The Select View controls the counters that are displayed. The relevant counters and their
derived metrics are grouped in predefined views. You can select it from the Select View drop-
down.

• The Process drop-down lists all the processes on which this selected function is executed and
has samples.

• The Threads drop-down lists all the threads on which this selected function is executed and
has samples.

• You can use the ValueType drop-down to display the counter values as follows:

– Sample Count is the number of samples attributed to a function.
– Event Count is the product of sample count and sampling interval.
– Percentage is the percentage of samples collected for a function.

• The Show Assembly button shows/hides visibility of the assembly instruction table shown at
the bottom of the view.

For multi-threaded or multi-process applications, if a function has been executed from multiple
threads or processes, each of them will be listed in the Process and Threads drop-downs in the
Filters pane. Changing them will update the profile data for that selection. By default, profile data
for the selected function, aggregated across all processes and all threads will be displayed.

Note: If the source file cannot be located or opened, only disassembly will be displayed.

5.5.6 Top-down Callstack

Top-down Callstack view can be used to explore the call-sequence flow of the application to analyze
the time spent in functions and its callees.

Click ANALYZE > Top-down Callstack to view it as follows:

Figure 18. Top-down Callstack

Chapter 5 Getting Started with AMD uProf GUI 69

AMD uProf User Guide57368 Rev. 4.2 January 2024

1. Functions are displayed based on the parent to child entires depending on the inclusive samples
values sorted.

2. Inclusive sample values for a function and its descendants.

3. Enabling Hide C++ std Library Calls option works only when C++ library calls are made. It will
exclude such calls from the list and display the other child entries.

4. Context menu of collapse entries will close all the expanded entries. Expand entries will expand
the child entries and the Open Source View option will display the corresponding source view.

5.5.7 Flame Graph

Flame graph is a visualization of sampled call-stack traces to quickly identify the hottest code
execution paths. Click ANALYZE > Flame Graph to view it as follows:

Figure 19. ANALYZE - Flame Graph

The Flame Graph screen comprises of the following:

1. The x-axis of the flame graph shows the call-stack profile and the y-axis shows the stack depth. It
is not plotted based on passage of time. Each cell represents a stack frame and if a frame were
present more often in the call-stack samples, the cell would be wider. This screen has the
following options:

• Module-wise coloring of the cells.

• Click on a cell to zoom only that cell and its children. Use the Reset Zoom button visualize
the entire graph.

• Right-click on a cell to view the following context options:

70 Getting Started with AMD uProf GUI Chapter 5

57368 Rev. 4.2 January 2024AMD uProf User Guide

– Copy Function Data to copy the function names and its metrics to clipboard.
– Open Source View to navigate to the source tab of that function.

• Hover the mouse over a cell to display the tool-tip showing the inclusive and exclusive
number of samples of that function.

2. Following options are available at the top of this screen:

• Click Zoom Graph button for a better zooming experience.

• When you type a function name in the search box, a list of all the relevant matches will be
displayed. Select the required function to highlight the cells corresponding to that function in
the flame graph.

• The Process drop-down lists all the processes for which call-stack samples are collected.
Changing the process will plot the flame graph for that particular process.

• For multi-threaded applications, the flame graph will be plotted for the cumulative data of all
the threads by default.

• The Threads drop-down lists all the threads for which call-stack samples are collected.
Changing the thread will plot the flame graph for that thread.

• The Select Metric drop-down lists all the metrics for which call-stack samples are collected.
Changing the metric will plot the flame graph for that particular metric.

5.5.8 Call Graph

Click ANALYZE > Call Graph to navigate to the call graph screen. This graph is constructed using
the call-stack samples and offers a butterfly view to analyze the hot call-paths as follows:

Figure 20. ANALYZE - Call Graph

1. The Function table lists all the functions with inclusive and exclusive samples.

Click on function to display its Caller and Callee functions in a butterfly view.

Chapter 5 Getting Started with AMD uProf GUI 71

AMD uProf User Guide57368 Rev. 4.2 January 2024

2. Lists all the parents of the function selected in the Function table.

3. Lists all the children of the function selected in the Function table.

4. Options:

• The Process drop-down lists all the processes for which call-stack samples are collected.
Changing the process will show the call graph for that particular process.

• For multi-threaded applications, the call-graph will be plotted for the the cumulative data of
all the threads by default.

• The Threads drop-down lists all the threads for which call-stack samples are collected.
Changing the thread will plot the call graph for that thread.

• The Select Metric drop-down lists the metrics for which call-stack samples are collected.
Changing the counter will show the call graph for that particular counter.

5.5.9 IMIX View

IMIX view shows the summary of instruction-wise samples collected. This view is shown only for
IBS profiling. Click ANALYZE > IMIX to navigate to the IMIX view:

Figure 21. IMIX View

1. The IMIX table lists all the instructions with sample count and sample percentage for the selected
options.

72 Getting Started with AMD uProf GUI Chapter 5

57368 Rev. 4.2 January 2024AMD uProf User Guide

2. Options:

• The Select Metric drop-down lists all the metrics for which samples are collected. Changing
the metric will display the IMIX information for that metric.

• The Module drop-down lists all the binaries for which samples are collected. Changing the
module will display the IMIX information for that module.

• The Functions drop-down lists all the functions for which samples are collected. Changing
the function will display the IMIX information for that thread. By default, IMIX information
for All Functions is shown.

5.6 Importing Profile Database

To analyze a profile database generated using CLI, click HOME > Import Session to go to the
Import Profile Session. The following screen is displayed:

Figure 22. Import Session – Importing Profile Database

This can be used to import the processed profile data collected using the CLI or the processed profile
data saved in GUI’s profile session storage path. You must do the following:

• Specify the pathcontaining the session.uprof file in the Profile Data File box.

• Binary Path: If the profile run is performed in a system and the corresponding raw profile data is
imported in another system, you must specify the path(s) in which binary files can be located.

• Source Path: Specify the source path(s) from where the sources files can be located. No sub-
directories will be searched in this path to locate any source files.

• Root Path to Sources: Specify the path to the root of multiple source directories. The entire
directory and sub-directories present in that path will be searched to locate any source files.

Note: The search might take time as all the sub-directories will be searched recursively.

• Force Database Regeneration: To forcefully regenerate the database file while importing.

Chapter 5 Getting Started with AMD uProf GUI 73

AMD uProf User Guide57368 Rev. 4.2 January 2024

• Use Cached Source/Binary/Symbol Files: Enable this option to reuse cached source, binary, and
symbol files.

5.7 Analyzing Saved Profile Session

Once you have created a new profile session or opened (imported) profile database, the history is
updated and the last 50 opened profile database records are stored (that is, where they are located).
Such a list will also appear in HOME > Recent Session(s) as follows:

Figure 23. PROFILE - Recent Session(s)

In the above figure:

1. History of profile sessions opened for analysis in the GUI. The following options are available:

• Click on an entry to load the corresponding profile database for analysis.

• See Details button displays details about this profile session such as profiled application,
monitored events list, and so on.

• Click Edit Options to automatically fill the Import Profile Session for the database and
update the required line-edits before opening the session.

• Remove Entry button deletes the current profile session from the history.

2. Displays the details of the selected profile session.

74 Getting Started with AMD uProf GUI Chapter 5

57368 Rev. 4.2 January 2024AMD uProf User Guide

5.8 Using Saved Profile Configuration

When a profile configuration is created (when you set the options and start profiling), if it generates at
least one valid profile session, the profile configuration details will be stored with the options set and
can be loaded again. Such a list is available in PROFILE > Saved Configurations as follows:

Figure 24. PROFILE - Saved Configurations

In the above figure:

1. History of profile configurations used to collect profile data using GUI. The following options are
available:

• Click on an entry to display the corresponding profile configuration for data collection.

• See Details button displays the details about the current profile session such profiled
application, monitored events list, and so on.

• Remove Entry button deletes the current profile session from the history.

2. Displays the details of the selected profile session.

Note: By default, the profile configuration name is generated by the application. If you want to reuse
it, you should name it appropriately to locate it easily. To do so, provide a config name in the
bottom left corner (Config Name line-edit) in PROFILE > Start Profiling.

Chapter 5 Getting Started with AMD uProf GUI 75

AMD uProf User Guide57368 Rev. 4.2 January 2024

5.9 Settings

There are certain application-wide settings to customize the AMD uProf experience. The SETTINGS
page is in top-right corner and is divided into the following three sections:

• Preferences: Use this section to set the global path and data reporting preferences.

Figure 25. SETTINGS - Preferences

– Click the Apply Changes button to apply the updated/modified settings. There are settings
which are common to profile data filters and hence, any changes to them through the Apply
Changes button will only be applied to the views that do not have local filters set.

– You can click Reset button to reset the settings or Cancel to discard the changes that you don't
want to apply.

• Symbols: Use this section to configure the Symbol Paths and Symbol Server locations. The
Symbol server is a Windows only option. The following figure represents the Symbols section:

Figure 26. SETTINGS - Symbols

76 Getting Started with AMD uProf GUI Chapter 5

57368 Rev. 4.2 January 2024AMD uProf User Guide

• Source Data: Use this section to set the Source view preferences. The following figure represents
the Source Data section:

Figure 27. SETTINGS - Source Data

You can use Select Disassembly Syntax to select the syntax in which you wish to see the
disassembly. By default, it is set to Intel on windows and AT&T on Linux.

• Profile Data: Use this section to control the location of data generation during profiling. The
following figure represents Profile Data section:

Figure 28. Profile Data

Chapter 5 Getting Started with AMD uProf GUI 77

AMD uProf User Guide57368 Rev. 4.2 January 2024

– Keep Raw Files After Collection enables saving of the raw files after translation. It is disabled
by default.

– You can use the option Delete Record Session Files to delete the session files older than a given
time period. The time period is set to None by default.

– Reset Profile Configuration helps add preference to keep or clear the profile configuration
after each profile. It is set to True (clear after profiling) by default.

– Hotkey to stop profile (if running) helps halt the CPU and Power profiling.
– Hotkey to pause/resume profile helps pause or resume the CPU and Power profiling

Note: Hotkeys are supported only on Windows.

5.10 Shortcut Keys

Following table lists the AMD uProf shortcut keys:
Table 23. Shortcut Keys

Shortcut Key Description

Ctrl + O Import a session.
Ctrl + P Start configuring a profile, that is, provide an application path to a profile.
Ctrl + S Jump to the first section of the settings page.
Ctrl + F Bring focus to the search bar in Function Hotspots. This is applicable for Function

Hotspots, Grouped Metrics, Flame Graph, Call Graph, Top-down, and Callstack.
Ctrl + K Highlight the source line with maximum samples in Source View.
Ctrl +/- Zoom in/out a timeline view.
Ctrl + Z Zoom in to a particular region of a timeline view.

78 Getting Started with AMD uProf CLI Chapter 6

57368 Rev. 4.2 January 2024AMD uProf User Guide

Chapter 6 Getting Started with AMD uProf CLI

6.1 Overview

AMD uProf’s command line interface AMDuProfCLI provides options to collect and generate report
for analyzing the profile data.

The following commands are supported:

For more information on the workflow, refer to the section “Workflow and Key Concepts”. To run the
command line interface AMDuProfCLI, run the following binaries as per the OS:

• Windows

• Linux:

 If installed using the .tar file:

• FreeBSD:

AMDuProfCLI [--version] [--help] COMMAND [<options>] [<PROGRAM>] [<ARGS>]

Table 24. Supported Commands
Command Description

collect Runs the given program and collects the profile samples.
report Processes the raw profile datafile and generates profile report.
timechart Power Profiling — collects and reports system characteristics, such as power, thermal, and

frequency metrics.
info Displays the generic information about system and topology.
translate Processes the raw profile datafile and generates the profile DB.
profile Collects the performance profile data, analyzes it and generates the profile report.
compare,diff Processes multiple profile-data and generates a comparison report.

C:\Program Files\AMD\AMDuProf\bin\AMDuProfCLI.exe

/opt/AMDuProf_X.Y-ZZZ/bin/AMDuProfCLI

./AMDuProf_Linux_x64_X.Y.ZZZ/bin/AMDuProfCLI

sh ./AMDuProf_FreeBSD_x64_X.Y.ZZZ/bin/AMDuProfCLI

Chapter 6 Getting Started with AMD uProf CLI 79

AMD uProf User Guide57368 Rev. 4.2 January 2024

6.2 Starting a CPU Profile

To profile and analyze the performance of a native (C, C++, and Fortran) application, you must
complete the following steps:

1. Prepare the application. For more information on preparing an application for profiling, refer to
the section “Reference”.

2. Use AMDuProfCLI collect command to collect the samples for the application.

Note: Run AMD uProf on FreeBSD with sudo command or root privilege.

3. Using AMDuProfCLI report command to generate a report in readable format for analysis.

Preparing the application is to build the launch application with debug information as it is needed to
correlate the samples to functions and source lines.

The collect command launches the application (if given) and collects the profile data for the given
profile type and sampling configuration. It generates the raw data file (.prd on Windows,.pdata on
FreeBSD, and .caperf on Linux) and other miscellaneous files.

The report command translates the collected raw profile data to aggregate and attribute to the
respective processes, threads, load modules, functions, and instructions. Also, it writes them into a
database and then generates a report in the CSV file format.

The following figure shows how to run a time-based profile and generate a report for the application
AMDTClassicMatMul.exe:

Figure 29. Collect and Report Commands

80 Getting Started with AMD uProf CLI Chapter 6

57368 Rev. 4.2 January 2024AMD uProf User Guide

6.2.1 List of Predefined Sample Configurations

To get the list of supported predefined sampling configurations that can be used with collect
command’s --config option, run the following command:

A sample output is as follows:

Figure 30. Supported Predefined Configurations on Linux

AMDuProfCLI info --list collect-configs

Chapter 6 Getting Started with AMD uProf CLI 81

AMD uProf User Guide57368 Rev. 4.2 January 2024

Figure 31. Supported Predefined Configurations on Windows

6.2.2 Profile Report

The profile report (in CSV format) contains the following sections:

• EXECUTION — Information about the target launch application.

• PROFILE DETAILS — Details about the current session, such as profile type, scope, and
sampling events.

• MONITORED EVENTS — List of the profiled events and the corresponding sampling intervals.

• 10 HOTTEST FUNCTIONS — List of the top 10 hot functions and the metrics attributed to them.

82 Getting Started with AMD uProf CLI Chapter 6

57368 Rev. 4.2 January 2024AMD uProf User Guide

• TAKEN BRANCH ANALYSIS SUMMARY — List of the top 10 hot branches

• 10 HOTTEST PROCESSES — List of the top 10 hot processes and the metrics attributed to them.

• 10 HOTTEST MODULES — List of the top 10 hot modules and the metrics attributed to them.

• 10 HOTTEST THREADS — List of the top 10 hot threads and the metrics attributed to them.

• PROFILE REPORT FOR PROCESS — The metrics attributed to the profiled process. This
section is shown when --detail option used for report generation. It contains other sub-sections,
such as:

– THREAD SUMMARY — List of threads with metrics attributed to them.
– MODULE SUMMARY — List of load modules which belong to the process with metrics

attributed to them.
– FUNCTION SUMMARY — List of functions that belong to this process for which samples

are collected, with metrics attributed to them.
– LAST BRANCH RECORD FOR PROCESS — List of collected branches for the process.
– Function Detail Data — Source level attribution for the top functions for which samples are

collected.
– CALLGRAPH — Call graph, if callstack samples are collected.

6.3 Starting a Power Profile

6.3.1 System-wide Power Profiling (Live)

To collect power profile counter values, complete the following steps:

1. Run the AMDuProfCLI timechart command with --list option to get the list of supported counter
categories.

2. Use the AMDuProfCLI timechart command for specifying the required counters with --event
option to collect and the report the required counters.

The timechart run to list the supported counter categories:

Chapter 6 Getting Started with AMD uProf CLI 83

AMD uProf User Guide57368 Rev. 4.2 January 2024

Figure 32. Output of timechart --list Command

The timechart to collect the profile samples and write into a file:

Figure 33. Execution of timechart

The above run collects the power and frequency counters on all the devices on which these counters
are supported and writes them in the output file specified with -o option. Before the profiling begins,
the given application is launched and the data is collected till the application terminates.

6.4 Collect Command

The collect command collects the performance profile data and writes into the raw data files in the
specified output directory. These files can then be analyzed using AMDuProfCLI report command or
AMDuProf GUI.

Synopsis:

<PROGRAM> — Denotes the launch application to be profiled.

<ARGS> — Denotes the list of arguments for the launch application.

AMDuProfCLI collect [--help] [<options>] [<PROGRAM>] [<ARGS>]

84 Getting Started with AMD uProf CLI Chapter 6

57368 Rev. 4.2 January 2024AMD uProf User Guide

Common Usages:

6.4.1 Options

The following table lists the collect command options:

$ AMDuProfCLI collect <PROGRAM> [<ARGS>]
$ AMDuProfCLI collect [--config <config> | -e <event>] [-a] [-d <duration>] [<PROGRAM>]

Table 25. AMDuProfCLI Collect Command Options
Option Description

-h | --help Displays the help information on the console/terminal.
 -o | --output-dir
<directory-path>

Base directory path in which collected data files will be saved. A new sub-
directory will be created in this directory.

--config <config> Predefined sampling configuration to be used to collect samples.
Use the command info --list collect-configs to get the list of supported
configs. Multiple occurrences of --config are allowed.

Chapter 6 Getting Started with AMD uProf CLI 85

AMD uProf User Guide57368 Rev. 4.2 January 2024

-e | --event or
<predefined-event>

A predefined event can be directly be used with -e, --event which has
predefined arguments.

Alternatively, for providing more granular parameters, specify Timer, PMU,
IBS event, or a predefined event with arguments in the form of comma
separated key=value pairs. The supported keys are:
• event=<timer | ibs-fetch | ibs-op> or <PMU-event> or <predefined-event>
• umask=<unit-mask>
• user=<0 | 1>
• os=<0 | 1>
• cmask=<count-mask> (value should be in the range 0x0 to 0x7f)
• inv=<0 | 1>
• interval=<sampling-interval>
• frequency=<frequency (n)> (supported only for Core PMC events, the

frequency should be provided in Hz)
• ibsop-count-control=<0 | 1> (for ibs-op event)
• loadstore (for ibs-op event, only on Windows platform)
• ibsop-l3miss (for IBS OP event, supported only on AMD “Zen4”

processors)
• ibsfetch-l3miss (for IBS FETCH event, supported only on AMD “Zen4”

processors)
• call-graph

Notes:
1. It is not required to provide umask with predefined event.
2. Use the dedicated option --call-graph to specify the arguments related to the call

stack sample collection.

Argument details:
• user – Enable(1) or disable(0) user space samples collection
• os - Enable(1) or disable(0) kernel space samples collection
• interval – Sample collection interval. For timer, it is the time interval in

milliseconds. For PMU and predefined events, it is the count of the event
occurrences. For IBS FETCH, it is the fetch count. For IBS OP, it is the
cycle count or the dispatch count.

• op-count-control – Choose IBS OP sampling by cycle(0) count or
dispatch(1) count.

• loadstore – Enable only the IBS OP load/store samples collection, other
IBS OP samples are not collected.

• ibsop-l3miss – Enable IBS OP sample collection only when a l3 miss
occurs, for example, '-e event=ibs-op,interval=100000,ibsop-l3miss'

Table 25. AMDuProfCLI Collect Command Options
Option Description

86 Getting Started with AMD uProf CLI Chapter 6

57368 Rev. 4.2 January 2024AMD uProf User Guide

• ibsfetch-l3miss – Enable IBS FETCH sample collection only when a l3
miss occurs, for example, '-e event=ibs-fetch,interval=100000,ibsfetch-
l3miss'

When these arguments are not passed, then the default values are:
• umask=0
• cmask=0x0
• user=1
• os=1
• inv=0
• ibsop-count-control=0 (for ibs-op event)
• interval=1.0 ms for timer event
• interval=250000 for ibs-fetch, ibs-op, pmu-event, or predefined-event

Use the following commands as required:
• info --list predefined-events for the list of supported predefined events
• info --list pmu-events for the list of supported PMU-events
Multiple occurrences of --event (-e) are allowed.

-p | --pid <PID...> Profile the existing processes by attaching to a running process. The process
IDs are separated by comma.
Note: A maximum of 512 processes can be attached at a time.

-a | --system-wide System Wide Profile (SWP)
If this flag is not set, then the command line tool will profile only the
launched application or the Process IDs attached with -p option.

-c | --cpu <core...> Comma separated list of CPUs to profile. The ranges of CPUs can be
specified with ‘-’,for example, 0-3.
Note: On Windows, the selected cores should belong to only one processor group. For

example, 0-63, 64-127, and so on.

-d | --duration <n> Profile only for the specified duration n in seconds.
--interval <num> Sampling interval for PMC events.

Note: This interval will override the sampling interval specified with individual events.

--affinity <core...> Set the core affinity of the launched application to be profiled. Comma
separated list of core-ids. The ranges of the core-ids must be specified, for
example, 0-3. The default affinity is all the available cores.

--no-inherit Do not profile the children of the launched application (processes launched
by the profiled application).

-b | --terminate Terminate the launched application after the profile data collection ends.
Only the launched application process will be killed. Its children (if any) may
continue to execute.

--start-delay <n> Start delay n in seconds. Start profiling after the specified duration.
When n is 0, there is no impact.

Table 25. AMDuProfCLI Collect Command Options
Option Description

Chapter 6 Getting Started with AMD uProf CLI 87

AMD uProf User Guide57368 Rev. 4.2 January 2024

6.4.2 Windows Specific Options

The following table lists Linux specific collect commands:

--start-paused Profiling paused indefinitely. The target application resumes the profiling
using the profile control APIs. This option must be used only when the
launched application is instrumented to control the profile data collection
using the resume and pause APIs (defined in the “AMDProfileControl
APIs”).

-w | --working-dir <path> Specify the working directory. The default is the current working directory.
--log-path <path-to-log-
dir>

Specify the path where the log file should be created. If this option is not
provided, the log file will be created either in path set by
AMDUPROF_LOGDIR environment variable or $TEMP path (Linux,
FreeBSD) or %TEMP% path (on Windows) by default.
The log file name will be of the format $USER-AMDuProfCLI.log (on
Linux, FreeBSD) or %USERNAME%-AMDuProfCLI.log (on Windows).

--enable-log Enable additional logging with log file.
--enable-logts Capture the timestamp of the log records. It should be used with --enable-

log option.
--limit-size <n> Stop the profiling when the collected data file size (in MB) crosses the

specified limit.
Note: This option may be deprecated in future releases.

--frequency <n> | --freq
<n> | -F <n>

Enable data collection at the specified frequency 'n' (in Hz) for Core PMC
events.
Note: This frequency will override the sampling frequency specified with the individual

events.

Table 26. AMDuProfCLI Collect Command – Windows Specific Options
Option Description

--call-graph <I:D:S:F> Enables callstack Sampling. Specify the Unwind Interval (I) in milliseconds and
Unwind Depth (D) value. Specify the Scope (S) by choosing one of the
following:
• user: Collect only for the user space code.
• kernel: Collect only for the kernel space code.
• all: Collect for the code executed in the user and kernel space code.
Specify to collect missing frames due to Frame Pointer Omission (F) by
compiler:
• fpo: If the frame pointers are not available, collect callstack information using

unwind information.
• fp: Use the frame pointers to collect callstack information.

-g Same as passing --call-graph 1:128:user:fp.

Table 25. AMDuProfCLI Collect Command Options
Option Description

88 Getting Started with AMD uProf CLI Chapter 6

57368 Rev. 4.2 January 2024AMD uProf User Guide

6.4.3 Linux Specific Options

The following table lists Linux specific collect commands:

--thread
<thread=concurrency>

Collects the runtime thread details

-m | --data-buffer-
count <size>

Size (number of pages per core) of the buffer used for data collection by the
driver. The default size is 512 pages per core.

--trace os Trace the target domain OS. Support provided for "schedule event" only. Use
the command 'info --list trace-events' for a list of OS trace events.

--limit-data <n> Stop the profiling when the collected data file size (in MB) crosses the specified
limit. When used with the option --overwrite, the limit is before the collection
is terminated. Size can be specified with the suffix Mega Bytes (M/m), Giga
Bytes (G/g), or Seconds (secs).

--overwrite Specify the profile data collection mode as a ring buffer. The collection limit can
be set using the option --limit-data. The default --limit-data is to restrict the
raw data file size to 512 pages per core.

Table 27. AMDuProfCLI Collect Command – Linux Specific Options
Option Description

--call-graph <F:N> Enables callstack sampling. Specify (F) to collect/ignore missing frames due
to omission of frame pointers by compiler:
• fpo | dwarf: Collect the process callstack during sample collection and use

the DWARF information to reconstruct callstack.
• fp: Use the frame pointers to collect callstack information.
When F = fpo, (N) specifies the max stack-size in bytes to collect per sample
collection. Valid range of the stack size: 16 - 32768. If (N) is not multiple of
8, then it is aligned down to the nearest value multiple of 8. The default value
is 1024 bytes.
Note: Passing a large N value will generate a very large raw data file.

When F = fp, the value for N is ignored and hence, there is no need to pass it.
-g Same as passing --call-graph fp

--tid <TID,..> Profile existing threads by attaching to a running thread. The thread IDs are
separated by comma.

Table 26. AMDuProfCLI Collect Command – Windows Specific Options
Option Description

Chapter 6 Getting Started with AMD uProf CLI 89

AMD uProf User Guide57368 Rev. 4.2 January 2024

--trace <TARGET> To trace a target domain. TARGET can be one or more of the following:
• mpi[=<openmpi|mpich>,<lwt|full>]

Provide MPI implementation type:
'openmpi' for tracing OpenMPI library
'mpich' for tracing MPICH and its derivative libraries, for example, Intel
MPI
Provide tracing scope:
'lwt' for light-weight tracing
'full' for complete tracing
'--trace mpi' defaults to '--trace mpi=mpich,full'

• openmp — for tracing OpenMP application. This is same as the option --
omp.

• os[=<event1,event2,...>] — provide event names and optional threshold
with comma separated list. syscall and memtrace events will take the
optional threshold value as <event:threshold>. Use the command info --
list trace-events for a list of OS trace events.

• user=<event1,event2,...> — provide event names and threshold with
comma separated list. These events will be collected in the user mode. Use
the command info --list trace-events to get a list of trace events
supported in the user mode.

• gpu[=<hip,hsa>] — provide the domain for GPU Tracing. By default, the
domain is set to 'hip,hsa'.

--buffer-size <size> Number of pages to be allotted for OS trace buffer. Default value is 256
pages per core. Increase the pages to reduce the trace data loss. This option is
only applicable to OS tracing (--trace os).

--max-threads <thread-
count>

Maximum number of threads for OS tracing. The default value is 1024 for
launched application and 32768 for System Wide Tracing (-a option).
Increase this limit when the application thread count increases more than the
default limit. Otherwise, the behavior is undefined.
• Launch App - Valid range: 1 to 4096
• System wide - Valid range: 1 to 4194304

--func <module:function-
pattern>

Specify functions to trace from the library, executable, or kernel:
• Function-pattern can be a function name or partial name ending with '*' or

only '*' to trace all the functions of a module.
• Module can be a library or executable. To trace the kernel functions,

replace the module with “kernel”.
Note: It is recommended to provide the absolute/full path of a module. If not, the search

will be performed on the default library paths and not on the current working
directory.

Table 27. AMDuProfCLI Collect Command – Linux Specific Options
Option Description

90 Getting Started with AMD uProf CLI Chapter 6

57368 Rev. 4.2 January 2024AMD uProf User Guide

 --exclude-func
<module:function-pattern>

Specify functions to exclude from the library, executable, or kernel:
• Function-pattern can be a function name or partial name ending with '*' or

only '*' to trace all the functions of a module.
• Module can be a library or executable. To trace the kernel functions,

replace the module with “kernel”.
Note: It is recommended to provide the absolute path of a module. If not, the search will be

performed on the default library paths and not on the current working directory.

-m | --mmap-pages <size> Set the kernel memory mapped data buffer to size. The size can be specified
in pages or with a suffix Bytes (B/b), Kilo bytes (K/k), Megabytes (M/m),
and Gigabytes (G/g).

--mpi Pass this option while collecting CPU Profiling data of a MPI application.
For MPI tracing, check the --trace option.

--kvm-guest <pid> Specify the PID of qemu-kvm process to be profiled to collect guest-side
performance profile.

--guest-kallsyms <path> Specify the path of guest /proc/kallsyms copied on the local host. AMD
uProf reads it to get the guest kernel symbols.

--guest-modules <path> Specify the path of guest /proc/modules copied to the local host. AMD uProf
reads it to get the guest kernel module information.

--guest-search-path
<path>

Specify the path of guest vmlinux and kernel sources copied on the local
host. AMD uProf reads it to resolve the guest kernel module information.

--branch-filter Capture LBR data.
You can also specify the branch filter type:
• u: user branches
• k: kernel branches
• any: any branch type
• any_call: any call branch
• any_ret: any return branch
• ind_call: indirect calls
• ind_jmp: indirect jumps
• cond: conditional branches
• call: direct calls
Notes:

1. When the above filters not set, the default filter type will be 'any'.
2. This option will work only with PMC events.
3. This is applicable to per process and attach process profiling. However, it is not

applicable to Java app profiling.

Table 27. AMDuProfCLI Collect Command – Linux Specific Options
Option Description

Chapter 6 Getting Started with AMD uProf CLI 91

AMD uProf User Guide57368 Rev. 4.2 January 2024

6.4.4 Examples

Windows

• Launch application AMDTClassicMatMul.exe and collect the samples for
CYCLES_NOT_IN_HALT and RETIRED_INST events:

• Launch the application AMDTClassicMatMul.exe and collect the Time-Based Profile (TBP)
samples:

• Launch AMDTClassicMatMul.exe and do Assess Performance profile for 10 seconds:

• Launch AMDTClassicMatMul.exe and collect the IBS samples in the SWP mode:

• Collect the TBP samples in SWP mode for 10 seconds:

• Launch AMDTClassicMatMul.exe and collect TBP with callstack sampling:

• Launch AMDTClassicMatMul.exe and collect TBP with callstack sampling (unwind FPO
optimized stack):

• Launch AMDTClassicMatMul.exe and collect the samples for PMCx076 and PMCx0C0:

• Launch AMDTClassicMatMul.exe and collect the samples for IBS OP with an interval of 50000:

• Launch AMDTClassicMatMul.exe and do TBP samples profile for thread concurrency, name:

• Launch AMDTClassicMatMul.exe and collect the Power samples in SWP mode:

C:\> AMDuProfCLI.exe collect -e cycles-not-in-halt -e retired-inst --interval 1000000
-o c:\Temp\cpuprof-custom AMDTClassicMatMul.exe
$./AMDuProfCLI.exe collect -e event=cycles-not-in-halt,interval=250000
-e event=retired-inst,interval=500000 -o c:\Temp\cpuprof-custom AMDTClassicMatMul.exe

C:\> AMDuProfCLI.exe collect -o c:\Temp\cpuprof-tbp AMDTClassicMatMul.exe

C:\> AMDuProfCLI.exe collect --config assess -o c:\Temp\cpuprof-assess -d 10
AMDTClassicMatMul.exe

C:\> AMDuProfCLI.exe collect --config ibs -a -o c:\Temp\cpuprof-ibs-swp AMDTClassicMatMul.exe

C:\> AMDuProfCLI.exe collect -a -o c:\Temp\cpuprof-tbp-swp -d 10

C:\> AMDuProfCLI.exe collect --config tbp -g -o c:\Temp\cpuprof-tbp AMDTClassicMatMul.exe

C:\> AMDuProfCLI.exe collect --config tbp --call-graph 1:64:user:fpo -o c:\Temp\cpuprof-tbp
AMDTClassicMatMul.exe

C:\> AMDuProfCLI.exe collect -e event=pmcx76,interval=250000 -e
event=pmcxc0,user=1,os=0,interval=250000 -o c:\Temp\cpuprof-tbp AMDTClassicMatMul.exe

C:\> AMDuProfCLI.exe collect -e event=ibs-op,interval=50000 -o c:\Temp\cpuprof-tbp
AMDTClassicMatMul.exe

C:\> AMDuProfCLI.exe collect --config tbp --thread thread=concurrency,name -o c:\Temp\cpuprof-
tbp AMDTClassicMatMul.exe

C:\> AMDuProfCLI.exe collect --config energy -a -o c:\Temp\pwrprof-swp AMDTClassicMatMul.exe

92 Getting Started with AMD uProf CLI Chapter 6

57368 Rev. 4.2 January 2024AMD uProf User Guide

• Collect samples for PMCx076 and PMCx0C0, but collect the call graph info only for PMCx0C0:

• Launch AMDTClassicMatMul.exe and collect the samples for predefined event RETIRED_INST
and L1_DC_REFILLS.ALL events:

• Launch AMDTClassicMatMul.exe, collect the TBP and Assess Performance samples:

• Launch Mutithread_Threadname.exe and collect schedule event:

• Launch AMDTClassicMatMul.exe and collect the samples for PMCx076 and PMCx0C0 events
with count-mask enabled:

Linux

• Launch application AMDTClassicMatMul.bin and collect the samples for
CYCLES_NOT_IN_HALT and RETIRED_INST events:

• Launch the application AMDTClassicMatMul-bin and collect the TBP samples:

• Launch AMDTClassicMatMul-bin and do Assess Performance profile for 10 seconds:

• Launch AMDTClassicMatMul-bin and collect the IBS samples in the SWP mode:

• Collect the TBP samples in SWP mode for 10 seconds:

• Launch AMDTClassicMatMul-bin and collect TBP with callstack sampling:

C:\> AMDuProfCLI.exe collect -e event=pmcx76,interval=250000 -e
event=pmcxc0,interval=250000,call-graph -o c:\Temp\cpuprof-pmc AMDTClassicMatMul-bin

C:\> AMDuProfCLI.exe collect -e event=RETIRED_INST,interval=250000 -e
event=L1_DC_REFILLS.ALL,user=1,os=0,interval=250000 -o c:\Temp\cpuprof-pmc
AMDTClassicMatMul.exe

C:\> AMDuProfCLI.exe collect --config tbp --config assess -o c:\Temp\cpuprof-tbp-assess
AMDTClassicMatMul.exe

 C:\> AMDuProfCLI.exe collect --trace os -o c:\Temp\ost-output Multithread_Threadname.exe

C:\> AMDuProfCLI.exe collect -e event=pmcx076,cmask=0x0, -e
event=pmcx0c0,cmask=0x7f,interval=250000 -o c:\Temp\cpuprof-pmc AMDTClassicMatMul-bin

$./AMDuProfCLI collect -e cycles-not-in-halt -e retired-inst
--interval 1000000 -o /tmp/cpuprof-custom AMDTClassicMatMul-bin
$./AMDuProfCLI collect -e event=cycles-not-in-halt,interval=250000
-e event=retired-inst,interval=500000 -o /tmp/cpuprof-custom
AMDTClassicMatMul-bin

$./AMDuProfCLI collect -o /tmp/cpuprof-tbp AMDTClassicMatMul-bin

$./AMDuProfCLI collect --config assess -o /tmp/cpuprof-assess -d 10 AMDTClassicMatMul-bin

$./AMDuProfCLI collect --config ibs -a -o /tmp/cpuprof-ibs-swp AMDTClassicMatMul-bin

$./AMDuProfCLI collect -a -o /tmp/cpuprof-tbp-swp -d 10

$./AMDuProfCLI collect --config tbp -g -o /tmp/cpuprof-tbp AMDTClassicMatMul-bin

Chapter 6 Getting Started with AMD uProf CLI 93

AMD uProf User Guide57368 Rev. 4.2 January 2024

• Launch AMDTClassicMatMul-bin and collect TBP with callstack sampling (unwind FPO
optimized stack):

• Launch AMDTClassicMatMul-bin and collect the samples for PMCx076 and PMCx0C0:

• Launch AMDTClassicMatMul-bin and collect the samples for IBS OP with interval 50000:

• Attach to a thread and collect TBP samples for 10 seconds:

• Collect OpenMP trace info of an OpenMP application, pass --omp:

• Launch AMDTClassicMatMul-bin and collect the memory accesses for false cache sharing:

• Launch AMDTClassicMatMul-bin and collect the threading configuration to analyze hotspots,
thread state, and wait object analysis among threads:

• Collect MPI profiling information:

• Collect the samples for PMCx076 and PMCx0C0, but collect the call graph info only for
PMCx0C0:

• Launch AMDTClassicMatMul-bin and collect the samples for predefined event RETIRED_INST
and L1_DC_REFILLS.ALL events:

• Launch AMDTClassicMatMul-bin and collect all the OS trace events:

• Launch AMDTClassicMatMul-bin and collect all the user mode trace events:

• Launch AMDTClassicMatMul-bin and collect syscall taking more than or equal to 1µs:

$./AMDuProfCLI collect --config tbp --call-graph fpo:512 -o /tmp/uprof-tbp AMDTClassicMatMul-
bin

$./AMDuProfCLI collect -e event=pmcx76,interval=250000 -e
event=pmcxc0,user=1,os=0,interval=250000 -o /tmp/cpuprof-tbp AMDTClassicMatMul-bin

$./AMDuProfCLI collect -e event=ibs-op,interval=50000 -o /tmp/cpuprof-tbp AMDTClassicMatMul-
bin

$ AMDuProfCLI collect --config tbp -o /tmp/cpuprof-tbp-attach -d 10 --tid <TID>

$ AMDuProfCLI collect --omp --config tbp -o /tmp/openmp_trace <path-to-openmp-exe>

$ AMDuProfCLI collect --config memory -o /tmp/cpuprof-mem AMDTClassicMatMul-bin

$ AMDuProfCLI collect --config threading -o /tmp/cpuprof-threading AMDTClassicMatMul-bin

$ mpirun -np 4 ./AMDuProfCLI collect --config assess --mpi --output-dir /tmp/cpuprof-mpi /tmp/
namd <parameters>

$ AMDuProfCLI collect -e event=pmcx76,interval=250000 -e event=pmcxc0,interval=250000,call-
graph -o /tmp/cpuprof-pmc AMDTClassicMatMul-bin

$ AMDuProfCLI collect -e event=RETIRED_INST,interval=250000 -e
event=L1_DC_REFILLS.ALL,user=1,os=0,interval=250000 -o /tmp/cpuprof-pmc AMDTClassicMatMul-bin

$ AMDuProfCLI collect --trace os -o /tmp/cpuprof-os AMDTClassicMatMul-bin

$ AMDuProfCLI collect --trace user -o /tmp/cpuprof-umt AMDTClassicMatMul-bin

$ AMDuProfCLI collect --trace os=syscall:1000 -o /tmp/cpuprof-os AMDTClassicMatMul-bin

94 Getting Started with AMD uProf CLI Chapter 6

57368 Rev. 4.2 January 2024AMD uProf User Guide

• Launch AMDTClassicMatMul-bin and collect the GPU Traces for hip domain:

• Launch AMDTClassicMatMul-bin and collect the GPU Traces for hip and hsa domain:

• Launch AMDTClassicMatMul-bin, collect the TBP samples and GPU Traces for hip domain:

• Launch AMDTClassicMatMul-bin and collect the GPU samples:

• Launch AMDTClassicMatMul-bin, collect the GPU samples and OS Traces:

• Launch AMDTClassicMatMul-bin, collect the TBP and GPU samples:

• Launch AMDTClassicMatMul-bin and collect the function count of malloc() called:

• Launch AMDTClassicMatMul-bin and collect the context switches, syscalls, pthread API tracing,
and function count of malloc() called:

• Collect the system wide function count of malloc(), calloc(), and kernel functions that match the
pattern 'vfs_read*':

• Launch AMDTClassMatMul-bin and perform branch analysis with the default filter type:

• Launch AMDTClassMatMul-bin and collect samples for the event PMCXC0:

6.5 Report Command

The report command generates a report in readable format by processing the raw profile data files or
from the (processed) database files available in the specified directory.

Synopsis:

Common Usages:

$ AMDuProfCLI collect --trace gpu=hip -o /tmp/cpuprof-gpu AMDTClassicMatMul-bin

$ AMDuProfCLI collect --trace gpu -o /tmp/cpuprof-gpu AMDTClassicMatMul-bin

$ AMDuProfCLI collect --config tbp --trace gpu=hip -o /tmp/cpuprof-gpu AMDTClassicMatMul-bin

$ AMDuProfCLI collect --config gpu -o /tmp/cpuprof-gpu AMDTClassicMatMul-bin

$ AMDuProfCLI collect --config gpu --trace os -o /tmp/cpuprof-gpu-os AMDTClassicMatMul-bin

$ AMDuProfCLI collect --config gpu --config tbp -o /tmp/cpuprof-gpu-tbp AMDTClassicMatMul-bin

$ AMDuProfCLI collect --trace os=funccount --func c:malloc -o /tmp/cpuprof-os
AMDTClassicMatMul-bin

$ AMDuProfCLI collect --trace os --func c:malloc -o /tmp/cpuprof-os AMDTClassicMatMul-bin

$ AMDuProfCLI collect --trace os --func c:malloc,calloc,kernel:vfs_read* -o /tmp/cpuprof-os -
a -d 10

$ AMDuProfCLI collect --branch-filter -o /tmp/cpuprof-ebp-branch AMDTClassicMatMul-bin

$ AMDuProfCLI collect -e event=pmcxc0,interval=250000 --branch-filter u,k,any -o /tmp/cpuprof-
ebp-branch AMDTClassicMatMul-bin

AMDuProfCLI report [--help] [<options>]

$ AMDuProfCLI report -i <session-dir path>

Chapter 6 Getting Started with AMD uProf CLI 95

AMD uProf User Guide57368 Rev. 4.2 January 2024

6.5.1 Options

Table 28. AMDuProfCLI Report Command Options
Option Description

-h | --help Displays this help information on the console/terminal.
-i | --input-dir
<directory-path>

Path to the directory containing collected data.

--detail Generate detailed report.
--group-by <section> Specify the report to be generated. The supported report options are:

• process: Report process details
• module: Report module details
• thread: Report thread details
This option is applicable only with --detail option. The default is group-by
process.

-p | --pid <PID,..> Generate report for the specified PIDs. The process IDs are separated by
comma.
Note: A maximum of 512 processes can be attached at a time.

-g The print callgraph. Use with the option --detail or --pid(-p). With --pid
option, callgraph will be generated only if the callstack samples were
collected for specified PIDs.

--cutoff <n> Cutoff to limit the number of process, threads, modules, and functions to be
reported. n is the minimum number of entries to be reported in various
report sections. The default value is 10.

--view <view-config> Report only the events present in the given view file. Use the command
info --list view-configs to get the list of supported view-configs.

--inline Show inline functions for C, C++ executables.
Notes:

1. This option is not supported on Windows.
2. Using this option will increase the time taken to generate the report.

--show-sys-src Generate detailed function report of the system module functions (if debug
info is available) with the source statements.

--src-path <path1;...> Source file directories (semicolon separated paths). Multiple use of --src-
path is allowed.

--disasm Generate a detailed function report with assembly instructions.
--disasm-style <att |
intel>

Choose the syntax of assembly instructions. The supported options are att
and intel. If this option is not used:
• intel is used by default on Windows.
• att is used by default on Linux.

--disasm-only Generate the function report with only assembly instructions.

96 Getting Started with AMD uProf CLI Chapter 6

57368 Rev. 4.2 January 2024AMD uProf User Guide

-s | --sort-by <EVENT> Specify the Timer, PMC, or IBS event on which the reported profile data
will be sorted with arguments in the form of comma separated key=value
pairs. The supported keys are:
• event=<timer | ibs-fetch | ibs-op | pmcxNNN>, where NNN is

hexadecimal Core PMC event ID.
• umask=<unit-mask>
• cmask=<count-mask>
• inv=<0 | 1>
• user=<0 | 1>
• os=<0 | 1>
Use the command info --list pmu-events for the list of supported PMC
events.
Details about the arguments:
• umask — Unit mask in decimal or hexadecimal, applicable only to the

PMC events.
• cmask — Count mask in decimal or hexadecimal, applicable only to the

PMC events.
• user, os — User and OS mode. Applicable only to the PMC events.
• inv — Invert Count Mask, applicable only to the PMC events
Multiple occurrences of –sort-by (-s) are not allowed.

--agg-interval <low |
medium | high |
INTERVAL>

Use this option to configure the sample aggregation interval which is useful
when the session is imported to GUI.
low level of aggregation interval generates better timeline view in GUI but
increases the database size.
Aggregation INTERVAL can also be specified as a numeric value in
milliseconds.

--time-filter <T1:T2> Restricts report generation to the time interval between T1 and T2. Where,
T1 and T2 are time in seconds from profile start time.

--imix Generate instruction MIX report. It is only supported for IBS config and IBS
events profiling. It is only supported for the native binaries.

--ignore-system-module Ignore samples from system modules.
--show-percentage Show percentage of samples instead of actual samples.
--show-sample-count Show the number of samples. This option is enabled by default.
--show-event-count Show the number of events occurred.
--show-all-cachelines Show all the cachelines in the report sections for cache analysis. By default,

only the cachelines accessed by more than one process/thread are listed.
Supported only for memory config report on Windows and Linux platforms.

--bin-path <path> Binary file path, multiple usage of --bin-path is allowed.
--src-path <path> Source file path, multiple usage of --src-path is allowed.

Table 28. AMDuProfCLI Report Command Options
Option Description

Chapter 6 Getting Started with AMD uProf CLI 97

AMD uProf User Guide57368 Rev. 4.2 January 2024

6.5.2 Windows Specific Options

--symbol-path
<path1;...>

Debug Symbol paths (semicolon separated). Multiple use of --symbol-path
is allowed.

--report-output <path> Write a report to a file. If the path has a .csv extension, it is assumed to be a
file path and used as it is. If the .csv extension is not used, then the path is
assumed to be a directory and the report file is generated in the directory
with the default name.

--stdout Print the report to a console or terminal.
--retranslate Perform the re-translation of collected data files with a different set of

translation options.
--remove-raw-files Remove the raw data files to recover the disk space.
--export-session Create a compressed archive of the required session files which can be used

in other system for analysis.
--log-path <path-to-
log-dir>

Specify the path where the log file should be created. If this option is not
provided, the log file will be created either in the path set by
AMDUPROF_LOGDIR environment variable or $TEMP path (Linux,
FreeBSD) or %TEMP% path (on Windows) by default.
The log file name will be of the format $USER-AMDuProfCLI.log (on
Linux, FreeBSD) or %USERNAME%-AMDuProfCLI.log (on Windows).

--enable-log Enable additional logging with log file.
--enable-logts Capture the timestamp of the log records. This option should be used with

--enable-log option.

Table 29. AMDuProfCLI Report Command - Windows Specific Options
Option Description

--symbol-server <path1;...> Symbol Server directories (semicolon separated paths). For example,
Microsoft Symbol Server (https://msdl.microsoft.com/download/symbols).
Multiple use of --symbol-server is allowed.

--symbol-cache-dir <path> The path to store the symbol files downloaded from the Symbol Servers.
--legacy-symbol-downloader Download symbols using the Microsoft Symsrv. By default, AMD symbol

downloader will be used.

Table 28. AMDuProfCLI Report Command Options
Option Description

https://msdl.microsoft.com/download/symbols
https://msdl.microsoft.com/download/symbols

98 Getting Started with AMD uProf CLI Chapter 6

57368 Rev. 4.2 January 2024AMD uProf User Guide

6.5.3 Linux Specific Options

6.5.4 Examples

Windows

• Generate report from the raw datafile:

• Generate IMIX report from the raw datafile:

• Generate report from the raw datafile sorted on pmc event:

• Generate report from the raw datafile sorted on ibs-op event:

Table 30. AMDuProfCLI Report Command - Linux Specific Options
Option Description

--host <hostname> This option is used along with the --input-dir option. Generates report
belonging to a specific host. The supported options are:
• <hostname>: Report process belonging to a specific host.
• all: Report all the processes.
Note: If --host is not used, only the processes belonging to the system from which report is

generated is reported. In case, the system is a master node in a cluster, the report will be
generated for the lexicographically first host in that cluster.

--category <PROFILE> Generate report only for specific profiling category. Comma separated multiple
categories can be specified. If this option is not used, then report for all
categories gets generated. Multiple instance of --category is allowed.
Supported categories are:
• cpu – Generate report specific to CPU Profiling.
• mpi – Generate report specific to MPI Tracing.
• openmp – Generate report specific to OpenMP Tracing.
• trace – Generate report specific to trace events.
• gputrace – Generate report specific to GPU Tracing.
• gpuprof – Generate report specific to GPU Profiling.

Example:
--category cpu,mpi,trace,gputrace,gpuprof
--category mpi --category cpu --category trace --category gputrace --
category gpuprof

--funccount-interval
<funccount-interval>

Specify the time interval in seconds to list the function count detail report. If this
option is not specified, the function count will be generated for the entire profile
duration.

C:\> AMDuProfCLI.exe report -i c:\Temp\cpuprof-tbp\<SESSION-DIR>

C:\> AMDuProfCLI.exe report --imix -i c:\Temp\cpuprof-imix\<SESSION-DIR>

C:\> AMDuProfCLI.exe report -s event=pmcxc0,user=1,os=0 -i c:\Temp\cpuprof-ebp\<SESSION-DIR>

C:\> AMDuProfCLI.exe report -s event=ibs-op -i c:\Temp\cpuprof-ibs\<SESSION-DIR>

Chapter 6 Getting Started with AMD uProf CLI 99

AMD uProf User Guide57368 Rev. 4.2 January 2024

• Generate report from the raw datafile for power samples:

• Generate report with Symbol Server paths:

• Generate report from the raw datafile on one of the predefined views:

• Generate report from the raw datafile providing the source and binary paths:

Linux

• Generate report from the raw datafile:

• Generate IMIX report from the raw datafile:

• Generate report from the raw datafile sorted on pmc event:

• Generate report from the raw datafile sorted on ibs-op event:

• Generate Trace report from the raw datafile:

• Generate GPU Trace report from the raw datafile:

• Generate GPU Profile report from the raw datafile:

6.6 Translate Command

The translate command processes the raw profile data and generates the samples info database files.
These databases can be imported to GUI or CLI and used for generating the report.

Synopsis:

Common Usages:

C:\> AMDuProfCLI.exe report -i c:\Temp\pwrprof-swp\<SESSION-DIR>

C:\> AMDuProfCLI.exe report --symbol-path C:\AppSymbols;C:\DriverSymbols --symbol-server
http://msdl.microsoft.com/download/symbols --symbol-cache-dir C:\symbols -i c:\Temp\cpuprof-
tbp\<SESSION-DIR>

C:\> AMDuProfCLI.exe report --view ipc_assess -i c:\Temp\pwrprof-swp\<SESSION-DIR>

C:\> AMDuProfCLI.exe report --bin-path Examples\AMDTClassicMatMul\bin\ --src-path
Examples\AMDTClassicMatMul\ -i c:\Temp\cpuprof-tbp\<SESSION-DIR>

$ AMDuProfCLI report -i /tmp/cpuprof-tbp/<SESSION-DIR>

$ AMDuProfCLI report --imix -i /tmp/cpuprof-imix/<SESSION-DIR>

$ AMDuProfCLI report -s event=pmcxc0,user=1,os=0 -i /tmp/cpuprof-ebp/<SESSION-DIR>

$ AMDuProfCLI report -s event=ibs-op -i /tmp/cpuprof-ibs/<SESSION-DIR>

$ AMDuProfCLI report -i /tmp/cpuprof-os/<SESSION-DIR> --category trace

$ AMDuProfCLI report -i /tmp/cpuprof-gpu/<SESSION-DIR> --category gputrace

$ AMDuProfCLI report -i /tmp/cpuprof-gpu/<SESSION-DIR> --category gpuprof

AMDuProfCLI translate [<options>]

$ AMDuProfCLI translate -i <session-dir path>

100 Getting Started with AMD uProf CLI Chapter 6

57368 Rev. 4.2 January 2024AMD uProf User Guide

6.6.1 Options

Following table lists the AMDuProfCLI translate command options:
Table 31. AMDuProfCLI Translate Command Options

Option Description

-h | --help Displays the help information.
-i | --input-dir
<directory-path>

Path to the directory containing collected data.

--time-filter <T1:T2> Restricts the processing to the time interval between T1 and T2, where T1, T2
are time in seconds from profile start time.

--agg-interval <low |
medium | high |
INTERVAL>

Use this option to configure the sample aggregation interval which is useful
when the session is imported to GUI.
low level of aggregation interval generates better timeline view in GUI but
increases the database size.
Aggregation INTERVAL can also be specified as a numeric value in
milliseconds.

--bin-path <path> Binary file path. Multiple use of --bin-path is allowed.
--symbol-path <path> Debug symbol path. Multiple instances of --symbol-path are allowed.
--inline Inline function extraction for C and C++ executables.

Notes:
1. This option is not supported on Windows.
2. Using this option will increase the time taken to generate the report.

--retranslate Re-translate the collected data files with a different set of translation options.
--log-path <path-to-
log-dir>

Specify the path where the log file should be created. If this option is not
provided, the log file will be created either in the path set by
AMDUPROF_LOGDIR environment variable or %TEMP% path by default.
The log file name will be of the format $USER-AMDuProfCLI.log (on Linux,
FreeBSD) or %USERNAME%-AMDuProfCLI.log (on Windows).

--enable-log Enable additional logging with log file.
--enable-logts Capture the timestamp of the log records. This option should be used with the

--enable-log option.
--remove-raw-files Remove the raw data files to recover the disk space.
--export-session Create a compressed archive of required session files which can be used in

other system for analysis.

Chapter 6 Getting Started with AMD uProf CLI 101

AMD uProf User Guide57368 Rev. 4.2 January 2024

6.6.2 Windows Specific Options

Following table lists the Windows specific options of the translate command:

6.6.3 Linux Specific Options

Following table lists the Linux specific options of the translate command:

Table 32. Translate Command - Windows Specific Options
Option Description

--symbol-server <path1;…> Links to Symbol Server, for example, Microsoft Symbol Server (https://
msdl.microsoft.com/download/symbols). Multiple instances of --symbol-
server are allowed.

--symbol-cache-dir <path> Path to save the symbols downloaded from the Symbol Servers.
--legacy-symbol-downloader Download symbols using the Microsoft Symsrv. By default, AMD symbol

downloader will be used.

Table 33. Translate Command - Linux Specific Options
Option Description

--category <PROFILE> Process only a specific profiling category. Comma separated multiple categories
can be specified. If this option not used, then all categories raw data files are
processed. Multiple instances of --category are allowed. The supported
categories are:
• cpu - CPU Profiling
• mpi - MPI Tracing
• openmp – Generate report specific to OpenMP Tracing.
• trace - User mode tracing
• gputrace - GPU Tracing
• gpuprof - GPU Profiling
Example:
--category cpu,mpi,trace,gputrace,gpuprof
--category mpi --category cpu --category trace --category gputrace --
category gpuprof

--host <hostname> This option is used with the --input-dir option. It processes samples belonging
to a specific host. The supported options are:
<hostname>: Translate only the processes belonging to a specific host.
all: Translate all processes
Note: If --host is not used, then only the processes belonging to the current system is

translated. In case the system is a master node in a cluster, then processing will be done
for the lexicographically first host in that cluster.

--kallsyms-path <path> Path to the file containing kallsyms info. If no path is provided, it defaults to /
proc/kallsyms.

--vmlinux-path <path> Path to the Linux kernel debug info file. If no path provided, it searches for the
debug info file in the default download path.

https://msdl.microsoft.com/download/symbols

102 Getting Started with AMD uProf CLI Chapter 6

57368 Rev. 4.2 January 2024AMD uProf User Guide

6.6.4 Examples

Windows

• Process all the raw data files:

• Process the raw data files with Symbol Server paths:

• Process the raw data files with the source and binary path:

Linux

• Process all the raw data files:

• Process the trace raw data file:

• Process the GPU Trace raw data file:

6.7 Timechart Command

This timechart command collects and reports the system characteristics, such as power, thermal and
frequency metrics, and generates a text or CSV report.

Note: The timechart command is supported only on Windows and Linux.

Synopsis:

<PROGRAM> — Denotes the application to be launched before starting the power metrics collection.

<ARGS> — Denotes the list of arguments for the launch application.

Common Usages:

> AMDuProfCLI.exe translate -i c:\Temp\cpuprof-tbp\<SESSION-DIR>

> AMDuProfCLI.exe translate --symbol-path C:\AppSymbols;C:\DriverSymbols --symbol-server
http://msdl.microsoft.com/download/symbols --symbol-cache-dir C:\symbols -i c:\Temp\cpuprof-
tbp\<SESSION-DIR>

> AMDuProfCLI.exe translate --bin-path Examples\AMDTClassicMatMul\bin\ --src-path
Examples\AMDTClassicMatMul\ -i c:\Temp\cpuprof-tbp\<SESSION-DIR>

$ AMDuProfCLI translate -i /tmp/cpuprof-tbp/<SESSION-DIR>

$ AMDuProfCLI translate -i /tmp/cpuprof-os/<SESSION-DIR> --category trace

$ AMDuProfCLI translate -i /tmp/cpuprof-gpu/<SESSION-DIR> --category gputrace

AMDuProfCLI timechart [--help] [--list] [<options>] [<PROGRAM>] [<ARGS>]

$ AMDuProfCLI timechart --list
$ AMDuProfCLI timechart -e <event> -d <duration> [<PROGRAM>] [<ARGS>]

Chapter 6 Getting Started with AMD uProf CLI 103

AMD uProf User Guide57368 Rev. 4.2 January 2024

6.7.1 Options

6.7.2 Examples

Windows

• Collect all the power counter values for a duration of 10 seconds with sampling interval of 100
milliseconds:

• Collect all the frequency counter values for 10 seconds, sampling them every 500 milliseconds
and dumping the results into a csv file:

• Collect all the frequency counter values at core 0 to 3 for 10 seconds, sampling them every 500
milliseconds and dumping the results into a text file:

Table 34. AMDuProfCLI Timechart Command Options
Option Description

-h | --help Displays this help information.
--list Displays all the supported devices and categories.
-e | --event <type...> Collect counters for specified combination of device type and/or category

type.
Use command timechart --list for the list of supported devices and
categories.
Note: Multiple occurrences of -e is allowed.

-t | --interval <n> Sampling interval n in milliseconds. The minimum value is 10ms.
-d | --duration <n> Profile duration n in seconds.
--affinity <core...> The core affinity. Comma separated list of core-ids. Ranges of core-ids is

also be specified, for example, 0-3. The default affinity is all the available
cores. The affinity is set for the launched application.

-w | --working-dir <dir> Set the working directory for the launched target application.
-f | --format <fmt> Output file format. Supported formats are:

• txt: Text (.txt) format.
• csv: Comma Separated Value (.csv) format.
Default file format is CSV.

-o | --output-dir <dir> Output directory path.

C:\> AMDuProfCLI.exe timechart --event power --interval 100 --duration 10

C:\> AMDuProfCLI.exe timechart --event frequency -o C:\Temp\output --interval 500 --duration
10

C:\> AMDuProfCLI.exe timechart --event core=0-3,frequency -o C:\Temp\PowerOutput --interval
500 -duration 10 --format txt

104 Getting Started with AMD uProf CLI Chapter 6

57368 Rev. 4.2 January 2024AMD uProf User Guide

Linux

• Collect all the power counter values for a duration of 10 seconds with sampling interval of 100
milliseconds:

• Collect all the frequency counter values for 10 seconds, sampling them every 500 milliseconds
and dumping the results into a csv file:

• Collect all the frequency counter values at core 0 to 3 for 10 seconds, sampling them every 500
milliseconds and dumping the results into a text file:

6.8 Diff Command

The diff command streamlines the process of comparing multiple profile reports by automating the
manual comparison of events. It processes the raw profile data, processed files, or database files to
generate a markdown comparison report for the collected profiles. The generated markdown file
includes detailed function data providing comprehensive insights into the compared profiles.

Furthermore, the diff command can also be used to generate a single profile report by specifying only
the base profile path. This simplifies the generation of individual reports, making it more convenient
and efficient.

During profile comparison, there is always a single base profile and multiple non-base profiles. Valid
comparison results are obtained only for the functions that exist in both the base profile and non-base
profiles.

By default, the comparison results are displayed in the source view. In the source view table,
information, such as File, Line, Source Code, Address, Instruction, Code Byte, and Events are
provided for each function. This comprehensive view enables a detailed analysis of the compared
profiles.

Note: To obtain meaningful and accurate comparison results, it is important to ensure that the base
profile and non-base profiles have matching functions available for comparison.

Synopsis:

Common Usages:

$./AMDuProfCLI timechart --event power --interval 100 --duration 10

$./AMDuProfCLI timechart --event frequency -o /tmp/PowerOutput --interval 500 --duration 10

$./AMDuProfCLI timechart --event core=0-3,frequency -o /tmp/PowerOutput --interval 500 --
duration 10 --format txt

AMDuProfCLI diff [--help] [<options>]
AMDuProfCLI compare [--help] [<options>]

AMDuProfCLI diff --baseline <base session-dir path> --with <non-base session-dir path> -o
<output-dir>

Chapter 6 Getting Started with AMD uProf CLI 105

AMD uProf User Guide57368 Rev. 4.2 January 2024

6.8.1 Profile Comparison Eligibility Criteria

To ensure accurate and meaningful profile comparisons, the following conditions must be met:

• Same Events: The profiles being compared should have collected the same events. This ensures
that the comparison is performed on relevant and comparable data.

• Same Profile Duration (if specified): If the duration (-d) option is specified, the profiles being
compared should have the same duration. This ensures consistency in the time span covered by
the profiles.

• Not a System Wide Profile: System-wide profiles cannot be compared directly. Therefore, only
individual process or thread-level profiles are eligible for comparison.

• Same Profile Data Limit (if used): If the --limit-size or --limit-data option is used during
profiling, the profiles being compared should have the same data limit set. This ensures
consistency in the size of profile data collected.

• Same Inline Function Profiling (--inline): If the --inline option is used to profile inline functions,
the profiles being compared should have used the same inline function profiling setting. This
ensures consistent handling of inline functions during the comparison.

6.8.2 Options

Following table lists the diff commands:
Table 35. AMDuProfCLI diff Command Options

Option Description

-h | --help Displays this help information on the console/terminal.
--baseline <directory-
path>

Path to the directory containing collected data. The profile data in this directory
will be treated as the base profile against which all other profiles will be
compared.

--with <directory-path> Path to the directory containing collected data. Each profile specified with --
with will be considered as a non-base profile and compared against the base
profile. You can use multiple instances of --with to specify multiple non-base
profiles for comparison.

-i, --input-dir
<directory-path>

Path to the directory containing collected data. Multiple occurrences of -i is
allowed. First occurrence of -i is considered as the base session, while all the
subsequent occurrences of -i are treated as non-base sessions.
Note: When using -i, --input-dir, you should not use the --baseline or --with options in

conjunction. If you use --baseline and -i together, the --baseline option will take
precedence and be considered as the base session. If the --baseline option is not present,
the first occurrence of -i will automatically be considered as the base session.

--output-dir | -o
<directory-path>

Path where the markdown comparison report will be generated.

106 Getting Started with AMD uProf CLI Chapter 6

57368 Rev. 4.2 January 2024AMD uProf User Guide

--type <comparison-
type>

Specify the type of comparison to be performed. The supported comparison
types are:
• name: With this type, only the top ‘n’ functions from the base profile will be

compared with the corresponding functions available in the non-base
profiles. The comparison will focus on the similar functions between the
profiles.

• order: With this type, the top ‘n’ functions from all the profiles will be
displayed in the order of profiles. The order will be: base profile first,
followed by the 1st non-base profile, 2nd non-base profile, and so on. The
comparison will still be performed with the functions present in the base
profile and only for the similar functions across the profiles.

The default comparison type is name.
--alias <base-fun,non-
base-fun,…|base-fun-
1,non-base-fun-1,…|…>

In the cases where the function names have changed in the non-base profile,
specify the function names in the non-base profile that should be compared
with the corresponding function names in the base profile.
Specify different functions using the pipe symbol ‘|’ as a separator. For each set
of functions, you can use a comma to separate the function names between the
base profile and the non-base profile.

--show-percentage Comparison results will be displayed in terms of percentages.
--cutoff <n> Cut-off to limit the number of functions to be reported. ‘n’ is the maximum

number of entries to be reported in various report sections. The default value is
10.

--sort-by | -s <EVENT> Specify the Timer, PMC, or IBS event on which the reported profile data will
be sorted with arguments in the form of comma separated key=value pairs. The
supported keys are:
• event=<timer | ibs-fetch | ibs-op | pmcxNNN>, where NNN is hexadecimal

Core PMC event ID.
• umask=<unit-mask>
• user=<0 | 1>
• os=<0 | 1>
Use the command info --list pmu-events for the list of supported PMC
events. The arguments details:
• umask — Unit mask in decimal or hexadecimal. Applicable only to the PMC

events.
• user, os — User and OS mode. Applicable only to the PMC events.
Multiple occurrences of –sort-by (-s) are not allowed.

--view <view-config> Compare only the events present in the given view file. Use the command info
--list view-configs to get the list of supported view-configs.

--stdout Comparison report will also be displayed in the terminal or command line
interface apart from saving to a file.

Table 35. AMDuProfCLI diff Command Options
Option Description

Chapter 6 Getting Started with AMD uProf CLI 107

AMD uProf User Guide57368 Rev. 4.2 January 2024

6.8.3 Examples

Windows

Use the following commands to:

• Generate a comparison report of base profile data with subsequent profile data:

• Generate a comparison report using the -i option:

• Generate a comparison report without ignoring the unique entries across sessions:

--src-path <path1;...> Source file directories (semicolon separated paths) for base profile. This will be
considered for the non-base profiles if the corresponding file directories are not
specified separately.
Multiple use of --src-path is allowed.

--bin-path <path1;...> Binary file path for the base profile. This will be considered for the non-base
profiles if the corresponding bin path is not specified separately.
Multiple usage of --bin-path is allowed.

--src-path1 <path1;...> Source file directories (semicolon separated paths) for the 1st non-base profile.
Multiple use of --src-path1 is allowed.

--bin-path1 <path1;...> Binary file path for the 1st non-base profile.
Multiple usage of --bin-path1 is allowed.

--src-path2 <path1;...> Source file directories (semicolon separated paths) for the 2nd non-base profile.
Multiple use of --src-path2 is allowed.

--bin-path2 <path1;...> Binary file path for the 2nd non-base profile.
Multiple usage of --bin-path2 is allowed.

--src-path3 <path1;...> Source file directories (semicolon separated paths) for the 3rd non-base profile.
Multiple use of --src-path3 is allowed.

--bin-path3 <path1;...> Binary file path for the 3rd non-base profile.
Multiple usage of --bin-path3 is allowed.

C:\> AMDuProfCLI.exe diff --baseline c:\Temp\cpuprof-tbp\<BASE-DIR> --with c:\Temp\cpuprof-
tbp\<NON-BASE-DIR> -o c:\Temp\cpuprof-tbp

C:\> AMDuProfCLI.exe diff -i c:\Temp\cpuprof-tbp\<BASE-DIR> -i c:\Temp\cpuprof-tbp\< NON-
BASE-DIR> -o c:\Temp\cpuprof-tbp

C:\> AMDuProfCLI.exe diff --baseline c:\Temp\cpuprof-tbp\<BASE-DIR> --with c:\Temp\cpuprof-
tbp\<NON-BASE-DIR> --type order -o c:\Temp\cpuprof-tbp

Table 35. AMDuProfCLI diff Command Options
Option Description

108 Getting Started with AMD uProf CLI Chapter 6

57368 Rev. 4.2 January 2024AMD uProf User Guide

• Generate a comparison report of base profile data with subsequent profile data sorted on ibs-op
event:

• Generate a comparison report with delta shown in percentage:

• Generate a comparison report of base profile data with successor profile data with changed
function names across sessions:

• Generate a comparison report of base profile data with multiple successor profile data:

• Generate a comparison report on one of the predefined views:

• Generate a comparison report providing the source and binary paths:

Linux

• Generate a comparison report of base profile data with subsequent profile data:

• Generate a comparison report of base profile data with subsequent profile data sorted on PMC
event:

C:\> AMDuProfCLI.exe diff --baseline c:\Temp\cpuprof-tbp\<BASE-DIR> --with c:\Temp\cpuprof-
tbp\<NON-BASE-DIR> --type name -s ibs-op -o c:\Temp\cpuprof-tbp

C:\> AMDuProfCLI.exe compare --baseline c:\Temp\cpuprof-tbp\<BASE-DIR> --with
c:\Temp\cpuprof-tbp\<NON-BASE-DIR> --type name --show-percentage -o c:\Temp\cpuprof-tbp

C:\> AMDuProfCLI.exe compare --baseline c:\Temp\cpuprof-tbp\<BASE-DIR> --with
c:\Temp\cpuprof-tbp\<NON-BASE-DIR> --alias
CalculateSum,CalculateUpdatedSum|enhanceOutput,optimizeOutput -o c:\Temp\cpuprof-tbp

C:\> AMDuProfCLI.exe diff -i c:\Temp\cpuprof-tbp\<BASE-DIR> -i c:\Temp\cpuprof-tbp\<NON-BASE-
DIR1> -i c:\Temp\cpuprof-tbp\<NON-BASE-DIR2> --with c:\Temp\cpuprof-tbp\<NON-BASE-DIR3> -o
c:\Temp\cpuprof-tbp

C:\> AMDuProfCLI.exe diff -i c:\Temp\cpuprof-tbp\<BASE-DIR> -i c:\Temp\cpuprof-tbp\<NON-BASE-
DIR> --view ipc_assess -o c:\Temp\cpuprof-tbp

C:\> AMDuProfCLI.exe diff -i c:\Temp\cpuprof-tbp\<BASE-DIR> -i c:\Temp\cpuprof-tbp\<NON-BASE-
DIR> --bin-path Examples\AMDTClassicMatMul\bin\ --src-path Examples\AMDTClassicMatMul\ --bin-
path1 Examples\AMDTClassicMatMulMod\bin\ --src-path1 Examples\AMDTClassicMatMulMod\ -o
c:\Temp\cpuprof-tbp

$ AMDuProfCLI diff --baseline /tmp/cpuprof-tbp/<BASE-DIR> --with /tmp/cpuprof-tbp/<NON-BASE-
DIR> -o /tmp/cpuprof-tbp

$ AMDuProfCLI diff --baseline /tmp/cpuprof-tbp/<BASE-DIR> --with /tmp/cpuprof-tbp/<NON-BASE-
DIR> -s event=pmcxc0,user=1,os=0 -o /tmp/cpuprof-tbp

Chapter 6 Getting Started with AMD uProf CLI 109

AMD uProf User Guide57368 Rev. 4.2 January 2024

6.9 Profile Command

The profile command collects the performance profile data, processes it, and generates a profile
report in a readable format. It is an alternative to the combination of collect and report command.

Synopsis:

<PROGRAM> — Denotes the launch application to be profiled.

<ARGS> — Denotes the list of arguments for the launch application.

Common Usages:

6.9.1 Options

Following table lists the profile commands:

AMDuProfCLI profile [--help] [<options>] [<PROGRAM>] [<ARGS>]

$ AMDuProfCLI profile <PROGRAM> [<ARGS>]
$ AMDuProfCLI profile [--config <config> | -e <event>] [-a] [-d <duration>] [<PROGRAM>]

Table 36. AMDuProfCLI profile Command Options
Option Description

-h | --help Displays the help information on the console/terminal.

-o | --output-dir
<directory-path>

Base directory path in which the collected data files will be saved. A new sub-
directory will be created in this directory.

--config <config> Predefined sampling configuration to be used to collect samples.
Use the command info --list collect-configs to get the list of supported
configs. Multiple occurrences of --config are allowed.

110 Getting Started with AMD uProf CLI Chapter 6

57368 Rev. 4.2 January 2024AMD uProf User Guide

-e | --event or
<predefined-event>

A predefined event can directly be used with -e, --event which has predefined
arguments.

Alternatively, for providing more granular parameters, specify Timer, PMU,
IBS event, or a predefined event with arguments in the form of comma
separated key=value pairs. The supported keys are:
• event=<timer | ibs-fetch | ibs-op> or <PMU-event> or <predefined-event>
• mask=<unit-mask>
• user=<0 | 1>
• os=<0 | 1>
• cmask=<count-mask> (Value should be in the range 0x0 to 0x7f)
• inv=<0 | 1>
• interval=<sampling-interval>
• frequency=<frequency (n)> (Supported only for Core PMC events.

Frequency should be provided in Hz)
• ibsop-count-control=<0 | 1> (for ibs-op event)
• loadstore (for ibs-op event, only on Windows platform)
• ibsop-l3miss (for ibs-op event, supported only on AMD “Zen4” processors)
• ibsfetch-l3miss (for ibs-fetch event, supported only on AMD “Zen4”

processors)
• call-graph
Notes:

1. Providing umask with predefined event is not required
2. Use the dedicated option --call-graph to specify the arguments related to the call stack

sample collection.

Argument details:
• user – Enable(1) or disable(0) user space samples collection
• os - Enable(1) or disable(0) kernel space samples collection
• interval – Sample collection interval. For timer, it is the time interval in

milliseconds. For PMU and predefined events, it is the count of the event
occurrences. For IBS FETCH, it is the fetch count. For IBS OP, it is the cycle
count or the dispatch count.

• op-count-control – Choose IBS OP sampling by cycle(0) count or
• dispatch(1) count.
• loadstore – Enable only the IBS OP load/store samples collection, other IBS

OP samples are not collected.
• ibsop-l3miss – Enable IBS OP sample collection only when a l3 miss occurs,
• for example, '-e event=ibs-op,interval=100000,ibsop-l3miss'
• ibsfetch-l3miss – Enable IBS FETCH sample collection only when a l3 miss
• occurs, for example, '-e event=ibs-fetch,interval=100000,ibsfetch-l3miss'

Table 36. AMDuProfCLI profile Command Options
Option Description

Chapter 6 Getting Started with AMD uProf CLI 111

AMD uProf User Guide57368 Rev. 4.2 January 2024

When these arguments are not passed, then the default values are:
• umask=0
• cmask=0x0
• user=1
• os=1
• inv=0
• ibsop-count-control=0 (for ibs-op event)
Use the following commands as required:
• info --list predefined-events for the list of supported predefined events
• info --list pmu-events for the list of supported PMU-events
Multiple occurrences of --event (-e) are allowed.

-p | --pid <PID...> Profile the existing processes by attaching to a running process. The process
IDs are separated by comma.
Note: A maximum of 512 processes can be attached at a time.

-a | --system-wide System Wide Profile (SWP)
If this flag is not set, the command line tool will profile only the launched
application or the Process IDs attached with -p option.

-c | --cpu <core...> Comma separated list of CPUs to profile. The ranges of CPUs can be specified
with ‘-’, for example, 0-3.
Note: On Windows, the selected cores should belong to only one processor group. For

example, 0-63, 64-127, and so on.

-d | --duration <n> Profile only for the specified duration ‘n’ in seconds.

--interval <num> Sampling interval for the PMC events.
Note: This interval will override the sampling interval specified with individual events.

--affinity <core-id...> Set the core affinity of the launched application to be profiled. Comma
separated list of core-ids. The ranges of the core-ids must be specified, for
example, 0-3. The default affinity is all the available cores.

--no-inherit Do not profile the children of the launched application (processes launched
by the profiled application).

-b | --terminate Terminate the launched application after the profile data collection ends.
Only the launched application process will be killed. Its children (if any) may
continue to execute.

--thread
<thread=concurrency>

Thread concurrency

--start-delay <n> Start delay n in seconds. Start profiling after the specified duration.
When ‘n’ is 0, there is no impact.

Table 36. AMDuProfCLI profile Command Options
Option Description

112 Getting Started with AMD uProf CLI Chapter 6

57368 Rev. 4.2 January 2024AMD uProf User Guide

--start-paused Profiling paused indefinitely. The target application resumes the profiling using
the profile control APIs. This option must be used only when the launched
application is instrumented to control the profile data collection using the
resume and pause APIs (defined in the “AMDProfileControl APIs” section).

-w | --working-dir <path> Specify the working directory. The default is the current working directory.

--log-path <path-to-
logdir>

Specify the path where the log file should be created. If this option is not
provided, the log file will be created either in path set by
AMDUPROF_LOGDIR environment variable or $TEMP path (Linux,
FreeBSD) or %TEMP% path (on Windows) by default.
The log file name will be of the format $USER-AMDuProfCLI.log (on
Linux, FreeBSD) or %USERNAME%-AMDuProfCLI.log (on Windows).

--enable-log Enable additional logging with log file.

--enable-logts Capture the timestamp of the log records. It should be used with –-enable-log
option.

--limit-size <n> Use this option to stop the profiling once the collected data file size (in MBs)
crosses the limit. This option will be deprecated in future releases.

--frequency <n> | --freq
<n> | -F <n>

Enable data collection at the specified frequency 'n' (in Hz) for Core PMC
events.
Note: This frequency will override the sampling frequency specified with individual events.

--detail Generate detailed report.

--group-by <section> Specify the report to be generated. The supported report options are:
• process: Report process details
• module: Report module details
• thread: Report thread details
This option is applicable only with the --detail option. The default is group-
by process.

--cutoff <n> Cut-off to limit the number of process, threads, modules, and functions to be
reported. ‘n’ is the minimum number of entries to be reported in various report
sections. The default value is 10.

--view <view-config> Report only the events present in the given view file. Use the command info -
-list view-configs to get the list of supported view-configs.

--inline Show inline functions for C, C++ executables.
Notes:

1. This option is not supported on Windows.
2. Using this option will increase the time taken to generate the report.

--show-sys-src Generate detailed function report of the system module functions (if debug
info is available) with the source statements.

Table 36. AMDuProfCLI profile Command Options
Option Description

Chapter 6 Getting Started with AMD uProf CLI 113

AMD uProf User Guide57368 Rev. 4.2 January 2024

--src-path <path1;...> Source file directories (semicolon separated paths). Multiple use of –-src-path
is allowed.

--disasm Generate a detailed function report with assembly instructions.

--disasm-only Generate the function report with only assembly instructions.

--disasm-style <att |
intel>

Choose the syntax of assembly instructions. Supported options are 'att' or
'intel'. If this option is not used, the default style used is 'intel'.

-s | --sort-by <EVENT> Specify the Timer, PMC, or IBS event on which the reported profile data
will be sorted with arguments in the form of comma separated key=value
pairs. The supported keys are:
• event=<timer | ibs-fetch | ibs-op | pmcxNNN>, where NNN is
• hexadecimal Core PMC event id.
• umask=<unit-mask>
• cmask=<count-mask>
• inv=<0 | 1>
• user=<0 | 1>
• os=<0 | 1>
Use the command info --list pmu-events for the list of supported PMC
events.
Argument details are:
• umask — Unit mask in decimal or hexadecimal, applicable only to the PMC

events.
• cmask — Count mask in decimal or hexadecimal, applicable only to the

PMC events.
• user, os — User and OS mode. Applicable only to the PMC events.
• inv — Invert Count Mask, applicable only to the PMC events
• Multiple occurrences of –sort-by (-s) are not allowed.

--agg-interval <low |
medium | high | INTERVAL>

Use this option to configure the sample aggregation interval which is useful
when the session gets imported to GUI.
'low' level of aggregation interval generates better timeline view in GUI, but
increases the database size.
Aggregation INTERVAL can also be specified as numeric value in
milliseconds.

--time-filter <T1:T2> Restricts report generation to the time interval between T1 and T2. Where,
T1 and T2 are time in seconds from profile start time.

--imix Generate the instruction MIX report. It is only supported for IBS config, IBS
events profiling, and the native binaries.

--ignore-system-module Ignore samples from system modules.

--show-percentage Show percentage of samples instead of actual samples.

Table 36. AMDuProfCLI profile Command Options
Option Description

114 Getting Started with AMD uProf CLI Chapter 6

57368 Rev. 4.2 January 2024AMD uProf User Guide

--show-sample-count Show the number of samples. This option is enabled by default.

--show-event-count Show the number of events occurred.

--show-all-cachelines Show all the cachelines in the report sections for cache analysis. By default,
only the cachelines accessed by more than one process/thread are listed.
Supported only for memory config report on Windows and Linux platforms.

--bin-path <path> Binary file path, multiple usage of --bin-path is allowed.

--src-path <path> Source file path, multiple usage of --src-path is allowed.

--symbol-path
<path1;...>

Debug Symbol paths (semicolon separated). Multiple use of --symbol-path is
allowed.

--report-output <path> Write a report to a file. If the path has a .csv extension, it is assumed to be a file
path and used as it is. If the .csv extension is not used, the path is assumed to be
a directory and the report file is generated in the directory with the default
name.

--stdout Print the report to a console or terminal.

--retranslate Perform the re-translation of collected data files with a different set of
translation options.

--ascii event-dump Use this option to generate ASCII dump of IBS OP profile samples.
Note: This option might delay the translation.

--no-report Use this option to perform only collection and translation.

--remove-raw-files Removes the raw data files to reclaim the disk space.

--export-session Use this option to create a compressed archive of required session files which
can be used in other system for analysis.

Table 36. AMDuProfCLI profile Command Options
Option Description

Chapter 6 Getting Started with AMD uProf CLI 115

AMD uProf User Guide57368 Rev. 4.2 January 2024

6.9.2 Windows Specific Options

Following table lists Windows specific profile commands:
Table 37. AMDuProfCLI Windows profile Command Options

Option Description

--call-graph <I:D:S:F> Enables Callstack Sampling. Specify the Unwind Interval (I) in
milliseconds and Unwind Depth (D) value. Specify the Scope (S) by
choosing one of the following:
• user: Collect only for the user space code.
• kernel: Collect only for the kernel space code.
• all: Collect for the code executed in the user and kernel space code.
Specify to collect missing frames due to Frame Pointer Omission (F) by
compiler:
• fpo: If frame pointers are not available, collect callstack information

using unwind information.
• fp: Use frame pointers to collect callstack information.

-g Same as passing --call-graph 1:128:user:fp.

--thread
<thread=concurrency>

Collects the runtime thread details.

-m | --data-buffer-count
<size>

Size (number of pages per core) of the buffer used for data collection by the
driver. The default size is 512 pages per core.

--trace os Trace the target domain OS. Support provided for "schedule event" only.
Use the command 'info --list ostrace-events' for a list of OS trace
events.

--symbol-server
<path1;...>

Symbol Server directories (semicolon separated paths). For example,
Microsoft Symbol Server (https://msdl.microsoft.com/download/symbols).
Multiple use of --symbol-server is allowed.

--symbol-cache-dir <path> The path to store the symbol files downloaded from the Symbol Servers.

--legacy-symbol-downloader Use this option to download symbols using the Microsoft Symsrv. By
default AMD symbol downloader will be used to download symbols

--limit-data <n> Use this option to stop the profiling once the collected data file size (in
MBs) crosses the limit. When used with (--overwrite) option, the limit is
before the collection is terminated. Size can be specified with a suffix Mega
bytes (M/m), Giga Bytes (G/g), and Seconds (secs).

--overwrite Specify the profile-data collection mode as a ring buffer. Collection limit
can be set using --limit-data option. Default --limit-data is to restrict the
raw data file size to 512 pages per core.

116 Getting Started with AMD uProf CLI Chapter 6

57368 Rev. 4.2 January 2024AMD uProf User Guide

6.9.3 Linux Specific Options

Following table lists the Linux specific commands:
Table 38. AMDuProfCLI Linux profile Command Options

Option Description

--call-graph <F:N> Enables callstack sampling. Specify (F) to collect/ignore missing frames
due to omission of frame pointers by compiler:
• fpo | dwarf: Collect process call stack during sample collection and use

DWARF information to reconstruct the call stack.
• fp: Use Frame pointers to collect call stack information.
When F = fpo, (N) specifies the max stack-size in bytes to collect per
sample collection. Valid range of the stack size: 16 - 32768. If (N) is not a
multiple of 8, then it is aligned down to the nearest value multiple of 8. The
default value is 1024 bytes.
Note: Passing a large N value will generate a very large raw data file.

When F = fp, the value for N is ignored and hence, there is no need to pass
it.

-g Same as passing --call-graph fp

--tid <TID,..> Profile existing threads by attaching to a running thread. The thread IDs are
separated by comma.

--trace <TARGET> To trace a target domain. TARGET can be one or more of the following:
mpi[=<openmpi|mpich>,<lwt|full>]
Provide MPI implementation type:
'openmpi' for tracing OpenMPI library
'mpich' for tracing MPICH and its derivative libraries, for example, Intel
MPI
Provide tracing scope:
'lwt' for light-weight tracing
'full' for complete tracing
'--trace mpi' defaults to '--trace mpi=mpich,full'
• openmp — for tracing OpenMP application. This is same as the option --
omp.

• os[=<event1,event2,...>] — provide the event names and optional
threshold with a comma separated list. syscall and memtrace events will
take the optional threshold value as <event:threshold>. Use the command
info --list ostrace-events for a list of the OS trace events.

• user=<event1,event2,...> — provide the event name and threshold with a
comma separated list. These events will be collected in the user mode.
Use the command info --list trace-events to get a list of the trace
events supported in user mode.

• gpu[=<hip,hsa>] — provide the domain for GPU Tracing. By default, the
domain is set to 'hip,hsa'.

Chapter 6 Getting Started with AMD uProf CLI 117

AMD uProf User Guide57368 Rev. 4.2 January 2024

--buffer-size <size> Number of pages to be allotted for OS trace buffer. The default value is 256
pages per core. Increase the pages to reduce the trace data loss. This option
is only applicable to OS tracing (--trace os).

--max-threads <thread-
count>

Maximum number of threads for OS tracing. The default value is 1024 for
launched application and 32768 for System Wide Tracing (-a option).
Increase this limit when the application thread count increases more than
the default limit. Otherwise, the behavior is undefined.
• Launch App - Valid range: 1 to 4096
• System wide - Valid range: 1 to 4194304

--func <module:function-
pattern>

Specify functions to trace from the library, executable, or kernel:
function-pattern can be a function name or partial name ending with '*' or
only '*' to trace all the functions of a module.
Module can be a library or executable. To trace the kernel functions,
replace the module with ‘kernel’.
Note: It is recommended to provide the absolute/full path of a module. If not, the search
will be performed on the default library paths and not on the current working
directory.

--exclude-func
<module:function-pattern>

Specify functions to exclude from the library, executable, or kernel:
• function-pattern can be a function name or partial name ending with '*' or

only '*' to trace all the functions of a module.
• Module can be a library or executable. To trace the kernel functions,

replace the module with ‘kernel’.
Note: It is recommended to provide the absolute path of a module. If not, the search will be
performed on the default library paths and not on the current working directory.

-m | --mmap-pages <size> Set the kernel memory mapped data buffer to size. The size can be
specified in pages or with a suffix Bytes (B/b), Kilo bytes (K/k), Megabytes
(M/m), and Gigabytes (G/g).

--mpi Pass this option while collecting CPU Profiling data of a MPI application.
For MPI tracing, check the --trace option.

--kvm-guest <pid> Specify the PID of qemu-kvm process to be profiled to collect guest-side
performance profile.

--guest-kallsyms <path> Specify the path of guest /proc/kallsyms copied on the local host. AMD
uProf reads it to get the guest kernel symbols.

--guest-modules <path> Specify the path of guest/proc/modules copied to the local host. AMD
uProf reads it to get the guest kernel module information.

--guest-search-path
<path>

Specify the path of guest vmlinux and kernel sources copied on the local
host. AMD uProf reads it to resolve the guest kernel module information.

Table 38. AMDuProfCLI Linux profile Command Options
Option Description

118 Getting Started with AMD uProf CLI Chapter 6

57368 Rev. 4.2 January 2024AMD uProf User Guide

--host <hostname> This option is used along with the --input-dir option. Generates report
belonging to a specific host. The supported options are:
• <hostname>: Report process belonging to a specific host.
• all: Report all the processes.
Note: If --host is not used, only the processes belonging to the system from which report is
generated is reported. In case, the system is a master node in a cluster, the report will be
generated for the lexicographically first host in that cluster.

--category <PROFILE> Generate report only for specific profiling category. Comma separated
multiple categories can be specified. If this option is not used, the report for
all categories is generated. Multiple instances of --category is allowed.
Supported categories are:
• cpu: Generate a report specific to CPU Profiling.
• mpi: Generate a report specific to MPI Tracing.
• openmp: Generate a report specific to OpenMP Tracing.
• trace: Generate a report specific to trace events. [os] deprecated
• gputrace: Generate a report specific to GPU Tracing.
• gpuprof: Generate a report specific to GPU Profiling.
Example:
--category cpu,mpi,trace,gputrace,gpuprof
--category mpi --category cpu --category trace --category gputrace
--category gpuprof

--funccount-interval
<funccount-interval>

Specify the time interval in seconds to list the function count detail report.
If this option is not specified, function count will be generated for the entire
profile duration.

--branch-filter Use this option to capture LBR data. Specify the branch filter type:
• u: user branches
• k: kernel branches
• any: any branch type
• any_call: any call branch
• any_ret: any return branch
• ind_call: indirect calls
• ind_jmp: indirect jumps
• cond: conditional branches
• call: direct calls

When the above filters are not set, the default filter type will be 'any'.
Notes:

1. When the above filters not set, the default filter type will be 'any'.
2. This option will work only with the PMC events.
3. This is applicable to per process and attach process profiling. However, it is not

applicable to Java app profiling.

Table 38. AMDuProfCLI Linux profile Command Options
Option Description

Chapter 6 Getting Started with AMD uProf CLI 119

AMD uProf User Guide57368 Rev. 4.2 January 2024

6.9.4 Examples

Windows

• Launch application AMDTClassicMatMul.exe and collect the samples for
CYCLES_NOT_IN_HALT and RETIRED_INST events and generate report:

• Launch the application AMDTClassicMatMul.exe and collect the IBS Samples and generate IMIX
report:

• Launch AMDTClassicMatMul.exe and perform Assess Performance profile for 10 seconds and
generate report:

• Launch AMDTClassicMatMul.exe and collect the IBS samples in the SWP mode and generate
report sorted on ibs-op event:

• Collect the TBP samples in SWP mode for 10 seconds and generate report:

• Launch AMDTClassicMatMul.exe, collect TBP with callstack sampling and generate report:

• Launch AMDTClassicMatMul.exe, collect TBP with callstack sampling (unwind FPO optimized
stack) and generate report:

• Launch AMDTClassicMatMul.exe and collect the samples for PMCx076 and PMCx0C0 and
generate report sorted on pmcxc0 event:

--vmlinux-path <path> Path to the Linux kernel debug info file. If no path provided, it searches for
the debug info file in the default download path.

C:\> AMDuProfCLI.exe profile -e cycles-not-in-halt -e retired-inst --interval 1000000
-o c:\Temp\cpuprof-custom AMDTClassicMatMul.exe
$./AMDuProfCLI.exe profile -e event=cycles-not-in-halt,interval=250000
-e event=retired-inst,interval=500000 -o c:\Temp\cpuprof-custom AMDTClassicMatMul.exe

AMDuProfCLI.exe profile --config ibs --imix -o c:\Temp\cpuprof-tbp AMDTClassicMatMul.exe

C:\> AMDuProfCLI.exe profile --config assess -o c:\Temp\cpuprof-assess -d 10
AMDTClassicMatMul.exe

C:\> AMDuProfCLI.exe profile --config ibs -a -s event=ibs-op -o c:\Temp\cpuprof-ibs-swp
AMDTClassicMatMul.exe

C:\> AMDuProfCLI.exe profile -a -o c:\Temp\cpuprof-tbp-swp -d 10

C:\> AMDuProfCLI.exe profile --config tbp -g -o c:\Temp\cpuprof-tbp AMDTClassicMatMul.exe

C:\> AMDuProfCLI.exe profile --config tbp --call-graph 1:64:user:fpo -o c:\Temp\cpuprof-tbp
AMDTClassicMatMul.exe

C:\> AMDuProfCLI.exe profile -e event=pmcx76,interval=250000 -e
event=pmcxc0,user=1,os=0,interval=250000 -s event=pmcxc0 -o c:\Temp\cpuprof-tbp
AMDTClassicMatMul.exe

Table 38. AMDuProfCLI Linux profile Command Options
Option Description

120 Getting Started with AMD uProf CLI Chapter 6

57368 Rev. 4.2 January 2024AMD uProf User Guide

• Launch AMDTClassicMatMul.exe and collect the samples for IBS OP with an interval of 50000
and generate report sorted on ibs-op event:

• Launch AMDTClassicMatMul.exe and do TBP samples profile for thread concurrency, name, and
generate report:

• Launch AMDTClassicMatMul.exe, collect the Power samples in SWP mode and generate report:

• Collect samples for PMCx076 and PMCx0C0, but collect the call graph info only for PMCx0C0
and generate report:

• Launch AMDTClassicMatMul.exe and collect the samples for predefined event RETIRED_INST
and L1_DC_REFILLS.ALL events and generate report:

• Launch AMDTClassicMatMul.exe. Collect the TBP, Assess Performance samples, and generate
report:

Linux

• Launch the application AMDTClassicMatMul.bin. Collect the samples for
CYCLES_NOT_IN_HALT and RETIRED_INST events and generate report:

• Launch the application AMDTClassicMatMul-bin. Collect the IBS samples and generate IMIX
report from the raw data file:

• Launch AMDTClassicMatMul-bin. Perform Assess Performance profile for 10 seconds and
generate report:

C:\> AMDuProfCLI.exe profile -e event=ibs-op,interval=50000 -s event=ibs-op -o
c:\Temp\cpuprof-tbp AMDTClassicMatMul.exe

C:\> AMDuProfCLI.exe profile --config tbp --thread thread=concurrency,name -o
c:\Temp\cpuproftbp AMDTClassicMatMul.exe

C:\> AMDuProfCLI.exe profile --config energy -a -o c:\Temp\pwrprof-swp AMDTClassicMatMul.exe

C:\> AMDuProfCLI.exe profile -e event=pmcx76,interval=250000 -e
event=pmcxc0,interval=250000,call-graph -o c:\Temp\cpuprof-pmc AMDTClassicMatMul-bin

C:\> AMDuProfCLI.exe profile -e event=RETIRED_INST,interval=250000 -e
event=L1_DC_REFILLS.ALL,user=1,os=0,interval=250000 -o c:\Temp\cpuprof-pmc
AMDTClassicMatMul.exe

C:\> AMDuProfCLI.exe profile --config tbp --config assess -o c:\Temp\cpuprof-tbp-assess
AMDTClassicMatMul.exe

$./AMDuProfCLI profile -e cycles-not-in-halt -e retired-inst
--interval 1000000 -o /tmp/cpuprof-custom AMDTClassicMatMul-bin
$./AMDuProfCLI profile -e event=cycles-not-in-halt,interval=250000
-e event=retired-inst,interval=500000 -o /tmp/cpuprof-custom
AMDTClassicMatMul-bin

$./AMDuProfCLI profile --config ibs --IMIX -o /tmp/cpuprof-tbp AMDTClassicMatMul-bin

$./AMDuProfCLI profile --config assess -o /tmp/cpuprof-assess -d 10 AMDTClassicMatMul-bin

Chapter 6 Getting Started with AMD uProf CLI 121

AMD uProf User Guide57368 Rev. 4.2 January 2024

• Launch AMDTClassicMatMul-bin. Collect the IBS samples in the SWP mode and generate report
sorted based on ibs_op event:

• Collect the TBP samples in SWP mode for 10 seconds and generate report:

• Launch AMDTClassicMatMul-bin. Collect TBP with callstack sampling and generate report:

• Launch AMDTClassicMatMul-bin and collect TBP with callstack sampling (unwind FPO
optimized stack) and generate report:

• Launch AMDTClassicMatMul-bin. Collect the samples for PMCx076 and PMCx0C0 and
generate report:

• Launch AMDTClassicMatMul-bin. Collect the samples for IBS OP with interval 50000 and
generate report sorted on ibs-op event:

• Attach to a thread, collect TBP samples for 10 seconds, and generate report:

• Collect OpenMP trace info of an OpenMP application, pass -omp, and generate report:

• Collect MPI profiling information and generate report:

• Collect the samples for PMCx076 and PMCx0C0, but collect the call graph info only for
PMCx0C0 and generate report:

• Launch AMDTClassicMatMul-bin. Collect all the OS trace events and generate report:

• Launch AMDTClassicMatMul-bin. Collect the GPU Traces for Host Identity Protocol (HIP)
domain and generate report:

$./AMDuProfCLI profile --config ibs -a -s event=ibs_op -o /tmp/cpuprof-ibs-swp
AMDTClassicMatMul-bin

$./AMDuProfCLI profile -a -o /tmp/cpuprof-tbp-swp -d 10

$./AMDuProfCLI profile --config tbp -g -o /tmp/cpuprof-tbp AMDTClassicMatMul-bin

$./AMDuProfCLI profile --config tbp --call-graph fpo:512 -o /tmp/uprof-tbp
AMDTClassicMatMulbin

$./AMDuProfCLI profile -e event=pmcx76,interval=250000 -e
event=pmcxc0,user=1,os=0,interval=250000 -o /tmp/cpuprof-tbp AMDTClassicMatMul-bin

$./AMDuProfCLI profile -e event=ibs-op,interval=50000 -s event=ibs-op -o /tmp/cpuprof-tbp
AMDTClassicMatMulbin

$ AMDuProfCLI profile --config tbp -o /tmp/cpuprof-tbp-attach -d 10 --tid <TID>

$ AMDuProfCLI profile --omp --config tbp -o /tmp/openmp_trace <path-to-openmp-exe>

$ mpirun -np 4 ./AMDuProfCLI profile --config assess --mpi --output-dir /tmp/cpuprof-mpi /tmp/
namd <parameters>

$ AMDuProfCLI profile -e event=pmcx76,interval=250000 -e
event=pmcxc0,interval=250000,callgraph -o /tmp/cpuprof-pmc AMDTClassicMatMul-bin

$ AMDuProfCLI profile --trace os -o /tmp/cpuprof-os AMDTClassicMatMul-bin

$ AMDuProfCLI profile --trace gpu=hip -o /tmp/cpuprof-gpu AMDTClassicMatMul-bin

122 Getting Started with AMD uProf CLI Chapter 6

57368 Rev. 4.2 January 2024AMD uProf User Guide

• Launch AMDTClassicMatMul-bin. Collect the TBP samples, GPU Traces for the HIP domain,
and generate report:

• Launch AMDTClassicMatMul-bin. Collect the GPU samples, OS Traces, and generate report:

6.10 Info Command

This command fetches the generic information about the system, PMC event details, predefined event
details, and so on.

Synopsis:

Common Usages:

6.10.1 Options

Following table lists the info command:

$ AMDuProfCLI profile --config tbp --trace gpu=hip -o /tmp/cpuprof-gpu AMDTClassicMatMul-bin

$ AMDuProfCLI profile --config gpu --trace os -o /tmp/cpuprof-gpu-os AMDTClassicMatMul-bin

AMDuProfCLI info [--help] [<options>]

$ AMDuProfCLI info --system

Table 39. AMDuProfCLI Info Command Options
Option Description

-h | --help Displays the help information.
--list <type> Lists the supported items for the following types:

• collect-configs: Predefined profile configurations that can be used with
collect--config option.

• predefined-events: List of the supported predefined events that can be used
with collect --event option.

• pmu-events: Raw PMC events that can be used with collect --event option.
Alternatively, info --pmu-event all can be used to print information of all the
supported events.

• cacheline-events: List of event aliases to be used with report --sort-by
option for cache analysis. It is supported only on Windows and Linux
platforms.

• view-configs: List the supported data view configurations that can be used
with report --view option.

--collect-config <name> Displays the details of the given profile configuration used with collect --
config <name> option.
Use info --list collect-configs command for the details on the supported
profile configurations.

Chapter 6 Getting Started with AMD uProf CLI 123

AMD uProf User Guide57368 Rev. 4.2 January 2024

Following table lists the Linux specific info command options:

6.10.2 Examples

Use the following commands to:

• Print the system details:

• Print the list of predefined profiles:

• Print the list of PMU events:

• Print the list of predefined report views:

• Print details of predefined profile such as “assess_ext”:

• Print the details of the pmu-event such as PMCx076:

• Print details of view configuration such as ibs_op_overall:

--view-config <name> Displays the details of the given view configuration used in the report
generation option report --view <name>.
Use info --list view-configs command for the details on the supported data
view configurations.

--pmu-event <event> Displays the details of the given pmu event. Use command info --list pmu-
events for the list of supported pmc events.

--system Displays the processor information of this system.

Table 40. AMDuProfCLI Info Command - Linux Specific Options
Option Description

--list <type> Lists the supported items for the following types:
• trace-events: List of trace events that can be used with collect --trace os or
collect --trace user option.

• gpu-events: List of GPU events can be used in gpu profile configuration.
--bpf Displays details of the BPF support and BCC Installation.

C:\> AMDuProfCLI.exe info --system

C:\> AMDuProfCLI.exe info --list collect-configs

C:\> AMDuProfCLI.exe info --list pmu-events

C:\> AMDuProfCLI.exe info --list view-configs

C:\> AMDuProfCLI.exe info --collect-config assess_ext

C:\> AMDuProfCLI.exe info --pmu-event pmcx76

C:\> AMDuProfCLI.exe info --view-config ibs_op_overall

Table 39. AMDuProfCLI Info Command Options
Option Description

124 Getting Started with AMD uProf CLI Chapter 6

57368 Rev. 4.2 January 2024AMD uProf User Guide

• Print the list of trace events:
C:\> AMDuProfCLI.exe info --list trace-events

Chapter 7 Performance Analysis 125

AMD uProf User Guide57368 Rev. 4.2 January 2024

Chapter 7 Performance Analysis

7.1 CPU Profiling

AMD uProf CPU profiler follows a statistical sampling-based approach to collect profile data to
identify the performance bottlenecks in the application. A few high-level features to understand the
CPU profiler capabilities are listed in this section:

• Profile data is collected using one of the following approaches:

– Time Based Profiling (TBP) — to identify the hotspots in the profiled applications.
– Event Based Profiling (EBP) — sampling based on Core PMC events to identify micro-

architecture related performance issues in the profiled applications.
– Instruction based Sampling (IBS) — precise instruction-based sampling.

• Call-stack Sampling

• Secondary Profile Data

– Thread concurrency (Windows only, requires admin privilege)
– Thread names (Windows and Linux only)

• Profile Scope

– Launch App— launch an application and profile that process and its children.
– System-wide — profile all the running processes and/or kernel.
– Attach Process — Attach to an existing application (Native applications only)

• Profile mode

– User/Kernel — profile data is collected when the application is running in User and/or Kernel
mode.

• Supported Languages:

– C, C++
– Java
– .NET (5.0, 6.0, and Framework)
– FORTRAN
– Assembly applications

• Supported Software Components

– User-space applications
– Dynamically linked/loaded modules
– Drivers
– OS kernel modules

126 Performance Analysis Chapter 7

57368 Rev. 4.2 January 2024AMD uProf User Guide

• Profile data is attributed at various granularities:

– Process, Thread, Load Module, Function, Source line, or Disassembly
– C++ and Java in-lined functions
Note: uProf requires debug information from the compiler for correlating the profile data to

functions and source lines.

• Data and Report Files:

– Collected profile data initially stored to raw data files.
– Processed profile data is stored to database files used for generating the CLI report or GUI

visualization.
– Profile report is saved to a comma-separated-value (CSV) format file that can be viewed using

any spreadsheet viewer.
• AMDuProfCLI, the command-line-interface can be used to configure a profile run, collect the

profile data, and generate the profile report.

– Collect command to configure and collect the profile data.
– Report command to process the profile data and to generate the profile report.
– Profile command to collect the performance profile data, analyze it, and generate the profile

report.
• AMDuProf GUI can be used to:

– Configure a profile run.
– Start the profile run to collect the performance data.
– Analyze the performance data to identify potential bottlenecks.

• AMDuProf GUI has various UI elements to analyze and view the profile data at various
granularities:

– Hot spots summary
– Session Information
– Thread concurrency graph (Windows only and requires admin privileges)
– Process and function analysis
– Source and disassembly analysis
– Top-down and bottom-up call path — visualizations to explore the function call flow of an

application for analyzing the time spent on functions and its callees.
– Flame Graph — callstack visualizer as a flame graph
– Call Graph — call stack and caller/callee visualizer in table format
– HPC — to analyze OpenMP and MPI profile data
– Timeline Visualizer — timeline views for MPI API trace and OS event trace information
– Cache Analysis — to analyze the hot cache lines that are false shared

Chapter 7 Performance Analysis 127

AMD uProf User Guide57368 Rev. 4.2 January 2024

• Profile Control API

– Selectively enable and disable profiling from the target application by instrumenting it, to limit
the scope of the profiling.

7.2 Analysis with Time-based Profiling

In this analysis, the profile data is periodically collected based on the specified OS timer interval. It is
used to identify the hotspots of the profiled applications that are consuming the most time. These
hotspots are good candidates for further investigation and optimization.

7.2.1 Configuring and Starting Profile

Complete the following steps to configure and start a profile:

1. Click PROFILE > Start Profiling to navigate to the Select Profile Target screen.

2. Select the required profile target, click the Next button.

The Select Profiling screen is displayed.

3. From the Select Profiling screen, select the Predefined Configs tab.

The following screen is displayed:

Figure 34. Time-based Profile – Configure

4. Select Time-based Sampling in the left vertical pane.

128 Performance Analysis Chapter 7

57368 Rev. 4.2 January 2024AMD uProf User Guide

5. Click Advanced Options to enable call-stack, set symbol paths (if the debug files are in different
locations) and other options. Refer the section “Advanced Options” section for more information
on this screen.

6. Once all the options are set, the Start Profile button at the bottom will be enabled and you can
click on it to start the profile.

After the profile initialization the profile data collection screen is displayed.

7.2.2 Analyzing Profile Data

Complete the following steps to analyze the profile data:

1. When the profiling stops, the collected raw profile data will be processed automatically and the
Hot Spots screen of the Summary page is displayed. The hotspots are shown for the Timer
samples. Refer the section “Overview of Performance Hotspots” for more information on this
screen.

2. Click ANALYZE on the top horizontal navigation bar to go to the Function HotSpots screen.
Refer the section “Function HotSpots” for more information on this screen.

3. Click ANALYZE > Metrics to display the profile data table at various granularities - Process,
Load Modules, Threads, and Functions. Refer the section “Process and Functions” for more
information on this screen.

4. Double-click any entry on the Functions table in Metrics screen to load the source tab for that
function in SOURCES page. Refer the section “Source and Assembly” for more information on
this screen.

7.3 Analysis with Event-based Profiling

In this profile, AMD uProf uses the PMCs to monitor the various micro-architectural events
supported by the AMD x86-based processor. It helps to identify the CPU and memory related
performance issues in profiled applications.

7.3.1 Configuring and Starting Profile

Complete the following steps to configure and start a profile:

1. Click PROFILE > Start Profiling to navigate to the Select Profile Target screen.

Chapter 7 Performance Analysis 129

AMD uProf User Guide57368 Rev. 4.2 January 2024

2. Select the required profile target, click the Next button.

The Start Profiling screen is displayed as follows:

Figure 35. Event-based Profile – Configure

3. From the Select Profiling screen, select the Predefined Configs tab.

4. Select Assess Performance in the left vertical pane. Refer the section “Predefined Sampling
Configuration” for EBP based predefined sampling configurations.

5. Click Advanced Options to enable call-stack, set symbol paths (if the debug files are in different
locations) and other options. Refer the section “Advanced Options” for more information on this
screen.

6. Once all the options are set, the Start Profile button at the bottom will be enabled. Click it to start
the profile.

After the profile initialization the profile data collection screen is displayed.

7.3.2 Analyzing Profile Data

Complete the following steps to analyze the profile data:

1. When the profiling stops, the collected raw profile data will be processed automatically and the
Hot Spots screen of the Summary page is displayed. Refer the section “Overview of
Performance Hotspots” for more information on this screen.

2. Click ANALYZE on the top horizontal navigation bar to go to the Function HotSpots screen.
Refer the section “Function HotSpots” for more information on this screen.

130 Performance Analysis Chapter 7

57368 Rev. 4.2 January 2024AMD uProf User Guide

3. Click ANALYZE > Metrics to display the profile data table at various granularities - Process,
Load Modules, Threads, and Functions. Refer to the section “Process and Functions” for more
information on this screen.

4. Double-click any entry on the Functions table in the Grouped Metrics screen to load the source
tab for that function in SOURCES page. Refer the section “Source and Assembly” for more
information on this screen.

7.4 Analysis with Instruction-based Sampling

In this profile, AMD uProf uses the IBS supported by the AMD x64-based processor to diagnose the
performance issues in hot spots. It collects data on how instructions behave on the processor and in
the memory sub-system.

7.4.1 Configuring and Starting Profile

Complete the following steps to configure and start a profile:

1. Click PROFILE > Start Profiling to navigate to the Select Profile Target screen.

2. Select the required profile target, click the Next button.

3. From the Select Profiling screen, select the Predefined Configs tab.

4. Select Instruction-based Sampling in the left vertical pane. Refer the section “Predefined
Sampling Configuration” for IBS based predefined sampling configurations.

Figure 36. IBS Configuration

Chapter 7 Performance Analysis 131

AMD uProf User Guide57368 Rev. 4.2 January 2024

5. Click Advanced Options to enable call-stack, set symbol paths (if the debug files are in different
locations) and other options. Refer the section “Advanced Options” for more information on this
screen.

6. Once all the options are set, the Start Profile button at the bottom will be enabled. Click it to start
the profile.

After the profile initialization the profile data collection screen is displayed.

7.4.2 Analyzing Profile Data

Complete the following steps to analyze the profile data:

1. When the profiling stops, the collected raw profile data will be processed automatically and you
the Hot Spots screen of the Summary page is displayed. Refer the section “Overview of
Performance Hotspots” for more information on this screen.

2. Click ANALYZE on the top horizontal navigation bar to go to the Function HotSpots screen.
Refer the section “Process and Functions” for more information on this screen.

3. Click ANALYZE > Metrics to display the profile data table at various granularities - Process,
Load Modules, Threads, and Functions. Refer the section “Process and Functions” for more
information on this screen.

4. Double-click any entry on the Functions table in the Grouped Metrics screen to load the source
tab for that function in SOURCES page. Refer to the section “Source and Assembly” for more
information on this screen.

7.5 Analysis with Call Stack Samples

The call stack samples can be collected for C, C++, and Java applications with all the CPU profile
types. These samples will be used to provide Flame Graph and Call Graph window.

Note: Java call stack profiling is supported only on Linux platforms.

To enable call stack sampling, complete the following steps:

1. Select profile target and profile type.

132 Performance Analysis Chapter 7

57368 Rev. 4.2 January 2024AMD uProf User Guide

2. Click on Advanced Options button to turn on the Enable CSS option in Call Stack Options
pane as follows:

Figure 37. Start Profiling - Advanced Options

Refer the section “Advanced Options” for more information on this screen.

Note: If the application is compiled with higher optimization levels and frame pointers are not
displayed, Enable FPO option can be turned on. On Linux, this will increase the size of the
raw profile file size.

7.5.1 Flame Graph

Flame Graph provides a stack visualizer based on call stack samples. The Flame Graph is available
in the ANALYZE page to analyze the call stack samples to identify hot call-paths. To access it,
navigate to ANALYZE > Flame Graph in the left vertical pane.
Refer the section “Flame Graph” for more information on this screen.

Chapter 7 Performance Analysis 133

AMD uProf User Guide57368 Rev. 4.2 January 2024

The following figure shows a sample flame graph:

Figure 38. ANALYZE - Flame Graph

The flame graph can be displayed based on the Process and Select Metric drop-downs. Also, it has
the function search box to search and highlight the given function name.

7.5.2 Call Graph

Call Graph provides a butterfly view of call graph based on call-stack samples. The Call Graph
screen will be available in ANALYZE page to analyze the call-stack samples to identify hot call-
paths. To access it, click ANALYZE > Call Graph in the left vertical pane.

Refer to the section “Call Graph” for more information on this screen.

The following figure shows a sample call graph:

134 Performance Analysis Chapter 7

57368 Rev. 4.2 January 2024AMD uProf User Guide

Figure 39. ANALYZE - Call Graph

You can browse the data based on Process and Select Metric drop-downs. The top central table
displays call-stack samples for each function. Click on any function to update the bottom two
Caller(s) and Callee(s) tables. These tables display the callers and callees respectively of the selected
function.

7.6 Profiling a Java Application

AMD uProf supports Java application profiling running on JVM. To support this, it uses JVM Tool
Interface (JVMTI).
AMD uProf provides JVMTI Agent libraries: AMDJvmtiAgent.dll on Windows and
libAMDJvmtiAgent.so on Linux. This JvmtiAgent library must be loaded during start up of the target
JVM process.

7.6.1 Launching a Java Application

If the Java application is launched by AMD uProf, the tool would pass the AMDJvmtiAgent library to
JVM using Java -agentpath option. AMD uProf would be able to collect the profile data and attribute
the samples to interpreted Java functions.

To profile a Java application, use the following sample command:

To generate report, pass the following source file path:
$./AMDuProfCLI collect --config tbp -w <java-app-dir> <path-to-java.exe> <java-app-main>

$./AMDuProfCLI report --src-path <path-to-java-app-source-dir> -i <raw-data-file-path>

Chapter 7 Performance Analysis 135

AMD uProf User Guide57368 Rev. 4.2 January 2024

7.6.2 Attaching a Java Process to Profile

AMD uProf cannot attach JvmtiAgent dynamically to an already running JVM. Hence, for any JVM
process profiled by attach-process mechanism, AMD uProf cannot capture any class information,
unless the JvmtiAgent library is loaded during JVM process start up.

To profile an already running Java process, pass -agentpath <path to agent lib> option while
launching Java application. So that, AMD uProf can attach to the Java PID to collect profile data later
on.

For a 64-bit JVM on Linux:

For a 64-bit JVM on Windows:

Keep a note of the process id (PID) of the above JVM instance. Then, launch AMD uProf GUI or
AMD uProf CLI to attach to this process and profile.

7.6.3 Java Source View

AMD uProf will attribute the profile samples to Java methods and the source tab will show and the
Java source lines with the corresponding samples attributed to them.

Refer to the section “Source and Assembly” for more information on source screen.

$ java -agentpath:<AMDuProf-install-dir/bin/ProfileAgents/x64/libAMDJvmtiAgent.so> <java-app-
launch-options>

C:\> java -agentpath:<C:\ProgramFiles\AMD\AMDuProf\bin\ProfileAgents\x64\AMDJvmtiAgent.dll>
<java-app-launch-options>

136 Performance Analysis Chapter 7

57368 Rev. 4.2 January 2024AMD uProf User Guide

The following figure shows the source view of the Java method:

Figure 40. Java Method - Source View

7.6.4 Java Call Stack and Flame Graph

Note: Java call stack profiling is supported only on Linux platforms.

To collect call stack for profiling Java application, use the following command:

$./AMDuProfCLI collect --config tbp -g -w <java-app-dir> <path-to-java-exe> <java-app-main>

Chapter 7 Performance Analysis 137

AMD uProf User Guide57368 Rev. 4.2 January 2024

The following figure shows the flame graph of a Java application:

Figure 41. Java Application - Flame Graph

7.7 Cache Analysis

The Cache Analysis uses IBS OP samples to detect the hot false sharing cache lines in multi-
threaded and multi-process with shared memory applications.

At a high-level, this feature will report:

• The cache lines where there is a potential false sharing

• Offsets where those accesses occur, readers and writers to those offsets

• PID, TID, Function Name, Source File, and Line Number for those reader and writers

• Load latency for the loads to those cache lines

138 Performance Analysis Chapter 7

57368 Rev. 4.2 January 2024AMD uProf User Guide

7.7.1 Supported Metrics

The following IBS OP derived metrics are used to generate false cache sharing report:

7.7.2 Cache Analysis Using GUI

Configuring and Starting Profile

To perform cache analysis, complete the following steps:

1. Selecting profile target.

2. Select Cache Analysis profile type in Predefined Configs tab.

3. Start the profile.

Table 41. IBS OP Derived Metrics
Metric Description

IBS_LOAD_STORE Total Loads and stores sampled
IBS_LOAD Total Loads
IBS_STORE Total Stores
IBS_DC_MISS_ LAT Accumulated load latencies for the loads to cache lines
IBS_LOAD_DC_L2_HIT Load operations hit in data cache or L2 cache
IBS_NB_LOCAL_CACHE_MODIFIED Loads that were serviced from the local cache (L3) and the

cache hit state was Modified
IBS_NB_LOCAL_CACHE_OWNED Loads that were serviced from the local cache (L3) and the

cache hit state was Owned
IBS_NB_LOCAL_ CACHE_MISS Loads that were missed in local cache (L3) and serviced by

remote cache, local, or remote DRAM
IBS_NB_REMOTE_CACHE_MODIFED Loads that were serviced from the remote cache (L3) and the

cache hit state was Modified
IBS_NB_REMOTE_CACHE _OWNED Loads that were serviced from the remote cache (L3) and the

cache hit state was Owned
IBS_NB_LOCAL_DRAM Loads that hit in local memory (Memory channels attached to

local socket or local CCD)
IBS_NB_REMOTE_DRAM Loads that hit in remote memory (Memory channels attached to

remote socket or other CCDs in the local socket)
IBS_STORE_DC_MISS Store operations missed in data cache

Chapter 7 Performance Analysis 139

AMD uProf User Guide57368 Rev. 4.2 January 2024

Analyzing the Report

After the profile completion, navigate to Cache Analysis page in MEMORY tab to analyze the
profile data. This page shows the cache-lines and it offsets with the associated metric values:

Figure 42. Cache Analysis

The Cache Analysis screen has the following options:

• Group By drop-down decides how the cache-line samples are grouped in the detailed table. It has
the option Cache Line Offset.

• ValueType drop-down allows you to show the value in sample count.

7.7.3 Cache Analysis Using CLI

The CLI has a config type called “memory” to cache the analysis data. Run the following command
to collect the profile data:

This command will launch the program and collect the profile data required to generate the cache
analysis report. The raw profile data file is created in /tmp/cache_analysis/AMDuProf-
IBS_<timestamp>/ directory.

Report Generation and Analysis

Use the following CLI command to generate the cache analysis report:

This will generate a CSV report in /tmp/cache_analysis/AMDuProf- IBS_<timestamp>/report.csv
and it will have the following sections:

• SHARED DATA CACHELINE SUMMARY: Lists the summary values of all the metrics.

• SHARED DATA CACHELINE REPORT: Lists the cache lines and the associated summary
values of the metrics.

$ AMDuProfCLI collect --config memory -o /tmp/cache_analysis <target app>

$ AMDuProfCLI report -i /tmp/cache_analysis/AMDuProf-IBS_<timestamp>/

140 Performance Analysis Chapter 7

57368 Rev. 4.2 January 2024AMD uProf User Guide

• SHARED DATA CACHELINE DETAIL REPORT: Lists the following:

– The cache lines having a potential false sharing
– Offsets where those accesses occur, readers and writers to those offsets
– PID, TID, Function Name, Source File, and Line Number for those reader and writers
– Load latency for the loads to those cache lines
– Supported metrics

Following figure shows the Cache Analysis summary sections:

Figure 43. Cache Analysis - Summary Sections

Following figure shows the Cache Analysis detailed report:

Figure 44. Cache Analysis - Detailed Report

Use any of the following metric with the --sort-by event=<METRIC> (for example, --sort-by
event=ldst-count) option to change the sorting by order during the report generation:
Table 42. Sort-by Metric

Sort-by Metric Description

ldst-count Total Loads and stores sampled
ld-count Total Loads
st-count Total Stores
cache-hitm Loads that were serviced either from the local or remote cache (L3) and

the cache hit state was Modified.

Chapter 7 Performance Analysis 141

AMD uProf User Guide57368 Rev. 4.2 January 2024

Note: You can also use the command info --list cacheline-events for a list of supported
metrics for sort-by option.

7.8 Custom Profile

Apart from the predefine configurations, you can choose the required events to profile. To perform
the custom profile, complete the following steps:

7.8.1 Configuring and Starting Profile

1. Click PROFILE > Start Profiling to navigate to the Select Profile Target screen.

2. Selecting the required profile target and click the Next button.

The Select Profile Configuration screen is displayed.

3. From the Select Profile Type drop-down, select one of the following:

– The CPU Tracing Mode drop-down consists of the options OS Trace and User Mode Trace.
On Linux, OS Trace is enabled (with supported events) only in root/ADMIN mode and on

lcl-cache-hitm Loads that were serviced from the local cache (L3) and the cache hit
state was Modified

rmt-cache-hitm Loads that were serviced from the remote cache (L3) and the cache hit
state was Modified.

lcl-dram-hit Loads that hit in local memory (Memory channels attached to local
socket or local CCD)

rmt-dram-hit Loads that hit in remote memory (Memory channels attached to remote
socket or other CCDs in the local socket)

l3-miss Loads that are missed in local cache (L3) and serviced by remote cache,
local or remote DRAM.

st-dc-miss Store operations missed in data cache

Table 42. Sort-by Metric
Sort-by Metric Description

142 Performance Analysis Chapter 7

57368 Rev. 4.2 January 2024AMD uProf User Guide

Windows, it’s enabled with the supported event Schedule. User Mode Trace is enabled only
for Application Analysis on Linux.
CPU Trace looks as follows:

Figure 45. CPU Trace

Chapter 7 Performance Analysis 143

AMD uProf User Guide57368 Rev. 4.2 January 2024

– GPU Trace looks as follows:

Figure 46. GPU Trace

Multiple categories from the custom configs can be added together, for example, CPU Profile +
CPU Trace.

When multiple categories are selected, it will be mentioned below as breadcrumbs under Added
Categories and you can deselect the unwanted categories. The corresponding CLI command will
be generated below.

144 Performance Analysis Chapter 7

57368 Rev. 4.2 January 2024AMD uProf User Guide

The custom configs screen will look similar to the following:

Figure 47. Custom Config - Added Categories

1. Select the Custom Configs tab and select CPU Profile from the left vertical pane.

2. Click Advanced Options to enable call-stack, set symbol paths (if the debug files are in different
locations) and other options. Refer the section “Advanced Options” for more information on this
screen.

3. Once all the options are set, the Start Profile button at the bottom will be enabled. Click it to start
the profile.

After the profile initialization the profile data collection screen is displayed.

7.8.2 Analyzing Profile Data

Complete the following steps to analyze the profile data:

1. When the profiling stops, the collected raw profile data will be processed automatically and the
Hot Spots screen of the Summary page is displayed. Refer the section “Overview of
Performance Hotspots” for more information on this screen.

2. Click ANALYZE on the top horizontal navigation bar to go to the Function HotSpots screen.
Refer the section “Function HotSpots” for more information on this screen.

3. Click ANALYZE > Metrics to display the profile data table at various granularities - Process,
Load Modules, Threads, and Functions. Refer the section “Process and Functions” for more
information on this screen.

Chapter 7 Performance Analysis 145

AMD uProf User Guide57368 Rev. 4.2 January 2024

4. Double-click any entry on the Functions table in Metrics screen to load the source tab for that
function in SOURCES page. Refer the section “Source and Assembly” for more information on
this screen.

7.9 Advisory

7.9.1 Confidence Threshold

The metric with low number of samples collected for a program unit either due to multiplexing or
statical sampling will be grayed out. A few points to remember are:

• This is applicable to SW Timer and Core PMC based metrics.

• This confidence threshold value can be set through Preferences section in SETTINGS page.

7.9.2 Issue Threshold

Highlight the CPI metric cells exceeding the specific threshold value (>1.0). Those cells will be
highlighted in pink to show them as potential performance problem as follows:

Figure 48. CPI Metric - Threshold-based Performance

146 Performance Analysis Chapter 7

57368 Rev. 4.2 January 2024AMD uProf User Guide

7.10 ASCII Dump of IBS Samples

For some scenarios, it would be useful to analyze the ASCII dump of IBS OP profile samples. To do
so, complete the following steps:

1. To collect the IBS OP samples, run:

2. Once the raw file is generated, run the following command to translate and get the ASCII dump of
IBS OP samples:

The CSV file that containing ASCII dump of the IBS OP samples is generated:

3. During collection the following control knobs are available:
-e event=ibs-op,interval=100000,loadstore,ibsop-count-control=1

Where:

– interval denotes sampling interval
– loadstore denotes collect only the load & store ops (Windows only option)
– ibsop-count-control=1 represents count dispatched micro-ops (0 for “count clock cycles”)
– --data-buffer-count 1024 represents the number of per-core data buffers to allocate (Windows only

option)
In case, there are too many missing records, try the following:

• Increase the sampling interval

• Increase the data buffer count

• Reduce the number of cores profiled

7.11 Branch Analysis

AMD “Zen4” processors support Last Branch Record (LBR) CPU feature that is useful for branch
analysis. Use uProf CLI to collect and generate the branch analysis report.

Branch analysis is supported only on Linux platform.

Notes:
1. PMC event must be enabled for LBR sample collection. If no PMC event is passed,

PMCX0C0 event is enabled during LBR sample collection.

2. Branch analysis is not supported for Java apps.

C:\> AMDuProfCLI.exe collect -e event=ibs-op,interval=100000,loadstore,ibsop-count-control=1
-a --data-buffer-count 20480 -d 250 -o C:\temp\

C:\> AMDuProfCLI.exe translate --ascii event-dump -i C:\temp\AMDuProf-IBS_<timestamp>\

C:\temp\AMDuProf-IBS_<timestamp>\IbsOpDump.csv

Chapter 7 Performance Analysis 147

AMD uProf User Guide57368 Rev. 4.2 January 2024

Example

Collect the LBR info:

Generate branch analysis report:

Sample Report

The report generated contains a section for branch analysis. A sample screenshot for branch analysis
summary is as follows:

Figure 49. Branch Analysis Summary

The branch analysis summary table comprises of the following columns:

• OVERHEAD (%): Indicates which branching was mostly taken. Calculated as: (SAMPLES *
100)/(Total SAMPLES).

• SAMPLES: Shows the number of samples collected for the branch. This does not indicate the
actual branches taken.

• MISPREDICT (%): Indicates ratio of mispredicts occurred for the branch. Calculated as:
((MISPREDICT COUNT) * 100/SAMPLES)

• MISPREDICT COUNT: Shows the number of branch mis-predicted samples collected for the
branch.

• SOURCE FUNCTION: Shows the function from where the branch was taken.

• TARGET FUNCTION: Shows the function into which the branch was taken.

• SOURCE LINE: Shows the file path and line number (from where the branch was taken) of the
SOURCE FUNCTION.

• TARGET LINE: Shows the file path and line number (into which the branch was taken) of the
TARGET FUNCTION.

• SOURCE MODULE: Shows the module name of the SOURCE FUNCTION.

• TARGET MODULE: Shows the module name of the TARGET FUNCTION.

• PROCESS: Shows the name and PID of the process.

$ AMDuProfCLI collect --branch-filter -o /tmp/ ./ScimarkStable/scimark2_64static

$ AMDuProfCLI report --detail -i /tmp/AMDuProf-scimark2_64static-Custom_May-15-2023_21-05-56

148 Performance Analysis Chapter 7

57368 Rev. 4.2 January 2024AMD uProf User Guide

7.12 Export Session

The CLI option --export-session helps to generate a compressed archive containing essential session
files. The compressed archive can be easily transported to other system and the GUI can be used for
analyzing the performance data.

This feature streamlines the process of transferring and utilizing session files across multiple systems,
enhancing accessibility and enabling smooth workflow continuity.

Steps

Complete the following steps to export a session:

1. Generate compressed archive with translate, report, or profile command.

A .zip file is generated.

2. Copy the .zip file to another system and decompress it.

The decompressed session directory can be imported to GUI for data visualization and analysis. To
import the decompressed session and to analyze the performance data, refer to the section“Importing
Profile Database”.

Common Usage

• Generate compressed archive with 'translate' command:

• Generate compressed archive with 'report' command:

• Generate compressed archive with 'profile' command:

Example

Launch the application AMDTClassicMatMul.exe and collect the Time-Based Profile (TBP) samples
and generate a report with the export session option enabled:

7.13 Limitations

CPU profiling in AMD uProf has the following limitations:

• CPU profiling expects the profiled application executable binaries must not be compressed or
obfuscated by any software protector tools, for example, VMProtect.

• In case of AMD EPYCTM 1st generation B1 parts, only one PMC register is used at a time for
Core PMC event-based profiling (EBP).

/AMDuProfCLI translate <options> --export-session <options> -i <session_dir>

./AMDuProfCLI report <options> --export-session <options> -i <session_dir>

./AMDuProfCLI profile <options> --export-session <options>

AMDuProfCLI.exe profile --config tbp --export-session -o c:\Temp\cpuprof-tbp
AMDTClassicMatMul.exe

Chapter 7 Performance Analysis 149

AMD uProf User Guide57368 Rev. 4.2 January 2024

IMIX has the following limitations:

• The IMIX view or report is supported only for IBS profile type.

• If any module/binary has less than 10 samples, it is not shown in the IMIX report. Extremely less
number of samples are not useful for IMIX analysis.

• Linux kernel module .ko files are not shown in the IMIX view or report.

150 Performance Analysis (Linux) Chapter 8

57368 Rev. 4.2 January 2024AMD uProf User Guide

Chapter 8 Performance Analysis (Linux)

This chapter explains the Linux specific performance analysis models.

8.1 Threading Analysis

You can use threading analysis to identify how efficiently an application uses:

• Processor cores

• Contention among the threads due to synchronization

• CPU utilization of threads

• Runtime and wait time analysis of application threads

Limitations

• It is not supported when an application is statically linked with libc and libpthread.

• The behavior is undefined when an application uses the clone system call for thread or process
creation instead of pthead_create() or fork().

• It is not supported with system-wide profiling and attach process.

• Supported only on AMD “Zen3” and AMD “Zen4” platforms. On other platforms, use the custom
configuration to collect the data.

8.1.1 Threading Analyis Using CLI

AMDuProfCLI can be used to collect the required profile and trace data to generate the report in .csv
format for further analysis. The processed profile and trace data can also be imported in GUI.

Collect Threading Data

CLI command to collect the threading data:

This command will launch the program to collect the profile and trace data. When the launched
application is executed, AMDuProfCLI will display the session directory path in which the raw
profile and trace data are saved.

In the above example, the session directory path is:

/tmp/threading-analysis/AMDuProf-classic_lock-Threading_Jun-13-2023_06-00-23

$ AMDuProfCLI collect --config threading -o /tmp/threading-analysis/ /home/app/classic_lock
...
Generated data files path: /tmp/threading-analysis/AMDuProf-classic_lock-Threading_Jun-13-
2023_06-00-23

Chapter 8 Performance Analysis (Linux) 151

AMD uProf User Guide57368 Rev. 4.2 January 2024

Collect Threading and System Calls

Enable the system call collection along with threading to get the IO, syscall, and block time of each
thread. CLI command to collect threading and system calls tracing:

Collect Threading and Context Switch

Enable the context switch collection (root access is required) for accurate wait time analysis:

Collect with Custom Config

Example command to collect the CPU cycles event in frequency mode (with frequency set as 100Hz),
pthread synchronizing APIs trace data and system calls:

Generate Profile Report

Use the following CLI report command to generate the profile report in .csv format by passing the
session directory path as an argument to the option -i:

$ AMDuProfCLI collect --config threading --trace user=syscall -o /tmp/threading-analysis/ /
home/app/classic_lock
...
Generated data files path: /tmp/threading-analysis/AMDuProf-classic_lock-Threading_Jun-13-
2023_06-00-23

$ sudo AMDuProfCLI collect --config threading --trace os=schedule -o /tmp/threading-analysis/ /
home/app/classic_lock
...
Generated data files path: /tmp/threading-analysis/AMDuProf-classic_lock-Threading_Jun-13-
2023_06-00-23

$ sudo AMDuProfCLI collect -e event=pmcx76,umask=0,frequency=100 --trace user=pthread,syscall -
o /tmp/threading-analysis/ /home/app/classic_lock
...
Generated data files path: /tmp/threading-analysis/AMDuProf-classic_lock-Threading_Jun-13-
2023_06-00-23

$ sudo AMDuProfCLI report -i /tmp/threading-analysis/AMDuProf-classic_lock-Threading_Jun-13-
2023_06-00-23
...
Generated report file: /tmp/threading-analysis/AMDuProf-classic_lock-Threading_Jun-13-2023_06-
00-23/report.csv

152 Performance Analysis (Linux) Chapter 8

57368 Rev. 4.2 January 2024AMD uProf User Guide

After processing the data and generating the report, the report file path is displayed on the terminal.
An example of the trace report sections in the .csv report file is as follows:

Figure 50. Trace Report

From the report, the application performance snapshot provides the following details:

• Number of threads/Thread count: Total number of threads created by the application.

• Elapsed time: Total elapsed time of the application.

• Serial time: Total time of the application when only one thread is running.

• Parallel time: Total time of the application when two or more threads are running.

• Run time: Total run time of all threads. If context switch records are collected, the total run time
will be total time of all the threads executing in CPU. Otherwise, total run time = total time - (total
wait time + total sleep time)

Chapter 8 Performance Analysis (Linux) 153

AMD uProf User Guide57368 Rev. 4.2 January 2024

• Wait time: Total wait time of all the threads. Wait time is calculated as follows:

– Threading config (--config threading): Total time spent by a thread in pthread
synchronization APIs and wait system calls. Refer section 8.1.2 and 8.1.3 for traced
synchronization APIs and wait system calls.

– Custom config (--trace user=syscall): Total time spent by a thread in wait system calls.
– Custom config (--trace user=pthread): Total time spent by a thread in pthread

synchronization APIs.
– Custom config (--trace os/--trace os=schedule): Total time of all the threads when a

thread is not in CPU. It uses the context switch records to identify whether thread is in CPU or not.
• Sleep time: Total time spent by all the threads in sleep system calls. Refer to section 8.1.3 for

sleep system calls that are traced.

• IO time: Total time spent by all the threads in IO system calls. Refer to section 8.1.3 for IO system
calls that are traced.

• Block time: Total time spent by all the threads in blocking the system calls. When application
makes this type of system call, there is no guarantee that the application will be blocked. So, this
block time will be added to the total run time too. Refer to section 8.1.3 for block system calls that
are traced.

Summary Report Sections

• System call summary: Provides the system call count, total time spent by the application on a
system call. Helps identify the system calls consuming most of the time and that can be optimized
if the system calls blocking in nature.

• Thread summary: Provides the total run time, wait time of each thread, and wait time percentage
with respect to the total time of thread. Helps identify if a thread is using the core effectively or
not. Wait time of threads should be low for an optimized application.

• Wait object summary: pthread synchronization object wait count and total wait time due to this
synchronization object. Helps identify the object responsible for most of the wait time.

• Import the profiled session in GUI and navigate to Analyze > Thread Timeline for better
visualization, thread timeline analysis, pthread synchronization object analysis, and call stack
analysis.

154 Performance Analysis (Linux) Chapter 8

57368 Rev. 4.2 January 2024AMD uProf User Guide

8.1.2 pthread Synchronization APIs

List of thread synchronization APIs traced when pthread trace event is enabled:

8.1.3 libc System Call Wrapper APIs

List of libc functions traced when syscall event is enabled:

Sleep APIs

Wait APIs

IO APIs

• pthread_mutex_lock

• pthread_mutex_trylock

• pthread_mutex_timedlock

• pthread_cond_wait

• pthread_cond_timedwait

• pthread_cond_signal

• pthread_cond_broadcast

• pthread_rwlock_rdlock

• pthread_rwlock_tryrdlock

• pthread_rwlock_timedrdlock

• pthread_rwlock_wrlock

• pthread_rwlock_trywrlock

• pthread_rwlock_timedwrlock

• pthread_spin_lock

• pthread_spin_trylock

• pthread_barrier_wait

• sem_wait

• sem_trywait

• sem_timedwait

• pthread_create

• pthread_join

• pthread_cancel

• pthread_yield

• pthread_exit

• sleep

• pause

• sigtimedwait

• nanosleep

• sigsuspend

• clock_nanosleep

• sigwait

• usleep

• sigwaitinfo

• poll

• ppoll

• select

• pselect

• epoll_wait

• epoll_pwait

• wait

• waitpid

• waitid

• wait3

• wait4

• create

• open

• openat

• read

• pread

• readv

• preadv

• preadv2

• write

• pwrite

• writev

• pwritev

• pwritev2

• lseek

• sendfile

• copy_file_range

• truncate

• ftruncate

• readahead

• close

Chapter 8 Performance Analysis (Linux) 155

AMD uProf User Guide57368 Rev. 4.2 January 2024

Blocking APIs

Other APIs

• flock

• fsync

• sync

• syncfs

• fdatasync

• sync_file_range

• accept

• accept4

• recv

• recvfrom

• recvmsg

• recvmmsg

• send

• sendto

• sendmsg

• sendmmsg

• mq_send

• mq_timedsend

• mq_receive

• mq_timedreceive

• msgsnd

• msgrcv

• semget

• semop

• semtimedop

• semctl

• splice

• vmsplice

• msync

• fcntl

• ioctl

• epoll_create

• epoll_create1

• epoll_ctl

• socket

• bind

• listen

• connect

• socketpair

• mq_notify

• mq_getattr

• mq_setattr

• mq_close

• mq_unlink

• msgget

• msgctl

• pipe

• pipe2

• shmat

• shmctl

• shmget

• shmdt

• fork

• vfork

• alarm

• system

• kill

• killpg

• brk

• sbrk

• mlock

• munlock

• mlock2

• mlockall

• munlockall

• mmap

• munmap

• move_pages

• mprotect

• mremap

• process_vm_readv

• process_vm_writev

• acct

• chroot

• dup

• dup2

• dup3

• fallocate

• ioperm

• iopl

• mount

• prctl

• ptrace

• sigaction

• swapon

• swapoff

• tee

• umount

• umount2

• unshare

• vhangup

156 Performance Analysis (Linux) Chapter 8

57368 Rev. 4.2 January 2024AMD uProf User Guide

8.1.4 Timeline Analysis GUI in Linux

To configure threading analysis from the GUI:

1. Navigate to the Select Profile Configuration screen.

2. Select Predefined Configs from the tab.

3. Select Threading Analysis from the left vertical pane.

Profile data collected from CLI or GUI can be visualized in GUI by importing the session. On
importing, the following section (Thread Timeline) is displayed on the ANALYZE page.

Time-series data is plotted in timelines per entity (thread, rank, device, and so on). Trace data (if
collected) will only be plotted when you zoom into the timeline to address data size related scalability
issues (trace data can have millions of records which will not be visually legible if plotted together).
The entire view is broadly separated in three vertical parts, top data selectors, middle timelines, and
bottom filters. You can use the timeline as follows:

• Hover the cursor over a timeline to view a vertical line containing the tool-tip for a specific entity,
showing relevant details, and the current timestamp.

• If callstack data is collected, click at any point in the timeline to bring up the callstack of the
corresponding entity in the bottom pane.

Note: There can be multiple callstacks at a given timestamp as sampling data is coarse-
grained.

• If CPU profile data is collected, click and drag the mouse over the timeline to select a region
across all timelines and brings up the Function Hotspot within the selected time range.

Chapter 8 Performance Analysis (Linux) 157

AMD uProf User Guide57368 Rev. 4.2 January 2024

• Zoom-in/out horizontally into the timelines using one of the following:

– The mouse wheel.
– Pressing CTRL and +/- keys on the keyboard to Zoom-in/out respectively.
When the timeline is zoomed in, trace data (if present) is displayed.

Figure 51. Timeline Analysis GUI in Linux

The timeline section consists of:

1. Name of each thread in timeline with Thread ID.

2. Click to Load More button which loads more threads. By default, only a small number of thread
timelines are loaded to limit the resource consumption. This button enables loading the next set of
thread timelines. The next set is determined by the entries in the table below the timeline.

158 Performance Analysis (Linux) Chapter 8

57368 Rev. 4.2 January 2024AMD uProf User Guide

3. Select the Data Source drop-down to enable selection of data to display on the timeline. Different
types of data source are as follows:

– CPU Utilization: Plots the timeline for the CPU utilization (in %) per thread at a per second
interval. To collect sufficient such data points, the total profile duration should be greater than
or equal to 10 seconds. This is enabled only for the Threading Analysis configuration.

– Memory Consumption: Plots the timeline for the memory consumption (in MB) categorized
as physical and virtual memory consumed. This is enabled only for the Threading Analysis
configuration.

– Context Switches: Plots the timeline for both voluntary context switches count (sleep, yield,
and so on) or involuntary context switches count (OS scheduler triggered context switch). This
is enabled only for the Threading Analysis configuration.

– CPU Profile Samples: Plots the timeline for the CPU sample collected for the CPU events.
The following events are supported:

– Thread Trace: Plots the timeline based on OS trace data which can either originate from eBPF
Tracing or User-mode Tracing. The trace data is categorized and aggregated at certain intervals
to generate time-series plotted in timelines. The following categories are created:

Table 43. Supported CPU Events
Events Availability

Retired Instructions PMC event RETIRED_INSTRUCTIONS is collected.
Cycles not in Halt PMC event CYCLES_NOT_IN_HALT is collected.
Op Cycles IBS op event is collected with ‘count cycles’ unit mask.
CPU Time Time-based profiling is performed.

Table 44. CPU Trace Categories
Category Description

Wait Time Total time spent in synchronization objects, that is, mutex, condition variable,
semaphore, locks, barriers, latches, and so on

Sleep Time Total time spent in sleep syscalls.
Running Time If only user-mode tracing is enabled:

Running Time = Total Time – (Wait Time + Sleep Time).
If eBPF tracing is enabled, then Running Time is total active time in CPU:
Running Time = Total Time – Sleep Time (from context switch records)

Block Time Total Time spent in blocking syscalls, that is, select, epoll, poll, wait, accept, and so
on.

I/O Time Total Time spent in I/O syscalls, that is, read, write, pread, pwrite, and so on.
Syscall Time Total time spent on all traced syscalls – (Block Time + I/O Time)

Chapter 8 Performance Analysis (Linux) 159

AMD uProf User Guide57368 Rev. 4.2 January 2024

4. The Select Trace Overlay drop-down enables selection of the type of trace data to display.

– Don't Show Trace: Trace data will not be loaded in the timeline.
– Thread State: Shows the current state of thread from eePBF or User-mode tracing. In the former,

thread state is inferred from BPF data. In the later, thread state is treated as Running if Running
Time > 0, otherwise, Sleeping.

– Thread Trace: Displays traces for the traced libpthread functions, such as pthread_mutex_lock,
pthread_mutex_trylock, and so on.

– Syscalls: Displays traces for traced syscall in the specific region of the timeline.
5. Trace Cutoff can be used to specify a duration in nanoseconds, which acts as a cutoff to load the

trace data, that is, any traced function which takes less than the specified nanoseconds will not be
displayed.

6. Click the Reset Zoom button to reset any zoom performed earlier.

7. Hover over any timeline to view the tool-tip containing the relevant data along with timestamp. If
trace data is also present, the relevant traced functions with start time and duration.

8. Filter Threads/Ranks enables you to filter which thread's (or rank's) timelines must be
displayed. By default, the timelines are sorted internally and the first 6 are loaded. However, from
the table, you can select the required threads and clicking Apply Filter to apply the changes. If
CPU profile data is collected, highlighting functions or modules is also possible. Each function is
assigned a random color, which can be modified and highlighted in the timeline (implies there are
samples from the function/module).

9. Each entry in the filter table has the necessary data, that is, name, parent object, and samples/trace
times aggregated across the profile.

10. Click the Apply Filter button to apply a custom selection of entities or highlight entities in
timeline.

11. Click Deselect selected Items to deselect all the entries in the filtering table except the first one.
This is useful when a custom selection is required but all timelines are already loaded.

12. At the bottom of the filtering pane, timeline legend is displayed, which helps in identifying how
each type of ‘data source’ or ‘trace’ is mapped to which color.

13. The Show Core Transition button is disabled by default and works only when the CPU profiling
data is collected. When enabled, a red line is displayed in each timeline to signify when a thread
changes the core.

14. If any configuration is profiled with CSS enabled, select Threading Analysis > Select Data
Source > CPU Profile Samples. The callstack section will be enabled only if you select a valid
samples region.

Note: Time-series data (from Select Data Source) will be plotted as a line graph, where the x-axis is
time and y-axis the height implies how close to the maximum value it reached. For trace
records, the height is always total height of the timeline. However, the width varies based on
the duration of the traced function.

160 Performance Analysis (Linux) Chapter 8

57368 Rev. 4.2 January 2024AMD uProf User Guide

8.2 OpenMP Analysis

The OpenMP API uses the fork-join model of parallel execution. The program starts with a single
master thread to run the serial code. When a parallel region is encountered, multiple threads perform
the implicit or explicit tasks defined by the OpenMP directives. At the end of that parallel region, the
threads join at the barrier and only the master thread continues to execute.

When the threads execute the parallel region code, they should utilize all the available CPU cores and
the CPU utilization should be maximized. But the threads wait without doing anything useful due to
several reasons:

• Idle: A thread finishes its task within the parallel region and waits at the barrier for the other
threads to complete.

• Sync: If locks are used inside the parallel region, threads can wait on synchronization locks to
acquire the shared resource.

• Overhead: The thread management overhead.

The OpenMP analysis helps to trace the activities performed by OpenMP threads, their states, and
provides the thread state timeline for parallel regions to analyze the performance issues.

Support Matrix

The following table shows the support matrix:

Prerequisite

Compile the OpenMP application using a supported compiler (on a supported platform) with the
required compiler options to enable OpenMP.

Table 45. Support Matrix
Component Supported Versions Languages

OpenMP Spec OpenMP v5.0

Compiler
LLVM 8, 9, 10, 11, 12, 13, and 14 C and C++
AOCC 2.1, 2.2, 2.3, 3.0, 3.1, 3.2, and 4.0 C, C++, and Fortran
ICC 19.1 and 2021.1.1 C, C++, and Fortran

OS
Ubuntu 18.04 LTS, 20.04 LTS, and 22.04
LTS
RHEL 8.6 and 9
CentOS 8.4

Chapter 8 Performance Analysis (Linux) 161

AMD uProf User Guide57368 Rev. 4.2 January 2024

8.2.1 Profiling OpenMP Application using GUI

Configuring and Starting a Profile

Complete the following steps to enable the OpenMP profiling:

1. Select the profile target and profile type.

2. Click the Advanced Options button.

3. In Enable OpenMP Tracing pane, turn on the Enable OpenMP Tracing option in, as shown in
the following image:

Figure 52. Enable OpenMP Tracing

Analyzing the OpenMP Report

After the profile completion, navigate to the HPC page to analyze the OpenMP tracing data. You can
use the left side vertical pane on this page to navigate through the following views:

• Overview shows the quick details about the runtime. The following image shows the Overview
page:

Figure 53. HPC - Overview

162 Performance Analysis (Linux) Chapter 8

57368 Rev. 4.2 January 2024AMD uProf User Guide

• Parallel Regions shows the summary of all the parallel regions. This tab is useful to quickly
understand which parallel region might be load imbalanced. Double-click on the region names to
open the Regions Detailed Analysis page.

Figure 54. HPC - Parallel Regions

8.2.2 Profiling OpenMP Application Using CLI

Collect Profile Data

Use the following command to profile an OpenMP application using AMD uProf CLI:

While performing the regular profiling, add option --trace openmp or --omp to enable OpenMP
profiling. This command will launch the program and collect the profile data required to generate the
OpenMP analysis report.

Modes of tracing OpenMP events are:

• Full Tracing: All the OpenMP events are traced in full tracing. Use the following command to
perform full OpenMP tracing:

• Basic Tracing: Only the events which are required for the high level report generation are traced.
The size of trace data collected is less as compared to the full tracing mode. This is the default
mode. Use the following command to perform basic OpenMP tracing:

Generate Profile Report

You can generate a CSV report using the AMDuProfCLI report command. Any additional option is not
required for the OpenMP report generation. AMD uProf checks for the availability of any OpenMP
profiling data and includes it in the report if available.

$./AMDuProfCLI collect --trace openmp --config tbp -o /tmp/myapp_perf <openmp-app>

./AMDuProfCLI collect --trace openmp=full -o /tmp/myapp_perf <openmp-app>

./AMDuProfCLI collect --trace openmp=basic -o /tmp/myapp_perf <openmp-app>

Chapter 8 Performance Analysis (Linux) 163

AMD uProf User Guide57368 Rev. 4.2 January 2024

The following command will generate a CSV report in /tmp/myapp_perf/<SESSION-DIR>/
report.csv:

An example of the OpenMP report section in the CSV file is as follows:

Figure 55. An OpenMP Report

$./AMDuProfCLI report -i /tmp/myapp_perf/<SESSION-DIR>

164 Performance Analysis (Linux) Chapter 8

57368 Rev. 4.2 January 2024AMD uProf User Guide

It has following sub-sections:

• OpenMP OVERVIEW

• OpenMP PARALLEL-REGION METRIC helps in understanding the imbalanced region, that
is, a region with less total work time with respect to its total time. It has the following columns:

– Imbalance Time: Total idle time spent by all the threads of the parallel region, normalized by
the number of threads.

– Imbalance Time (%): Percentage of the imbalance time with respect to the total time spent in
the parallel region.

– Threads: Number of threads in the parallel region.
– Avg Idle Time: Average time spent by the parallel region threads waiting at the barrier for other

threads to complete.
– Avg Sync Time: Average time spent by the parallel region threads waiting on the

synchronization locks to acquire the shared resource.
– Avg Overhead Time: The thread management overhead.
– Avg Work Time: Average time spent by the parallel region threads working.
– Loop Chunk Size: Number of loop iterations scheduled for a chunk.
– Schedule Type: Specifies how iterations of associated loops are divided into chunks and how

these chunks are distributed among threads.
– Elapsed Time: Time spent in the parallel region.

• OpenMP THREAD METRIC helps in understanding how each thread spent its time in the
parallel region. If a thread spends too much time on non-work activity, the parallel region should
be optimized further to improve the work time of each thread in that region. It has the following
columns:

– ThreadNum: Serial number of the thread.
– ThreadId: Thread identifier.
– Idle Time: Time spent by the thread waiting at the barrier for other threads to complete.
– Sync Time: Time spent by the thread waiting on the synchronization locks to acquire the shared

resource.
– Overhead Time: Thread management overhead.
– Work Time: Time spent by the thread working.
OpenMP trace data can be collected in Linux and the session can be imported to GUI or CLI on
Windows.

8.2.3 Environment Variables

AMDUPROF_MAX_PR_INSTANCES – Set the max number of parallel regions to be traced. The
default value is 2000.

Chapter 8 Performance Analysis (Linux) 165

AMD uProf User Guide57368 Rev. 4.2 January 2024

8.2.4 Limitations

The following features not supported in this release:

• OpenMP profiling with system-wide profiling scope.

• Loop chunk size and schedule type when the parameters are specified using schedule clause. In
such as case, it shows the default values (1 and Static).

• Nested parallel regions.

• GPU offloading and related constructs.

• Callstack for individual OpenMP threads.

• OpenMP profiling on Windows and FreeBSD platforms.

• Applications with static linkage of OpenMP libraries.

• Attaching to running OpenMP application.

8.3 MPI Profiling

The MPI programs launched through mpirun or mpiexec launcher programs can be profiled by AMD
uProf. To profile the MPI applications and analyze the data, complete the following the steps:

1. Collect the profile data using CLI collect command.

2. Process the profile data using CLI translate command which will generate the profile database.

3. Import the profile database in the GUI or generate the CSV report using CLI report command.

4. Multiple ranks profiling requires higher limit to be set for memory locking using one of the
following methods:

– Increase the memory lock limit using the command ulimit -l, depending on the number of
ranks to be profiled on the target node.

– Set proc/sys/kernel/perf_event_paranoid to -1 or higher value based on the profile config and
scope.

– Perform MPI profiling with root privilege.
5. Multiple ranks profiling might require a high number of file descriptors. If the file descriptor limit

is reached during profile data collection, an error message will be displayed. You can increase this
limit in the file /etc/security/limits.conf.

6. For Multiple ranks profiling, if the /proc/sys/kernel/perf_event_paranoid value is greater than -1,
you must increase the /proc/sys/kernel/perf_event_mlockb value depending on the number of
ranks to profile. Alternatively, you can also use the -m option to decrease the number of memory
data buffer pages used by each instance of AMDuProfCLI.

166 Performance Analysis (Linux) Chapter 8

57368 Rev. 4.2 January 2024AMD uProf User Guide

Support Matrix

The MPI profiling supports the following components and the corresponding versions:

8.3.1 Collecting Data Using CLI

The MPI jobs are launched using MPI launchers such as mpirun and mpiexec. You must use
AMDuProfCLI to collect the profile data for an MPI application.

The MPI job launch through mpirun uses the following syntax:

AMDuProfCLI is launched using <program> and the application is launched using the
AMDuProfCLI's arguments. So, use the following syntax to profile an MPI application using
AMDuProfCLI:

The MPI profiling specific AMDuProfCLI options:

• The --mpi option is to profile MPI application. The AMDuProfCLI will collect some additional
meta data from MPI processes.

• --output-dir <output dir> specifies the path to a directory in which the profile files are saved. A
session directory will be created within the <output dir> containing all the data collected from all
the ranks.

A typical command uses the following syntax:

If an MPI application is launched on multiple nodes, AMDuProfCLI will profile all the MPI rank
processes running on all the nodes. You can either analyze the data for processes ran on one/many/all
node(s).

Table 46. MPI Profiling Support Matrix
Component Supported Versions

MPI Spec MPI v3.1
MPI Libraries Open MPI v4.1.2

MPICH v4.0.2
ParaStation MPI v5.4.8

Intel® MPI 2021.1
OS Ubuntu 18.04 LTS, 20.04 LTS, and 22.04 LTS

RHEL 8.6 and 9
CentOS 8

$ mpirun [options] <program> [<args>]

$ mpirun [options] AMDuProfCLI [options] <program> [<args>]

$ mpirun -np <n> /tmp/AMDuProf/bin/AMDuProfCLI collect
--config <config-type> --mpi --output-dir <outpit_dir> [mpi_app] [<mpi_app_options>]

Chapter 8 Performance Analysis (Linux) 167

AMD uProf User Guide57368 Rev. 4.2 January 2024

Method 1 - Profile All the Ranks On Single/Multiple Node(s)

To collect profile data for all the ranks running on a single node, execute the following commands:

To collect profile data for all the ranks in multiple nodes, use the options -H / --host mpirun or specify
-hostfile <hostfile>:

Method 2 - Profiling Specific Rank(s)

To profile only a single rank running on host2, execute the following commands:

To profile only a single rank in setup where 256 ranks running on 2 hosts (128 ranks per host):

Method 3 – Using MPI Config File

The mpirun also takes config file as an input and the AMDuProfCLI can be used with the config file
to profile the MPI application.

Config file (myapp_config):

To run this config to collect data only for the MPI processes running on host2, execute the following
command:

8.3.2 Analyzing the Data with CLI

The data collected for MPI processes can be analyzed using the CSV reported by the AMDuProfCLI
report command. The generated reported is saved to the file report.csv in the <output-dir>/
<SESSION-DIR> folder.

Following are the reporting options for the CLI:

• Generate a report for all the MPI processes ran on the localhost (for example, host1) in which the
MPI launcher was launched (using the new option --input-dir):

Option --host is not mandatory to create the report file for the localhost.

$ mpirun -np 16 /tmp/AMDuProf/bin/AMDuProfCLI collect --config tbp
--mpi --output-dir /tmp/myapp-perf myapp.exe

$ mpirun -np 16 -H host1,host2 /tmp/AMDuProf/bin/AMDuProfCLI collect
--config tbp --mpi --output-dir /tmp/myapp-perf myapp.exe

$ export AMDUPROFCLI_CMD=/tmp/AMDuProf/bin/AMDuProfCLI collect --config tbp --mpi --output-dir
/tmp/myapp-perf
$ mpirun -np 4 -host host1 myapp.exe : -host host2 -np 1 $AMDUPROFCLI_CMD myapp.exe

$ mpirun -host host1:128 -np 1 $AMDUPROFCLI_CMD myapp.exe : -host host2:128,host1:128 -np 255
--map-by core myapp.exe

#MPI - myapp config file
-host host1 -n 4 myapp.exe
-host host2 -n 2 /tmp/AMDuProf/bin/AMDuProfCLI collect --config tbp --mpi \
--output-dir /tmp/myapp-perf myapp.exe

$ mpirun --app myapp_config

$ AMDuProfCLI report --input-dir /tmp/myapp-perf/<SESSION-DIR> --host host1

168 Performance Analysis (Linux) Chapter 8

57368 Rev. 4.2 January 2024AMD uProf User Guide

• Generate a report for all the MPI processes ran on another host (for example, host2) in which the
MPI launcher was not launched:

• Generate a report for all the MPI processes ran on all the hosts:

8.3.3 Analyze the Data with GUI

To analyze the profile data in the GUI, complete the following steps:

1. To generate the profile database, refer “Analyzing the Data with CLI” on page 167.

2. To import the profile database, refer “Importing Profile Database” on page 72.

8.3.4 Limitations

The MPI environment parameters such as Total number of ranks and Number of ranks running
on each node are currently supported only for OpenMPI. MPI profiling with system-wide profiling
scope is not supported.

8.4 Profiling Support on Linux for perf_event_paranoid
Values

Following table describes profiling support on Linux for different perf_event_paranoid values:

$ AMDuProfCLI report --input-dir /tmp/myapp-perf/<SESSION-DIR> --host host2

$ AMDuProfCLI report --input-dir /tmp/myapp-perf/<SESSION-DIR> --host all

Table 47. Profiling perf_event_paranoid Values on Linux

Config Profile Scope
perf_event_paranoid Values

-1 0 1 2

Time Based Profiling Specific Application or
Process

Y Y Y Y

Time Based Profiling Kernel, Hypervisor Y Y Y N
Time Based Profiling Entire System Y Y N N
Core PMC Event Based
Profiling

Specific Application or
Process

Y Y Y Y

Core PMC Event Based
Profiling

Kernel, Hypervisor Y Y Y N

Core PMC Event Based
Profiling

Entire System Y Y N N

Instruction Based Sampling Specific Application or
Process

Y Y N N

Instruction Based Sampling Entire System Y Y N N

Chapter 8 Performance Analysis (Linux) 169

AMD uProf User Guide57368 Rev. 4.2 January 2024

8.5 Profiling Linux System Modules

To attribute the samples to the system modules (for example, glibc and libm), AMD uProf uses the
corresponding debug info files. The Linux distros do not contain the debug info files, but most of the
popular distros provide options to download the debug info files.

Refer the following resources for more information on how to download the debug info files:

• Ubuntu (https://wiki.ubuntu.com/Debug%20Symbol%20Packages)

• RHEL/CentOS (https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/
html/Developer_Guide/intro.debuginfo.html)

Ensure that you download the debug info files for the required system modules for the required Linux
distros before starting the profiling.

8.6 Profiling Linux Kernel

To profile and analyze the Linux kernel modules and functions, do the following:

1. Enable the kernel symbol resolution.

2. Do one of the following:

– Download and install kernel debug symbol packages and source.
– Build Linux kernel with debug symbols.

After the kernel debug info is available in the default path, AMD uProf automatically locates and
utilizes that debug info to show the kernel sources lines and assembly in the source view.

Supported OS: Ubuntu 18.04 LTS, Ubuntu 20.04 LTS, RHEL 7, and RHEL 8

8.6.1 Enabling Kernel Symbol Resolution

To attribute the kernel samples to appropriate kernel functions, AMD uProf extracts required
information from the /proc/kallsyms file. Exposing the kernel symbol addresses through /proc/
kallsyms requires setting of the appropriate value to the /proc/sys/kernel/kptr_restrict file as follows:

• Set /proc/sys/kernel/perf_event_paranoid to -1.

• Set /proc/sys/kernel/kptr_restrict to an appropriate value as follows:

– 0: The kernel addresses are available without any limitations.
– 1: The kernel addresses are available if the current user has a CAP_SYSLOG capability.
– 2: The kernel addresses are hidden.

https://wiki.ubuntu.com/Debug Symbol Packages
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/intro.debuginfo.htm

170 Performance Analysis (Linux) Chapter 8

57368 Rev. 4.2 January 2024AMD uProf User Guide

Set the perf_event_paranoid value using one of the following:

Set the kptr_restrict value using one of the following:

8.6.2 Downloading and Installing Kernel Debug Symbol Packages

On a Linux system, the /boot directory either contains the compressed vmlinux or uncompressed
vmlinux image. These kernel files are stripped, have no symbol and debug information. If there is no
debug information, AMD uProf will not be able to attribute samples to kernel functions and hence, by
default, AMD uProf cannot report kernel functions.

Some Linux distros provide debug symbol files for their kernel which can be used for profiling
purposes.

Ubuntu

Complete the following steps to download kernel debug info and source code on Ubuntu systems
(verified on Ubuntu 18.04.03 LTS):

1. To trust the debug symbol signing key, execute the following commands:

2. Add the debug symbol repository as follows:

3. Retrieve the list of available debug symbol packages:

4. Install the debug symbols for the current kernel version:

$ sudo echo -1 > /proc/sys/kernel/perf_event_paranoid

or

$ sudo sysctl -w kernel.perf_event_paranoid=-1

$ sudo echo 0 > /proc/sys/kernel/kptr_restrict

or

$ sudo sysctl -w kernel.kptr_restrict=0

// Ubuntu 18.04 LTS and later:
$ sudo apt install ubuntu-dbgsym-keyring
// For earlier releases of Ubuntu:
$ sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys
F2EDC64DC5AEE1F6B9C621F0C8CAB6595FDFF622

$ echo "deb http://ddebs.ubuntu.com $(lsb_release -cs) main restricted universe multiverse
deb http://ddebs.ubuntu.com $(lsb_release -cs)-security main restricted universe multiverse
deb http://ddebs.ubuntu.com $(lsb_release -cs)-updates main restricted universe multiverse
deb http://ddebs.ubuntu.com $(lsb_release -cs)-proposed main restricted universe multiverse" |
\
sudo tee -a /etc/apt/sources.list.d/ddebs.list

$ sudo apt update

$ sudo apt install --yes linux-image-$(uname -r)-dbgsym

Chapter 8 Performance Analysis (Linux) 171

AMD uProf User Guide57368 Rev. 4.2 January 2024

5. Download the kernel source

After the kernel debug info file is downloaded, it can be found at the default path:

$ /usr/lib/debug/boot/vmlinux-`uname -r`

RHEL

Follow the steps in Red Hat knowledgebase (https://access.redhat.com/solutions/9907) to download
the RHEL kernel debug info.

After the kernel debug info file is downloaded, it can be found at the default path:

$ /usr/lib/debug/lib/modules/`uname -r`/vmlinux

8.6.3 Build Linux kernel with Debug Symbols

If the debug symbol packages are not available for pre-built kernel images, then analyzing the kernel
functions at the source level requires a recompilation of the Linux kernel with debug flag enabled.

8.6.4 Analyzing Hotspots in Kernel Functions

If the debug info for the kernel modules is available, any subsequent CPU performance analysis will
attribute the kernel space samples appropriately to [vmlinux] module and display the hot kernel
functions. Otherwise, kernel samples will be attributed to [kernel.kallsyms]_text module.

During the hotspot analysis, do consider the following:

• If you see [vmlinux] module, then you should be able to analyze the performance data for kernel
functions in the Source view and IMIX view in the GUI. The CLI should also be able to generate
source level report and IMIX report for the kernel.

• If the source is downloaded and copied to the expected path, then you should be able to see the
kernel source lines in GUI and CLI.

• Passing of kernel debug file path and passing of kernel source path is not recommended as that
might lead to performance issues.

8.6.5 Linux Kernel Callstack Sampling

In System-wide profile, the callstack samples can be collected for kernel functions. For example, the
following command will collect the kernel callstack:

$ sudo apt source linux-image-unsigned-$(uname -r)

or

$ sudo apt source linux-image-$(uname -r)

AMDuProfCLI collect -a -g -o /tmp/usr/bin/stress-ng --cpu 8 --io 4 --vm 2 --vm-bytes 128M --
fork 4 --timeout 20s

https://access.redhat.com/solutions/9907

172 Performance Analysis (Linux) Chapter 8

57368 Rev. 4.2 January 2024AMD uProf User Guide

8.6.6 Constraints

• Do not move the downloaded kernel debug info from its default path.

• If the kernel version gets upgraded, then download the kernel debug info for the latest kernel
version. AMD uProf would not show correct source and assembly if there is any mismatch
between kernel debug info and kernel version.

• While profiling or analyzing kernel samples, do not reboot the system in between. Rebooting the
system would cause the kernel to load at a different virtual address due to the KASLR feature of
Linux kernel.

• The settings in the /proc/sys/kernel/kptr_restrict file enables AMD uProf to resolve kernel
symbols and attribute samples to kernel functions. It does not enable the source and assembly
level, call-graph analysis.

8.7 Kernel Block I/O Analysis

The Linux OS block I/O calls like insert, issue, and complete can be traced to provide the various
metrics related to I/O operations performed by the application.

This analysis can be used to analyze:

• Time taken to complete the I/O operations

• IOPS - Number of block I/O operations per second

• Read or Write bytes of block I/O operation

• Block I/O bandwidth

Note: The kernel can continue to perform the queued I/O requests submitted by the profiled
application, even after the application exits. So, it is recommended to use system-wide tracing
for this analysis.

Prerequisites

For tracing OS events and runtime libraries:

• Requires Linux kernel 4.7 or later (it is recommended to use kernel 4.15 or later).

• Root access is required to trace the OS events in Linux.

• To install BCC and eBPF scripts, refer section “Installing BCC and eBPF” on page 7. To validate
the BCC Installation, run the script sudo AMDuProfVerifyBpfInstallation.sh.

Table 48. I/O Operations
Category Event Description

OS and Runtime diskio To trace the block I/O operations when the application is running.

Chapter 8 Performance Analysis (Linux) 173

AMD uProf User Guide57368 Rev. 4.2 January 2024

8.7.1 Kernel Block I/O Analysis Using CLI

The AMDuProfCLI can be used to collect the required trace data and generate the report in .csv
format for further analysis. The processed profile data can also be imported in GUI.

Collect Profile Data

Example CLI command to trace block I/O operations along with time-based sampling:

This command will launch the program and collect the profile and trace data. Once the launched
application is executed, the AMDuProfCLI will display the session directory path in which the raw
profile and trace data are saved.

In the above example, the session directory path is:

/tmp/blockio-analysis/AMDuProf-fio-OsTrace_Dec-09-2021_12-19-27/

Generate Profile Report

Use the following CLI report command to generate the profile report in .csv format by passing the
session directory path as the argument to -i option:

After processing the data and generating the report, the report file path is displayed on the terminal.
An example of the disk I/O report section in the .csv report file is as follows:

Figure 56. Disk I/O Summary Tables

Analyze Trace Data with GUI

To visualize the trace data collected using CLI, the collected raw profile and trace data should be
processed using CLI translate command and then it can be imported in the GUI.

$ sudo AMDuProfCLI collect --config tbp -trace os=diskio -o /tmp/blockio-analysis/ /usr/bin/
fio ...
...
Generated data files path: /tmp/blockio-analysis/AMDuProf-fio-OsTrace_Dec-09-2021_12-19-27

$./AMDuProfCLI report -i /tmp/blockio-analysis/AMDuProf-fio-OsTrace_Dec-09-2021_12-19-27
...
Generated report file: /tmp/blockio-analysis/AMDuProf-fio-OsTrace_Dec-09-2021_12-19-27/
report.csv

174 Performance Analysis (Linux) Chapter 8

57368 Rev. 4.2 January 2024AMD uProf User Guide

Use the following CLI translate command invocation to process the raw trace records saved in the
corresponding session directory path:

Then import this session in the GUI by specifying the session directory path in Profile Data File text
input box in the HOME > Import Session view. This will load the profile data saved in the session
directory for further analysis.

Navigate to the ANALYZE page and then select Disk I/O Stats in the vertical navigation bar as
follows:

Figure 57. ANALYZE - Block I/O Stats

In the above figure, the table shows various block I/O statistics at the device level.

8.8 GPU Offloading Analysis (GPU Tracing)

GPU offloading analysis is used to explore the traces of the function calls for a GPU compute-
intensive application.

The AMD ROCtracer library provides support to capture the runtime APIs and GPU activities such as
data transfer and kernel execution. This analysis helps to visualize the ROCr, HIP API calls, and GPU
activities when a HIP based application is running. It is supported only with a launch application.

Supported Interfaces

AMD uProf supports tracing the following ROCr runtime APIs, GPU activities, and to show the data
in GUI timeline view:

$./AMDuProfCLI translate -i /tmp/blockio-analysis/AMDuProf-classic-OsTrace_Dec-09-2021_12-19-
27
...
Translation finished

Table 49. Supported Interfaces for GPU Tracing
Category Event Description

GPU hip HIP runtime trace
GPU hsa AMD ROCr runtime trace

Chapter 8 Performance Analysis (Linux) 175

AMD uProf User Guide57368 Rev. 4.2 January 2024

Prerequisites

For tracing ROCr, HIP APIs, and GPU activities:

• Requires AMD ROCm 5.5 to be installed. For the steps to install AMD ROCm, refer section
“Installing ROCm” on page 6.

Note: Tracing might not work as expected on '5.2.1 or older' versions.

• Support accelerators - AMD InstinctTM MI100 and MI200

Optional Settings

By default, AMDuProf uses the:

• ROCm version pointed by /opt/rocm/ symbolic link. To specify the rocm path, you must export it
using AMDUPROF_ROCM_PATH before launching AMD uProf.

Example:

• ROCm libraries from /opt/rocm/lib. If AMDUPROF_ROCM_PATH is specified, the specified
path or library will be used. To change this path, you must export it using
AMDUPROF_ROCM_LIB_PATH before launching AMD uProf.

Example:

8.8.1 GPU Offload Analysis Using CLI

The AMDuProfCLI can be used to collect the required trace data and generate the report in .csv
format for further analysis. The processed profile data can also be imported in GUI.

Collect Profile Data

The CLI has an option --trace to specify the GPU events and runtime libraries to be traced. For HIP
based applications, example CLI command to trace ROCr, HIP APIs, and GPU activity along with
time-based sampling for performing GPU offload analysis:

This command will launch the program and collect the profile and trace data. Once the launched
application is executed, the AMDuProfCLI will display the session directory path in which the raw
profile and trace data are saved.

In the above example, the session directory path is:

/tmp/gpu-analysis/AMDuProf-SampleApp-GpuTrace_Dec-09-2021_12-19-27/

The behavior is undefined when the GPU profile collection is interrupted or the launch application is
killed from other terminal.

export AMDUPROF_ROCM_PATH=/opt/rocm-5.5.0/

export AMDUPROF_ROCM_LIB_PATH=/opt/rocm-5.5.0/lib

$ sudo AMDuProfCLI collect --config tbp --trace gpu -o /tmp/gpu-analysis/ /home/app/SampleApp
...
Generated data files path: /tmp/gpu-analysis/AMDuProf-SampleApp-GpuTrace_Dec-09-2021_12-19-27

176 Performance Analysis (Linux) Chapter 8

57368 Rev. 4.2 January 2024AMD uProf User Guide

Generate Profile Report

Use the following CLI report command to generate the profile report in .csv format by passing the
session directory path as the argument to -i option:

After processing the data and generating the report, the report file path is displayed on the terminal.
An example of the GPU trace report section in the .csv report file is as follows:

Figure 58. GPU Tracing Report

For more information on GPU tracing from GUI, refer to the section 7.8.1.

$./AMDuProfCLI report -i /tmp/gpu-analysis/AMDuProf-SampleApp-GpuTrace_Dec-09-2021_12-19-27
...
Generated report file: /tmp/gpu-analysis/AMDuProf-SampleApp-OsTrace_Dec-09-2021_12-19-27/
report.csv

Chapter 8 Performance Analysis (Linux) 177

AMD uProf User Guide57368 Rev. 4.2 January 2024

8.9 GPU Profiling

The AMD ROCprofiler library provides support to monitor GPU hardware performance events when
GPU kernels are dispatched and executed. The derived performance metrics are computed and
reported in the CSV report. It is supported only with a launch application.

Prerequisites

For GPU performance profiling:

• Requires AMD ROCm 5.5 to be installed. For the steps to install AMD ROCm, refer section
“Installing ROCm” on page 6

Note: Profiling might not work as expected on '5.2.1 or older' versions.

• Supported accelerators - AMD InstinctTM MI100 and MI200

Supported Events and Metrics

The following GPU performance metrics are supported. Run AMDuProfCLI info --list gpu-events
command to list the supported events on the target system.

The following table shows the list of supported events:
Table 50. Supported Events for GPU Profiling

Event Description

GRBM_COUNT GPU free running clock
GRBM_GUI_ACTIVE GPU busy clock
SQ_WAVES Count number of waves sent to SQs. (per-simd, emulated,

global)
TCC_HIT_sum Number of cache hits.
TCC_MISS_sum Number of cache misses. UC reads count as misses.
SQ_INSTS_VALU Number of VALU instructions issued. (per-simd, emulated)
SQ_INSTS_SALU Number of SALU instructions issued. (per-simd, emulated)
SQ_INSTS_SMEM Number of SMEM instructions issued (per-simd, emulated)
SQ_INSTS_LDS Number of LDS instructions issued (including FLAT)

(per-simd, emulated)
SQ_INSTS_GDS Number of GDS instructions issued (per-simd, emulated)
TCC_EA_RDREQ_sum Number of TCC/EA read requests (either 32-byte or 64-byte)
TCC_EA_RDREQ_32B_sum Number of 32-byte TCC/EA read requests
SQ_ACTIVE_INST_VALU Number of cycles the SQ instruction arbiter is working on a

VALU instruction (per-simd, nondeterministic)
SQ_THREAD_CYCLES_VALU Number of thread-cycles used to execute VALU operations

(per-simd)

178 Performance Analysis (Linux) Chapter 8

57368 Rev. 4.2 January 2024AMD uProf User Guide

The following table shows the list of supported metrics:

8.9.1 GPU Profiling Using CLI

Collect Profile Data

Use the following command to collect the GPU performance data:

This command will launch the program and collect the profile data. Once the launched application is
executed, the AMDuProfCLI will display the session directory path in which the raw profile data are
saved.

In the above example, the session directory path is:

/tmp/AMDuProf-SampleApp-GPUProfile_Dec-09-2021_12-19-27/

TA_FLAT_READ_WAVEFRONTS_sum Number of flat opcode reads processed by the TA
TA_FLAT_WRITE_WAVEFRONTS_sum Number of flat opcode writes processed by the TA

Table 51. Supported Metrics for GPU Profiling
Metric Description

GPU_UTIL (%) GPU utilization in percentage
VALU_UTIL (%) VALU utilization in percentage
VALU_THREAD_DIVERGENCE (%) Average VALU thread divergence in percentage
L2_CACHE_HIT_RATE (%) Average L2 cache hit rate in percentage
VALU_INSTR (IPW) Average number of VALU instructions per wave
SALU_INSTR (IPW) Average number of SALU instructions per wave
SMEM_INSTR (IPW) Average number of SMEM instructions per wave
LDS_INSTR (IPW) Average number of LDS instructions per wave
GDS_INSTR (IPW) Average number of GDS instructions per wave
L2_CACHE_HITS (PW) Average number of L2 cache hits per wave
L2_CACHE_MISSES (PW) Average number of L2 cache misses per wave
EA_32B_READ (PW) Average number of 32-byte reads per wave
EA_64B_READ (PW) Average number of 64-byte reads per wave
EA_READ_BW (GB/sec) Read Bandwidth in GB per second

$ sudo AMDuProfCLI collect --config gpu -o /tmp/ /home/app/SampleApp
...
Generated data files path: /tmp/AMDuProf-SampleApp-GPUProfile_Dec-09-2021_12-19-27

Table 50. Supported Events for GPU Profiling
Event Description

Chapter 8 Performance Analysis (Linux) 179

AMD uProf User Guide57368 Rev. 4.2 January 2024

The behavior is undefined when the GPU profile collection is interrupted or the launch application is
killed from other terminal.

Generate Profile Report

Use the following CLI report command to generate the profile report in .csv format by passing the
session directory path as the argument to -i option:

After processing the data and generating the report, the report file path is displayed on the terminal.
An example of the GPU profile report section in the .csv report file is as follows:

Figure 59. GPU Profile Report

$./AMDuProfCLI report -i /tmp/AMDuProf-SampleApp-GPUProfile_Dec-09-2021_12-19-27
...
Generated report file: /tmp/AMDuProf-SampleApp-GPUProfile_Dec-09-2021_12-19-27/report.csv

180 Performance Analysis (Linux) Chapter 8

57368 Rev. 4.2 January 2024AMD uProf User Guide

8.10 Other OS Tracing Events

Apart from the OS events that are listed in section “Kernel Block I/O Analysis” on page 172,
following OS events can also be traced along with CPU sampling-based profiles:

Prerequisites

For tracing OS events and runtime libraries:

• Requires Linux kernel 4.7 or later (it is recommended to use kernel 4.15 or later).

• Root access is required to trace the OS events in Linux.

• To install BCC and eBPF scripts, refer section “Installing BCC and eBPF” on page 7. To validate
the BCC Installation, run the script sudo AMDuProfVerifyBpfInstallation.sh.

8.10.1 Tracing Page Faults and Memory Allocations Using CLI

The AMDuProfCLI can be used to collect the required trace data and generate the report in .csv
format for further analysis.

Collect Profile Data

The CLI has an option --trace to specify the OS events and runtime libraries to be traced. Example
CLI command to trace page faults and memory allocations along with time-based sampling for
performing holistic analysis:

This command will launch the program and collect the profile and trace data. Once the launched
application is executed, the AMDuProfCLI will display the session directory path in which the raw
profile and trace data are saved.

In the above example, the session directory path is:

/tmp/AMDuProf-classic-OsTrace_Dec-09-2021_12-19-27/Generate Profile Report

Table 52. Supported Events for OS Tracing
Event Description

pagefault To trace the number of page faults.
memtrace To trace memory allocation and deallocation calls. By default, only memory allocations

that are >= 1KB are traced.
Note: This is supported only for application level tracing.

funccount Trace the functions provided with the option --func.

$ sudo AMDuProfCLI collect --config tbp -trace os=pagefault,memtrace -o /tmp/ /home/app/classic
...
Generated data files path: /tmp/AMDuProf-classic-OsTrace_Dec-09-2021_12-19-27

Chapter 8 Performance Analysis (Linux) 181

AMD uProf User Guide57368 Rev. 4.2 January 2024

Use the following CLI report command to generate the profile report in .csv format by passing the
session directory path as the argument to -i option:

After processing the data and generating the report, the report file path is displayed on the terminal.
An example of the GPU trace report section in the .csv report file is as follows:

Figure 60. Pagefault and Memory Allocation Summary

8.10.2 Tracing Function Call Count using CLI

funccount in OS Trace will count the functions of a module (Executable/Library or Kernel
Function). The maximum number of functions that can be traced in a single tracing is 1000.

For CLI options, refer to Table 27 on page 88.

An example of the function count report section in the .csv report file is as follows:

Figure 61. Function Count Summary

$./AMDuProfCLI report -i /tmp/AMDuProf-classic-OsTrace_Dec-09-2021_12-19-27
...
Generated report file: /tmp/AMDuProf-classic-OsTrace_Dec-09-2021_12-19-27/report.csv

182 Performance Analysis (Linux) Chapter 8

57368 Rev. 4.2 January 2024AMD uProf User Guide

Examples:

• Collect the function count of malloc() from libc called by AMDTClassicMatMul-bin; libc will be
searched for in the default library paths:

• Collect context switches, syscalls, pthread API tracing, and function count of malloc() called by
AMDTClassicMatMul-bin:

• Collect the count of malloc(), calloc(), and kernel functions that match the pattern 'vfs_read*'
system-wide:

• Collect the count of all the functions from AMDTClassicMatMul-bin:

For more information on GPU tracing from GUI, refer to the section 7.8.1.

8.11 MPI Trace Analysis

MPI trace analysis can be used to analyze, and compute the message passing load imbalance among
the ranks of a MPI application running on a cluster. It supports OpenMPI, MPICH, and their
derivatives.

The supported thread models are SINGLE, FUNNLED, and SERIALIZED. The profile reports are
generated for Point-to-Point and Collective API activity summary.

Fortran bindings are configured and built while compiling the MPI implementations. You can enable/
disable the Fortran bindings based on your need for Fortran language support.

Refer the following options to disable/enable the Fortran bindings:

• OpenMPI

By default, OpenMPI will attempt to build all the 3 Fortran bindings: mpif.h, mpi module, and
mpi_f08 module.

• MPICH

By default, the Fortran bindings are enabled. You can use this option to disable it.

$ AMDuProfCLI collect --trace os=funccount --func c:malloc -o /tmp/cpuprof-os
AMDTClassicMatMul-bin

$ AMDuProfCLI collect --trace os --func c:malloc -o /tmp/cpuprof-os AMDTClassicMatMul-bin

$ AMDuProfCLI collect --trace os --func c:malloc,calloc,kernel:vfs_read* -o /tmp/cpuprof-os -
a -d 10

$ AMDuProfCLI collect --trace os=funccount --func /home/amd/AMDTClassicMatMul-bin: * -o /tmp/
cpuprof-os AMDTClassicMatMul-bin

--enable-mpi-fortran[=VALUE]
--disable-mpi-fortran

--disable-fortran

Chapter 8 Performance Analysis (Linux) 183

AMD uProf User Guide57368 Rev. 4.2 January 2024

Support Matrix

Tracing Modes

The AMDuProf CLI supports the following 2 modes for MPI tracing:

• LWT – Light-weight tracing is useful for quick analysis of an application. The report gets
generated in .csv format on-the-fly during collection stage.

• FULL – Full tracing is useful for in-depth analysis. This mode requires post-processing for report
generation in .csv format .

MPI Implementation Support

AMD uProf supports tracing of Open MPI and MPICH and the derivatives:

• --trace mpi=mpich for MPICH and derivatives (default option)

• --trace mpi=openmpi for Open MPI

Ensure that the correct option (mpich or openmpi) is passed depending on the MPI implementation
used for compiling the MPI application. Passing incorrect option might cause undefined behavior.

For more information on MPI tracing options, refer “Linux Specific Options” on page 88.

8.11.1 MPI Light-weight Tracing Using CLI

In LWT mode, quick report gets generated during collection stage. This mode supports limited set of
APIs for tracing. This report gives overview of the application runtime activity as follows:

Table 53. Support Matrix
Component Supported Versions

MPI Spec MPI v3.1
MPI Libraries Open MPI v4.1.4, MPICH v4.0.3, ParaStation MPI v5.6.0, and Intel® MPI 2021.1
OS • Ubuntu: 18.04 LTS, 20.04 LTS, and 22.04.04 LTS

• RHEL: 8.6 and 9
• CentOS 8.4

Languages C, C++ and Fortran

Table 54. List of Supported MPI APIs for Light-weight Tracing
 MPI_Bsend MPI_Recv_init MPI_Bcast MPI_Ireduce_scatter
 MPI_Bsend_Init MPI_Rsend MPI_Gather MPI_Iscan
 MPI_Ibsend MPI_Rsend_init MPI_Gatherv MPI_Iscatter
 MPI_Improbe MPI_Send MPI_Iallgather MPI_Iscatterv
 MPI_Imrecv MPI_Send_init MPI_Iallgatherv MPI_reduce
 MPI_Iprobe MPI_Ssend MPI_Iallreduce MPI_reduce_scatter
 MPI_Irecv MPI_Ssend_Init MPI_Ialltoall MPI_Scan

184 Performance Analysis (Linux) Chapter 8

57368 Rev. 4.2 January 2024AMD uProf User Guide

Collect Profile Data

Example of a command to LWT trace an MPI application using AMDuProfCLI:

After completing the tracing, the path to the session directory is displayed on the terminal. LWT
report is generated immediately after completing the collection and saved into the session directory
in: <output_directory>/<SESSION_DIR>/mpi/lwt/mpi-summary.csv.

MPI implementation MPICH or Open MPI should be passed in the command; MPICH is the default.

Following are the sample commands:

Ensure that the correct option (mpich or openmpi) is passed depending on the MPI implementation
used for compiling the MPI application. Passing an incorrect option might cause undefined behavior.

 MPI_Irsend MPI_Allgather MPI_Ialltoallv MPI_Scatter
 MPI_Isend MPI_Allgatherv MPI_Ialltoallw MPI_Scatterv
 MPI_Issend MPI_Allreduce MPI_Ibarrier MPI_Wait
 MPI_Mprobe MPI_Alltoall MPI_Ibcast MPI_Waitall
 MPI_Mrecv MPI_Alltoallv MPI_Igather MPI_Waitany
 MPI_Probe MPI_Alltoallw MPI_Igatherv MPI_Waitsome
 MPI_Recv MPI_Barrier MPI_Ireduce

$ mpirun -np <number of processes> ./AMDuProfCLI collect --trace mpi=lwt -o <output_directory>
<application>

$ mpirun -np <number of processes> ./AMDuProfCLI collect --trace mpi=lwt,openmpi -o
<output_directory> <application>

$ mpirun -np <number of processes> ./AMDuProfCLI collect --trace mpi=lwt,mpich -o
<output_directory><application>

Table 54. List of Supported MPI APIs for Light-weight Tracing

Chapter 8 Performance Analysis (Linux) 185

AMD uProf User Guide57368 Rev. 4.2 January 2024

An example of the LWT report section in the .csv file is as follows:

Figure 62. LWT Report

8.11.2 MPI Full Tracing Using CLI

Full tracing mode traces more APIs than LWT tracing. This mode is helpful for in-depth analysis of
an MPI Application activity.

The report file for the full tracing includes multiple tables to represent various details:

• Communicator summary consists of the following columns:

– Communicator Size: Number of the member ranks
– Elapsed Time: Time spent by the MPI APIs in the communicator
– Ranks: Member rank IDs

• Rank summary consists of the following columns:

– Rank: Rank ID.
– PID: Process ID.
– MPI Time (seconds): Total time spent on the MPI APIs.
– MPI Time (%): Percentage of MPI Time with respect to the total MPI time of all the ranks.
– Wait Time (seconds): Time spent by the rank waiting.
– Wait Time (%): Percentage of the rank wait time with respect to the application runtime.
– Call Count: Number of times MPI APIs are called.
– Volume (bytes): Volume of data in bytes sent or received.
– Volume (%): Percentage of volume with respect to the total volume sent or received by all the

ranks.
– Elapsed Time (seconds): Application runtime.
– Time (%): Percentage of elapsed time with respect to the total elapsed time.

186 Performance Analysis (Linux) Chapter 8

57368 Rev. 4.2 January 2024AMD uProf User Guide

• P2P API summary consists of the following columns:

– Function: MPI API name.
– Min Time (seconds): Minimum time of the total time spent in this API in all the ranks.
– Max Time (seconds): Maximum time of the total time spent in this API in all the ranks.
– Average Time (seconds): Average time spent on the API.
– MPI Time (%): Percentage of the time spent on this API with respect to the total time spent

on all the MPI APIs.
– Volume (Bytes): Total volume sent or received by this MPI API.
– Calls: Number of times this MPI API is called.
– Total Time (seconds): Total time spent in the API in all the ranks.

• Communication matrix consists of the following columns:

– Rank: Sender rank ID and receiver rank ID.
– MPI Time (seconds): Total time spent on the APIs sending data from the sender rank to the

receiver rank.
– MPI Time (%): Percentage of MPI time with respect to the total MPI Time spent on all the APIs.
– Volume (Bytes): Total volume of data sent from the sender rank to the receiver rank.
– Volume (%): Percentage of volume with respect to the total volume transferred between all the

ranks.
– Transfers: Number of transfers from the sender rank to the receiver rank.

• Collective API summary consists of the following columns:

– Function: API name.
– Min Time (seconds): Minimum time spent on this API.
– Max Time (seconds): Maximum time spent on this API.
– Average time (seconds): Average time spent on this API.
– MPI Time (%): Percentage of time spent on this API with respect to the total time spent on all

the MPI calls.
– Input Volume (Bytes): Total data in bytes received by all the ranks involved in this API call.
– Output Volume (Bytes): Total data sent by all the ranks involved in this API call.
– Calls: Number of times this API is called.
– Total Time (seconds): Total time spent in the API in all the ranks.

The list of supported MPI APIs is as follows:
Table 55. MPI APIs
MPI_Pcontrol MPI_Mrecv MPI_Reduce MPI_Iallreduce
MPI_Cancel MPI_Imrecv MPI_Allreduce MPI_Ialltoall
MPI_Probe MPI_Send MPI_Alltoall MPI_Ialltoallv
MPI_Iprobe MPI_Bsend MPI_Alltoallv MPI_Ialltoallw
MPI_Mprobe MPI_Ssend MPI_Alltoallw MPI_Ineighbor_Alltoall

Chapter 8 Performance Analysis (Linux) 187

AMD uProf User Guide57368 Rev. 4.2 January 2024

Collect Profile Data

Example of a command to FULL trace an MPI application using AMD uProf CLI:

After completing the tracing, the path to the session directory is displayed on the terminal.

MPI implementation MPICH or Open MPI should be passed in the command; MPICH is the default.

Following are the sample commands:

MPI_Improbe MPI_Rsend MPI_Neighbor_Alltoal
l

MPI_Ineighbor_Alltoallw

MPI_Start MPI_Bsend_init MPI_Neighbor_Alltoal
lw

MPI_Ineighbor_Alltoallv

MPI_Startall MPI_Ssend_init MPI_Neighbor_Alltoal
lv

MPI_Ibarrier

MPI_Test MPI_Rsend_init MPI_Bcast MPI_Ibcast
MPI_Testall MPI_Send_init MPI_Scan MPI_Comm_create
MPI_Testany MPI_Ibsend MPI_Reduce_Scatter MPI_Comm_dup
MPI_Testsome MPI_Issend MPI_Ireduce_Scatter MPI_Comm_dup_with_info
MPI_Wait MPI_Irsend MPI_Iscan MPI_Comm_split
MPI_Waitall MPI_Isend MPI_Iscatter MPI_Comm_split_type
MPI_Waitany MPI_Scatter MPI_Iscatterv MPI_Intercomm_create
MPI_Waitsome MPI_Scatterv MPI_Igather MPI_Intercomm_merge
MPI_Barrier MPI_Gather MPI_Igatherv MPI_Cart_create
MPI_Recv MPI_Gatherv MPI_Iallgather MPI_Cart_sub
MPI_Irecv MPI_Allgather MPI_Iallgatherv MPI_Graph_create
MPI_Sendrecv MPI_Allgatherv MPI_INeighbor_Allgat

her
MPI_Dist_graph_create

MPI_Sendrecv_repl
ace

MPI_Neighbor_Allgat
her

MPI_Ineighbor_Allgat
herv

MPI_Dist_graph_create_adjacent

MPI_Recv_Init MPI_Neighbor_Allgat
herv

MPI_Ireduce

$ mpirun -np <number of processes> ./AMDuProfCLI collect --trace mpi=full -o <output_directory>
<application>

$ mpirun -np <number of processes> ./AMDuProfCLI collect --trace mpi=full,openmpi -o
<output_directory> <application>

$ mpirun -np <number of processes> ./AMDuProfCLI collect --trace mpi=full,mpich -o
<output_directory><application>

Table 55. MPI APIs

188 Performance Analysis (Linux) Chapter 8

57368 Rev. 4.2 January 2024AMD uProf User Guide

Ensure that the correct option (mpich or openmpi) is passed depending on the MPI implementation
used for compiling the MPI application. Passing an incorrect option might cause undefined behavior.

Generate Profile Report

Example of a command to generate the report in .csv format. Pass the session directory path with -i
option:

After completing the report generation, the report.csv file path is displayed on the terminal.

Tables in the Report file

The following screenshots show example sections of a full tracing report file:

Figure 63. MPI Communicator Summary Table

Figure 64. MPI Rank Summary Table

$./AMDuProfCLI report -i <output_directory>/<SESSION_DIR>

Chapter 8 Performance Analysis (Linux) 189

AMD uProf User Guide57368 Rev. 4.2 January 2024

Figure 65. MPI API Summary Table

Figure 66. MPI Communication Matrix

Figure 67. MPI Collective API Summary Table

190 Performance Analysis (Linux) Chapter 8

57368 Rev. 4.2 January 2024AMD uProf User Guide

8.11.3 MPI FULL Tracing Using GUI

Collecting and Importing a Trace

Use CLI to trace a target MPI application and generate the report using CLI. For the steps, refer
section “MPI Full Tracing Using CLI” on page 185. Import the report to GUI as shown in the
following figure to analyze the trace data:

Figure 68. Import Profile Session

Analyzing MPI Communication Matrix

After the import is complete, use MPI Communication Matrix view to analyze the MPI trace data in
the GUI. Navigate to HPC > MPI Communication Matrix to view the MPI communication matrix
visualizer. This view displays rank-to-rank communication summary in matrix format. The x and y-
axis in the matrix are receiver and sender ranks respectively.

Following figure shows the MPI communication matrix:

Figure 69. MPI Communication Matrix

In the above figure:

1. Ranks ordered in row-wise and column-wise.

2. Each cell displays the total data volume transferred from one rank to another rank.

Chapter 8 Performance Analysis (Linux) 191

AMD uProf User Guide57368 Rev. 4.2 January 2024

3. Tool-tip shows additional details when the mouse is hovered over a cell.

4. Color-coding legend based on data volume.

5. Sum of all the data transfers for the rank.

6. Mean of all the data transfers for the rank.

Analyzing MPI Rank Timeline

Navigate to HPC > MPI Rank Timeline to view to MPI Ranks timeline. This view shows the MPI
activities in the timeline graph as follows:

Figure 70. MPI Rank Timeline

In the above screenshot:

1. Rank ID

2. To displayGraph of one of the following depending on the selected data source:

– MPI API Activity (running or waiting)
– MPI data transfer activity (receiving or sending)
– MPI APIs called

3. Tool-tip shows more information about the MPI activity.

4. Displays the time range.

5. To select the data source MPI Activity. For more information, refer tothe section “MPI Data
Source”.

6. To load more rank details.

7. To filter the ranks from the view.

192 Performance Analysis (Linux) Chapter 8

57368 Rev. 4.2 January 2024AMD uProf User Guide

8. Trace Overlay Cutoff can be used to specify a duration in nanoseconds, which acts as a cutoff to
load the trace data, that is, any traced data source which takes less than the specified nanoseconds
will not be displayed.

9. Color coding legends for data source and trace overlay.

Analyzing MPI P2P API Summary

Navigate to HPC > MPI P2P API Summary. This view summarizes the P2P APIs called by the
application as follows:

Figure 71. MPI P2P API Summary

Analyzing MPI Collective API Summary

Navigate to HPC > MPI Collective API Summary. This view summarizes the collective APIs called
by the application as follows:

Figure 72. MPI Collective API Summary

MPI Data Source

Supported list of MPI data source is as follows:

• An MPI Activity that classifies MPI APIs into either "waiting" APIs (MPI_Barrier, MPI_Wait,
MPI_Waitall, MPI_Waitany, or MPI_Waitsome) or "active" APIs (all the other MPI functions).

Chapter 8 Performance Analysis (Linux) 193

AMD uProf User Guide57368 Rev. 4.2 January 2024

• MPI APIs can be classified as follows:

P2P Send P2P Receive Collective Communication

MPI_BSEND
MPI_BSEND_INIT
MPI_IBSEND
MPI_IRSEND
MPI_ISEND
MPI_ISSEND
MPI_RSEND
MPI_RSEND_INIT
MPI_SEND
MPI_SEND_INIT
MPI_SENDRECV
MPI_SENDRECV_REPLACE
MPI_SSEND
MPI_SSEND_INIT

MPI_IMRECV
MPI_IRECV
MPI_MRECV
MPI_RECV
MPI_RECV_INIT

MPI_ALLGATHER
MPI_ALLGATHERV
MPI_ALLREDUCE
MPI_ALLTOALL
MPI_ALLTOALLV
MPI_ALLTOALLW
MPI_BARRIER
MPI_BCAST
MPI_GATHER
MPI_GATHERV
MPI_IALLGATHER
MPI_IALLGATHERV
MPI_IALLREDUCE
MPI_IALLTOALL
MPI_IALLTOALLV
MPI_IALLTOALLW
MPI_IBARRIER
MPI_IBCAST
MPI_IGATHER
MPI_IGATHERV
MPI_IREDUCE
MPI_IREDUCE_SCATTER
MPI_ISCAN
MPI_ISCATTER
MPI_ISCATTERV
MPI_REDUCE
MPI_REDUCE_SCATTER
MPI_SCAN
MPI_SCATTER
MPI_SCATTERV

194 Performance Analysis (Linux) Chapter 8

57368 Rev. 4.2 January 2024AMD uProf User Guide

• MPI Data Transfer which classifies MPI P2P Send/Receive and plots the volume of data
transfered at the given time interval.

Control API Request API Communication API

MPI_PCONTROL MPI_CANCEL
MPI_START
MPI_STARTALL
MPI_TEST
MPI_TESTALL
MPI_TESTANY
MPI_TESTSOME
MPI_WAIT
MPI_WAITALL
MPI_WAITANY
MPI_WAITSOME
MPI_IMPROBE
MPI_IPROBE
MPI_MPROBE
MPI_PROBE

MPI_COMM_CREATE
MPI_COMM_DUP
MPI_COMM_DUP_WITH_INFO
MPI_COMM_SPLIT
MPI_COMM_SPLIT_TYPE
MPI_COMM_SET_NAME
MPI_INTERCOMM_CREATE
MPI_INTERCOMM_MERGE
MPI_CART_CREATE
MPI_CART_SUB
MPI_GRAPH_CREATE
MPI_DIST_GRAPH_CREATE
MPI_DIST_GRAPH_CREATE_ADJACENT

Topology API Environment API

MPI_NEIGHBOR_ALLGATHER
MPI_NEIGHBOR_ALLGATHERV
MPI_NEIGHBOR_ALLTOALL
MPI_NEIGHBOR_ALLTOALLV
MPI_NEIGHBOR_ALLTOALLW
MPI_INEIGHBOR_ALLGATHER
MPI_INEIGHBOR_ALLTOALL
MPI_INEIGHBOR_ALLGATHERV
MPI_INEIGHBOR_ALLTOALLV
MPI_INEIGHBOR_ALLTOALLW

MPI_ABORT
MPI_FINALIZE
MPI_INIT
MPI_INIT_THREAD

Chapter 9 Power Profile 195

AMD uProf User Guide57368 Rev. 4.2 January 2024

Chapter 9 Power Profile

9.1 Overview

System-wide Power Profile

The AMD uProf profiler offers live power profiling to monitor the behavior of the systems based on
AMD CPUs and APUs. It provides various counters to monitor power and thermal characteristics.

These counters are collected from various resources such as RAPL and MSRs. They are collected at
regular time interval and either reported as a text file or plotted as line graphs. They can also be saved
into the database for future analysis.

Features

AMD uProf comprises of the following features:

• The GUI can be used to configure and monitor the supported power metrics.

• The TIMECHART page helps to monitor and analyze:

– Logical Core level metrics – Core Effective Frequency and P-State
– Physical Core level metrics – RAPL based Core Power
– Package level metrics – RAPL based Package Power and Temperature

• AMDuProfCLI timechart command collects the system metrics and writes into a text file or
comma-separated-value (CSV) file.

• API library allows you to configure and collect the supported system level performance, thermal
and power metrics of AMD CPU/APUs.

• The collected live profile data can be stored in the database for future analysis.

9.2 Metrics

The supported metrics depend on the processor family and model and are broadly grouped under
various categories. Following are the supported counter categories by processor families:
Table 56. Family 17h Model 00h – 0Fh (AMD RyzenTM, AMD Ryzen ThreadRipperTM, and

1st Gen AMD EPYCTM)
Power Counter Category Description

Power Average Power for the sampling period, reported in Watts. This is an
estimated consumption value based on the platform activity levels. It is
available for Core and Package.

Frequency CPU Core Effective Frequency for the sampling period, reported in MHz.

196 Power Profile Chapter 9

57368 Rev. 4.2 January 2024AMD uProf User Guide

Temperature Average temperature for the sampling period, reported in Celsius. The
temperature reported is with reference to Tctl. It is available for Package.

P-State CPU P-State at the time when sampling was performed.

Table 57. Family 17h Model 10h – 1Fh (AMD RyzenTM and AMD RyzenTM PRO APU)
Power Counter Category Description

Power Average Power for the sampling period, reported in Watts. This is an
estimated consumption value based on platform activity levels. Available
for Core and Package.

Frequency CPU Core Effective Frequency for the sampling period, reported in MHz
Temperature Average temperature for the sampling period, reported in Celsius.

Temperature reported is with reference to Tctl. Available for Package.
P-State CPU P-State at the time when sampling was performed.

Table 58. Family 17h Model 70h – 7Fh (3rd Gen AMD RyzenTM)
Power Counter Category Description

Power Average Power for the sampling period, reported in Watts. This is an
estimated consumption value based on platform activity levels. Available
for Core and Package.

Frequency CPU Core Effective Frequency for the sampling period, reported in MHz
P-State CPU P-State at the time when sampling was performed.
Temperature Average temperature for the sampling period, reported in Celsius.

Temperature reported is with reference to Tctl. Available for Package.

Table 59. Family 17h Model 30h – 3Fh (EPYC 7002)
Power Counter Category Description

Power Average Power for the sampling period, reported in Watts. This is an
estimated consumption value based on platform activity levels. Available
for Core and Package.

Frequency CPU Core Effective Frequency for the sampling period, reported in MHz
P-State CPU P-State at the time when sampling was performed.

Table 56. Family 17h Model 00h – 0Fh (AMD RyzenTM, AMD Ryzen ThreadRipperTM, and
1st Gen AMD EPYCTM)

Power Counter Category Description

Chapter 9 Power Profile 197

AMD uProf User Guide57368 Rev. 4.2 January 2024

9.3 Using Profile through GUI

System-wide Power Profile (Live)

This profile type is used to perform the power analysis where the metrics are plotted in a live timeline
graph and/or saved in a database. Complete the following steps to configure and start the profile:

9.3.1 Configuring a Profile

Complete the following steps to configure a profile:

1. Click the PROFILE tab at the top navigation bar or one of the following on the Welcome page:

– Profile entire System
– See What’s guzzling power in your system
The Select Profile Target page is displayed.

2. Click the Next button.

The Select Profile Type page is displayed.

Temperature Average temperature for the sampling period, reported in Celsius.
Temperature reported is with reference to Tctl. Available for Package.

Table 60. Family 19h Model 0h – 2Fh (EPYC 7003 and EPYC 9000)
Power Counter Category Description

Power Average Power for the sampling period, reported in Watts. This is an
estimated consumption value based on platform activity levels. Available
for Core and Package.

Frequency CPU Core Effective Frequency for the sampling period, reported in MHz
P-State CPU P-State at the time when sampling was performed.
Temperature Average temperature for the sampling period, reported in Celsius.

Temperature reported is with reference to Tctl. Available for Package.

Table 59. Family 17h Model 30h – 3Fh (EPYC 7002)
Power Counter Category Description

198 Power Profile Chapter 9

57368 Rev. 4.2 January 2024AMD uProf User Guide

3. From the Select Profile Configuration screen, select the Live Power Profile tab.

All the live profiling options and available counters are displayed in the respective panes as
follows:

Figure 73. Live System-wide Power Profile

4. In the Counters pane, select the required counter category and the respective options.

Note: You can configure multiple counter categories.

During the profiling, you can render the graphs live.

5. Click the Start Profile button.

In this profile type, the profile data will be generated as line graphs in the TIMECHART page for
further analysis.

The CLI Command will be displayed for all the options selected from the GUI for Live Power
Profiling.

9.3.2 Analyzing a Profile

Once the required counters are selected and the profile data collection begins, the TIMECHART tab
will open and the metrics will be plotted in the live timeline graphs.

Chapter 9 Power Profile 199

AMD uProf User Guide57368 Rev. 4.2 January 2024

Figure 74. Timechart Page

1. In the TIMECHART page, the metrics will be plotted in the live timeline graphs. The line graphs
are grouped together and plotted based on the category.

2. There is a data table adjacent to each graph to display the current value of the counters.

3. From the Graph Visibility pane, you can choose the graph to display.

4. When plotting is in progress, you can:

– Click the Pause Graphs button to pause the graphs without pausing the data collection. You
can click the Play Graphs button to resume them later.

– Click the Stop Profiling button to stop the profiling without closing the view. This will stop
collecting the profile data.

– Click the Close View button to stop the profiling and close the view.

9.4 Using CLI to Profile

You can use AMDuProfCLI timechart command to collect the system metrics and write them into a
text file or comma-separated-value (CSV) file. To collect power profile counter values, complete the
following steps:

1. Run the command with --list option to get the list of supported counter categories.

2. Use the command to specify the required counters with -e or --event option to collect and report
the required counters.

200 Power Profile Chapter 9

57368 Rev. 4.2 January 2024AMD uProf User Guide

The timechart run to list the supported counter categories is as follows:

Figure 75. --list Command Output

The timechart run to collect the profile samples and write into a file is as follows:

Figure 76. Timechart Run

The above run will collect the power and frequency counters on all the devices on which these
counters are supported and writes them in the output file specified with -o option. Before the profiling
begins, the given application will be launched and the data will be collected till the application
terminates.

9.4.1 Examples

Windows

• Collect all the power counter values for a duration of 10 seconds with a sampling interval of 100
milliseconds:
C:\> AMDuProfCLI.exe timechart --event power --interval 100 --duration 10

Chapter 9 Power Profile 201

AMD uProf User Guide57368 Rev. 4.2 January 2024

• Collect all frequency counter values for 10 seconds, sampling them every 500 milliseconds and
adding the results to a csv file:

• Collect all the frequency counter values at core 0 to 3 for 10 seconds, sampling them every 500
milliseconds and adding the results to a text file:

Linux

• Collect all the power counter values for a duration of 10 seconds with a sampling interval of 100
milliseconds:

• Collect all the frequency counter values for 10 seconds, sampling them every 500 milliseconds
and adding the results to a csv file:

• Collect all the frequency counter values at core 0 to 3 for 10 seconds, sampling them every 500
milliseconds and adding the results to a text file:

9.5 AMDPowerProfileAPI Library

API library allow you to configure and collect the supported power profiling counters on various
AMD platforms directly without using AMD uProf GUI or CLI. The AMDPowerProfileAPI library is
used to analyze the power efficiency of systems based on AMD CPUs and APUs.

These APIs provide interface to read the power, thermal, and frequency characteristics of AMD CPUs
and APUs and their subcomponents. These APIs are targeted for software developers who want to
write their own application to sample the power counters based on their specific use case(s).

For a detailed information on these APIs, refer AMDPowerProfilerAPI.pdf in the AMD uProf
installation folder.

9.5.1 Using the APIs

Refer the sample program CollectAllCounters.cpp on how to use these APIs. The program must be
linked with the AMDPowerProfileAPI library while compiling. The power profiling driver must be
installed and running.

A sample program CollectAllCounters.cpp that uses these APIs is available atthe directory
<AMDuProf-install-dir>/Examples/CollectAllCounters/. To build and execute the sample
application, complete the following steps based on the OS that you are using:

C:\> AMDuProfCLI.exe timechart --event frequency -o C:\Temp\Poweroutput --interval 500 --
duration 10

C:\> AMDuProfCLI.exe timechart --event core=0-3,frequency -o C:\Temp\Poweroutput
--interval 500 --duration 10 --format txt

$./AMDuProfCLI timechart --event power --interval 100 --duration 10

$./AMDuProfCLI timechart --event frequency -o /tmp/PowerOutput
--interval 500 --duration 10

$./AMDuProfCLI timechart --event core=0-3,frequency
-o /tmp/PowerOutput --interval 500 --duration 10 --format txt

202 Power Profile Chapter 9

57368 Rev. 4.2 January 2024AMD uProf User Guide

Windows

A Visual Studio 2015 solution file CollectAllCounters.sln is available atthe directory C:/Program
Files/AMD/AMDuProf/Examples/CollectAllCounters/ to build the sample program.

Linux

1. Execute the following commands to build:

2. Run the following commands to execute:

9.6 Limitations

• Only one power profile session can run at a time.

• Minimum supported sampling period in CLI is 100ms. It is recommended to use a large sampling
period to reduce the sampling and rendering overhead.

$ cd <AMDuProf-install-dir>/Examples/CollectAllCounters
$ g++ -O -std=c++11 CollectAllCounters.cpp -I<AMDuProf-install-dir>/include -l
AMDPowerProfileAPI -L<AMDuProf-install-dir>/lib -Wl,-rpath <AMDuProf-install-dir>/bin -o
CollectAllCounters

$ export LD_LIBRARY_PATH=<AMDuProf-install-dir>/lib
$./CollectAllCounters

Chapter 10 Remote Profiling 203

AMD uProf User Guide57368 Rev. 4.2 January 2024

Chapter 10 Remote Profiling

10.1 Overview

AMD uProf has the ability to connect to remote systems and trigger collection, translation of data on
the remote system and then visualize it in local GUI.

Note: CLI does not support remote profiling.

AMD uProf uses a separate AMDProfilerService binary that can be launched as an application server
on the remote target and local GUI can connect to such a server. By default, authorization must be set
up on the server to connect to the local GUI. Complete the following steps:

1. Locate the local GUI client ID.

2. Authorize the client ID on the remote target to connect to AMDProfilerService.

3. Launch AMDProfilerService with appropriate options/permissions on remote target.

4. Specify the connection details in the local GUI to connect to the remote target.

5. Local GUI updates itself and displays the remote data (including settings, session history,
available events for profiling/tracing, and so on).

6. Proceed to import session/profile on the remote target.

7. When you are done with remote target, disconnect to update the local data in GUI.

Support

Remote profiling from Windows (host/local platform) to Linux (target/remote platform) is supported.

10.2 Setting up Authorization

Complete the following steps to set up the authorization:

1. Navigating to PROFILE > Remote Profile and locate Client ID:

Figure 77. Client ID

204 Remote Profiling Chapter 10

57368 Rev. 4.2 January 2024AMD uProf User Guide

2. Copy the Client ID (alphanumeric value).

3. On remote target, navigate to the AMD uProf bin directory and execute the following command:

This will authorize the client to connect to this remote target.

To revoke the authorization, execute the following command:

10.3 Launching AMDProfilerService

Specify the binding IP address to launch AMDProfilerService as an application server:

This IP address should be one of the IP addresses of the target/remote machine on which
AMDProfilerService is launched.

If target/remote machine has multiple IP addresses, the ping command can be used on the host/local
machine to determine which IP address (of the remote machine) is reachable from the local machine.
The reachable IP address can be passed to --ip option.

(Optional) You can specify the following options:

Following is the sample screen of remote profiling connection establishment:

Figure 78. Remote Profiling Connection Establishment

AMDProfilerService --add <client_id>

AMDProfilerService --clear-user <client_id>

AMDProfilerService --ip 127.0.0.1

Table 61. AMDProfilerService Options
Option Description

--port <port_number> Specify the port number
--logpath <path> Specify the log file path
--bypass-auth Skip the authorization

Note: This option must be used with caution as it will skip the authorization.

--fsearch-depth <depth> Specify the maximum depth for recursive file search operations
Note: This option is applicable only for importing a session from the GUI.

--fsearch-timeout
<timeout>

Specify the maximum duration (in seconds) for recursive file
search operations
Note: This option is applicable only for importing a session from the GUI.

Chapter 10 Remote Profiling 205

AMD uProf User Guide57368 Rev. 4.2 January 2024

Following is the sample screen of IP selection:

Figure 79. Selecting IP

10.4 Connecting to Remote Target

Complete the following steps to connect the remote target:

1. Once AMDProfilerService is launched on the remote target, go to the Remote Profile page and
specify the IP address, port number, and optional name for the remote target as follows:

Figure 80. Connect to Remote Machine

2. Click the Connect button.

206 Remote Profiling Chapter 10

57368 Rev. 4.2 January 2024AMD uProf User Guide

The remote target data is displayed after a few seconds. All the profiling steps or importing session
steps remain identical as local henceforth. Once connected, the provided IP, port, and name are saved
as follows:

Figure 81. Remote Target Data

You can double-click on any table entry containing IP address to load the corresponding details and
connect to the required remote target.

Once connected, the title bar will reflect the connection to the remote target, Disconnect button in the
Remote Profile page will be enabled (instead of the Connect button) as follows:

Figure 82. Disconnect Button

10.5 Limitations

• Once connected to a remote target, all the Browse buttons in the GUI will remain disabled. You
can copy/paste or type the URI paths wherever required.

• If you have not closed the GUI after profiling locally and try to connect to Remote Target, the
GUI may crash sometimes. Hence, it is recommended to close the GUI after local profiling if
remote connection is desired.

Chapter 10 Remote Profiling 207

AMD uProf User Guide57368 Rev. 4.2 January 2024

• If local data is not required and you try to connect to the same remote target frequently, use the
following command to directly connect to the remote target (if it is running):

For example, AMDuProf 127.0.0.1 32768

• A client (GUI instance) can connect to a AMDProfilerService instance. However, if multiple
instances of the GUI are launched by a user, only one will succeed. Different users can connect to
the same AMDProfilerService as they will have different client IDs.

• Multiple instances of AMDProfilerService can be launched. However, all of them must be on
different ports even if they are bound to the same IP address.

• Remote profiling connection establishment might fail if the target system firewall is enabled. In
such cases, disable the firewall or add an exception for AMDProfilerService in the firewall rules
of the target system and try reconnecting. Another reason for failure could be unavailability of
port number. This can happen due to network configuration, firewall settings, or another program
blocking usable ports.

• Profiling of MPI applications is not supported with remote profiling.

AMDuProf <ip_address> <port>

208 AMD uProf Virtualization Support Chapter 11

57368 Rev. 4.2 January 2024AMD uProf User Guide

Chapter 11 AMD uProf Virtualization Support

11.1 OverView

AMD uProf supports profiling in the virtualized environments. Availability of the profiling features
depends on the counters virtualized by the hypervisor manager. Currently, AMD uProf supports the
following hypervisors (with Linux and Windows OS as guest on these virtualized environments):

• VMWare ESXi

• Microsoft Hyper-V

• Linux KVM

• Citrix Xen

Feature support matrix on various hypervisors:
Table 62. AMD uProf Virtualization Support

Features

Microsoft Hyper-V KVM VMware ESXi Citrix Xen

Host
Root

Partition
(system
mode)

Host
Root

Partition

Guest
VMs Host

Guest
VMs

Host
Guest
VMs

Host Guest
VMs

CPU Profiling
Time Based
Profiling (TBP)

Yes Yes Yes Yes Yes Yes Yes Yes Yes

Micro-
architecture
Analysis (EBP)

Yes Yes Yes Yes Yes Yes Yes No No

Instruction Based
Sampling (IBS)

Yes No No No No No No No No

Cache Analysis Yes No No No No No No No No
HPC – MPI Code
Profiling

Yes Yes Yes Yes Yes Yes Yes Yes Yes

HPC – OpenMP
Tracing

Yes Yes Yes Yes Yes Yes Yes Yes Yes

HPC – MPI
Tracing

Yes Yes Yes Yes Yes Yes Yes Yes Yes

OS Tracing Yes Yes Yes Yes Yes Yes Yes Yes Yes

Chapter 11 AMD uProf Virtualization Support 209

AMD uProf User Guide57368 Rev. 4.2 January 2024

Note: The virtualized hardware counters need to be enabled while configuring the guest VMs on the
respective hypervisors.

11.2 CPU Profiling

CPU Profiling supports:

• Profiling of guest VM from guest VM.

• Profiling of guest VM from host system (KVM hypervisor).

11.2.1 Profiling of Guest VM from Guest VM

Time based profiling can be performed on all the supported Host and Guest VMs, whereas the
hardware counter profiling is completely dependent on the vPMUs exposed by the hypervisor.

Power Profiling
Live Power
Profile

No No No No No No No No No

Power
Application
Analysis

No No No No No No No No No

User Interface
Graphical
Interface

Yes Yes Yes Yes Yes Yes Yes Yes Yes

Command Line Yes Yes Yes Yes Yes Yes Yes Yes Yes
API
Profile Control
API

Yes Yes Yes Yes Yes Yes Yes Yes Yes

Power Profiler
API

No No No No No No No No No

System Analysis
AMDuProfPCM Yes Yes Yes Yes Yes Yes Yes No No
AMDuProfSys Yes Yes Yes Yes Yes Yes Yes No No

Table 62. AMD uProf Virtualization Support

Features

Microsoft Hyper-V KVM VMware ESXi Citrix Xen

Host
Root

Partition
(system
mode)

Host
Root

Partition

Guest
VMs Host

Guest
VMs

Host
Guest
VMs

Host Guest
VMs

210 AMD uProf Virtualization Support Chapter 11

57368 Rev. 4.2 January 2024AMD uProf User Guide

11.2.2 Profiling of Guest VM from Host System (KVM Hypervisor)

This feature supports profiling of KVM guest OS kernel and kernel modules (*.ko) from the host. The
following features are supported:

• Collection of PMU samples on guest OS

• Profiling of guest OS and/or host OS

• System wide profiling to profile KVM-guest and other running processes

The following features are not supported:

• Call stack

• Attach to process

• Launch application

11.2.3 Preparing Host system to Profile Guest Kernel Modules

Before beginning the profiling on the guest OS, the following files must be copied on the host
machine to facilitate symbol resolution for the guest VMs:

1. Copy /proc/kallsyms and /proc/modules from the guest OS to the host machine.

2. Copy guest vmlinux and kernel sources in a folder on a host system.

These files should belong to the guest VM whose PID is provided as an argument to --guest-kvm
option.

11.2.4 AMD uProf CLI with Profiling Options

AMD uProf CLI contains the following options to support the guest OS profiling from the host OS:

The following table lists vaious Collect command options:

$./AMDuProfCLI collect [--kvm-guest <pid>] [--guest-kallsyms <path>] [--guest-modules <path>]
[--guest-search-path <path>]

Table 63. AMD uProf CLI Collect Command Options
Arguments Options Description

--kvm-guest PID of qemu-kvm process to be
profiled

Collect guest-side performance profile. This
option collects KVM guest symbols
information.

--guest-kallsyms Path of guest /proc/kallsyms
copied on local host

Guest OS /proc/kallsyms file copy. AMD uProf
reads it to get guest kernel symbols. You can
copy it from the guest OS.

Chapter 11 AMD uProf Virtualization Support 211

AMD uProf User Guide57368 Rev. 4.2 January 2024

11.2.5 Examples

• Get the kvm guest OS PID:

• Collecting pmcx76 event data for 10 secs (for guest kallsyms and guest kernel modules)

Generate report from the collected data:

• Collecting pmcx76 event data for 10 secs (for guest kallsyms):

Generate report from the collected data:

• Collecting system-wide samples for pmcx76 event data for 10 secs (for guest kallsyms and guest
kernel modules):

Generate report from the collected data:

• Collecting system-wide samples for pmcx76 event data for 10 secs (for guest kallsyms):

Generate report from the collected data

--guest-modules Path of guest /proc/modules
copied on local host

Guest OS /proc/modules file copy. AMD uProf
reads it to get the guest kernel module
information. You can copy it from the guest
OS.

--guest-search-path Path of guest vmlinux and kernel
sources copied on local host

Guest OS vmlinux and search directory. AMD
uProf reads it to resolve the guest kernel
module information. You can copy it from the
guest OS.

$ ps aux | grep kvm

$./AMDuProfCLI collect -e event=pmcx76,interval=250000 -o /tmp/cpuprof-76-guest-only -d 10 -
-kvm-guest 2444 --guest-kallsyms /home/amd/guest/guest-kallsyms --guest-modules /home/amd/
guest/guest-module

$./AMDuProfCLI report -i /tmp/cpuprof-76-guest-only/AMDuProf-SWP-EBP_Nov-08-2021_15-00-33

$./AMDuProfCLI collect -e event=pmcx76,interval=250000 -o /tmp/cpuprof-76-guest-only -d 10 -
-kvm-guest 2444 --guest-kallsyms /home/amd/guest/guest-kallsyms

$./AMDuProfCLI report -i /tmp/cpuprof-76-guest-only/AMDuProf-SWP-EBP_Nov-08-2021_15-00-33

$./AMDuProfCLI collect -e event=pmcx76,interval=250000 -o /tmp/cpuprof-76-guest-only -d 10 -
-kvm-guest 2444 --guest-kallsyms /home/amd/guest/guest-kallsyms --guest-modules /home/amd/
guest/guest-module -a

$./AMDuProfCLI report -i /tmp/cpuprof-76-guest-only/AMDuProf-SWP-EBP_Nov-08-2021_15-00-33

$./AMDuProfCLI collect -e event=pmcx76,interval=250000 -o /tmp/cpuprof-76-guest-only -d 10 -
-kvm-guest 2444 --guest-kallsyms /home/amd/guest/guest-kallsyms -a

$./AMDuProfCLI report -i /tmp/cpuprof-76-guest-only/AMDuProf-SWP-EBP_Nov-08-2021_15-00-33

Table 63. AMD uProf CLI Collect Command Options
Arguments Options Description

212 AMD uProf Virtualization Support Chapter 11

57368 Rev. 4.2 January 2024AMD uProf User Guide

11.3 AMDuProfPcm

AMDuProfPcm is based on the following hardware and OS primitives provided by host or guest
operating system. Run the command ./AMDuProfCLI info --system to obtain this information and look
for the following sections:

In Linux environment, check if the msr module is available and can be loaded using following
command:

11.4 AMDuProfSys

AMDuProfSys is based on the following hardware and OS primitives provided by host or guest
operating system. Run the command ./AMDuProfCLI info --system to obtain this information and look
for the following sections:

In Linux environment, check if Linux kernel perf module and user space tools are available.

[PERF Features Availability]
 C ore PMC : Yes (Requires to collect dc, fp, ipc, l1, l2 metrics)
 L3 PMC : Yes (Requires to collect l3 metrics option)
 DF PMC : Yes (Requires to collect memory, xgmi, pcie metrics)
 PERF TS : No

[RAPL/CEF Features Availability]
 RAPL : Yes
 APERF & MPERF : Yes (Requires to collect cpu “Utilization” and Effective
Frequency)
 Read Only APERF & MPERF: Yes (Requires to collect cpu “Utilization” and Effective
Frequency)
 IRPERF : Yes
 HW P-State Control : Yes

$ modprobe msr

[PERF Features Availability]
 Core PMC : Yes (Requires to collect core metrics)
 L3 PMC : Yes (Requires to collect l3 metrics)
 DF PMC : Yes (Requires to collect df metrics)
 PERF TS : No

[RAPL/CEF Features Availability]
 RAPL : Yes
 APERF & MPERF : Yes (Requires to collect cpu “Utilization” and Effective
Frequency)
 Read Only APERF & MPERF: Yes (Requires to collect cpu “Utilization” and Effective
Frequency)
 IRPERF : Yes
 HW P-State Control : Yes

Chapter 12 Profile Control APIs 213

AMD uProf User Guide57368 Rev. 4.2 January 2024

Chapter 12 Profile Control APIs

12.1 AMDProfileControl APIs

The AMDProfileControl APIs allow you to limit the profiling scope to a specific portion of the code
within the target application.

AMDProfileControl APIs work only with AMDuProfCLI and GUI for application analysis. They do
not work with:

• Power Profiler

• System analysis tools (uProfPcm and uProfSys)

Usually, while profiling an application, samples for the entire control flow of the application
execution will be collected, that is, from the start of execution till end of the application execution.
The control APIs can be used to enable the profiler to collect data only for a specific part of
application, for example, a CPU intensive loop and a hot function.

The target application needs to be recompiled after instrumenting the application to enable/disable
profiling of the required code regions only.

Header Files

The application should include the header file AMDProfileController.h which declares the required
APIs. This file is available in the include directory under AMD uProf’s install path.

Static Library

The instrumented application should link with the AMDProfileController static library available in:

Windows

Linux

12.1.1 CPU Profile Control APIs

These profile control APIs are available to pause and resume the CPU profile data collection in a C or
C++ application.

<AMDuProf-install-dir>\lib\x86\AMDProfileController.lib
<AMDuProf-install-dir>\lib\x64\AMDProfileController.lib

<AMDuProf-install-dir>/lib/x64/libAMDProfileController.a

214 Profile Control APIs Chapter 12

57368 Rev. 4.2 January 2024AMD uProf User Guide

amdProfileResume

When the instrumented target application is launched through AMDuProf/AMDuProfCLI, the
profiling will be in the paused state and no profile data will be collected till the application calls this
resume API.

amdProfilePause

When the instrumented target application has to pause the profile data collection, this API must be
called:

These APIs can be called multiple times within the application. Nested Resume - Pause calls are not
supported. AMD uProf profiles the code within each Resume-Pause APIs pair. After adding these
APIs, the target application should be compiled before initiating a profile session.

12.1.2 Using the APIs

Include the header file AMDProfileController.h and call the resume and pause APIs within the code.
The code encapsulated within resume-pause API pair will be profiled by the CPU Profiler.

These APIs can be:

• Called multiple times to profile different parts of the code.

• Spread across multiple functions, that is, resume called from one function and stop called from
another function.

• Spread across threads, that is, resume called from one thread and stop called from another thread
of the same target application.

In the following code snippet, the CPU Profiling data collection is restricted to the execution of
multiply_matrices() function:

bool amdProfileResume ();

bool amdProfilePause ();

#include <AMDProfileController.h>

int main (int argc, char* argv[])
{
 // Initialize the matrices
 initialize_matrices ();

 // Resume the collection
 amdProfileResume ();

 // Multiply the matrices
 multiply_matrices ();

 // Stop the data collection
 amdProfilePause ();

 return 0;
}

Chapter 12 Profile Control APIs 215

AMD uProf User Guide57368 Rev. 4.2 January 2024

12.1.3 Compiling Instrumented Target Application

Windows

To compile the application on Microsoft Visual Studio, update the configuration properties to include
the path of header file and link it with AMDProfileController.lib library.

Linux

To compile a C++ application on Linux using g++, use the following command:

Note: Do not use the -static option while compiling with g++.

To compile a C application on Linux using gcc, use the following command:

12.1.4 Profiling Instrumented Target Application

AMD uProf GUI

After compiling the target application, create a profile configuration in AMD uProf, set the desired
CPU profile session options. While setting the CPU profile session options, in the Profile Scheduling
section, select Are you using Profile Instrumentation API?.

Once all the settings are done, start the CPU profiling. The profiling will begin in the paused state and
the target application execution begins. When the resume API is called from target application, CPU
Profile starts profiling till pause API is called from the target application or the application is
terminated. When the pause API is called in the target application, the profiler stops profiling and
waits for the next control API call.

AMDuProfCLI

To profile from CLI, option --start-paused should be used to start the profiler in a paused state.

Windows

Linux

12.1.5 Limitations

The CPU profile control APIs are not supported for the MPI applications.

$ g++ -std=c++11 -g <sourcefile.cpp> -I <AMDuProf-install-dir>/include -L<AMDuProf-install-
dir>/lib/x64/ -lAMDProfileController -lrt -pthread

$ gcc -g <sourcefile.c> -I <AMDuProf-install-dir>/include -L<AMDuProf-install-dir>/lib/x64/ -
lAMDProfileController -lrt -pthread

C:\> AMDuProfCLI.exe collect --config tbp --start-paused -o C:\Temp\prof-tbp
ClassicCpuProfileCtrl.exe

$./AMDuProfCLI collect --config tbp --start-paused -o /tmp/cpuprof-tbp /tmp/AMDuProf/
Examples/ClassicCpuProfileCtrl/ClassicCpuProfileCtrl

216 Reference Chapter 13

57368 Rev. 4.2 January 2024AMD uProf User Guide

Chapter 13 Reference

13.1 Preparing an Application for Profiling

The AMD uProf uses the debug information generated by the compiler to show the correct function
names in various analysis views and to correlate the collected samples to source statements in Source
page. Otherwise, the results of the CPU Profiler would be less descriptive, displaying only the
assembly code.

13.1.1 Generating Debug Information on Windows

When using Microsoft Visual C++ to compile the application in release mode, set the following
options before compiling the application to ensure that the debug information is generated and saved
in a program database file (with a .pdb extension). To set the compiler option to generate the debug
information for a x64 application in release mode, complete the following steps:

1. Right-click the project and select Properties from the menu.

2. From the Configuration drop-down, select Active(Release).

3. From the Platform drop-down, select Active(Win32) or Active(x64).

4. In the project pane on the left, expand Configuration Properties.

5. Expand C/C++ and select General.

6. In the work pane, select Debug Information Format.

Chapter 13 Reference 217

AMD uProf User Guide57368 Rev. 4.2 January 2024

7. From the drop-down, select Program Database (/Zi) or Program Database for Edit &
Continue (/ZI).

Figure 83. AMDTClassicMatMul Property Page

8. In the project pane, expand Linker and then select Debugging.

9. From the Generate Debug Info drop-down, select /DEBUG.

13.1.2 Generating Debug Information on Linux

The application must be compiled with the -g option to enable the compiler to generate debug
information. Modify either the Makefile or the respective build scripts accordingly.

13.2 CPU Profiling

The AMD uProf CPU Performance Profiling follows a sampling-based approach to gather the profile
data periodically. It uses a variety of software and hardware resources available in AMD x86 based
processor families. CPU Profiling uses the OS timer, HW Performance Monitor Counters (PMC), and
HW IBS feature.

The following section explains the various key concepts related to CPU Profiling.

218 Reference Chapter 13

57368 Rev. 4.2 January 2024AMD uProf User Guide

13.2.1 Hardware Sources

Performance Monitor Counters (PMC)

AMD processors have Performance Monitor Counters (PMC) that helps monitor various micro-
architectural events in a CPU core. The PMC counters are used in two modes:

• Counting mode: These counters are used to count the specific events that occur in a CPU core.

• Sampling mode: These counters are programmed to count the specific number of events. Once the
count reaches the appropriate number of times (called sampling interval), an interrupt is triggered.
During the interrupt handling, the CPU Profiler collects the profile data.

The number of hardware performance event counters available in each processor is implementation-
dependent.For the exact number of hardware performance counters, refer the Processor Programming
Reference (PPR - https://developer.amd.com/resources/developer-guides-manuals/) of the specific
processor. The operating system and/or BIOS can reserve one or more counters for internal use. Thus,
the actual number of available hardware counters may be less than the number of hardware counters.
The CPU Profiler uses all available counters for profiling.

Instruction-Based Sampling (IBS)

IBS is a code profiling mechanism that enables the processor to select a random instruction fetch or
micro-Op after a programmed time interval has expired and record specific performance information
about the operation. An interrupt is generated when the operation is complete as specified by IBS
Control MSR. An interrupt handler can then read the performance information that was logged for the
operation.

The IBS mechanism is split into two parts:

• Instruction Fetch performance

• Instruction Execution Performance

The instruction fetch sampling provides information about instruction TLB and instruction cache
behavior for fetched instructions.

Instruction execution sampling provides information about micro-Op execution behavior.

The data collected for the instruction fetch performance is independent of the data collected for the
instruction execution performance.

Instruction execution performance is profiled by tagging one micro-Op associated with an instruction.
Instructions that decode to more than one micro-Op return different performance data depending
upon which micro-Op associated with the instruction is tagged. These micro-Ops are associated with
the RIP of the next instruction.

In this mode, the CPU Profiler uses the IBS HW supported by the AMD processor to observe the
effect of instructions on the processor and on the memory subsystem. In IBS, the hardware events are
linked with the instruction that caused them. Also, the hardware events are used by the CPU Profiler
to derive various metrics, such as data cache latency.

https://developer.amd.com/resources/developer-guides-manuals/
https://developer.amd.com/resources/developer-guides-manuals/

Chapter 13 Reference 219

AMD uProf User Guide57368 Rev. 4.2 January 2024

L3 Cache Performance Monitor Counters (L3PMC)

A Core Complex (CCX) is a group of CPU cores that share L3 cache resources. All the cores in a
CCX share a single L3 cache. L3PMCs are available for AMD “Zen”-based processors to monitor the
performance of L3 resources. For more information, refer the respective PPR for the processor.

Data Fabric Performance Monitor Counters (DFPMC)

For AMD “Zen”-based processors, DFPMCs are available to monitor the performance of Data Fabric
resources. For more information, refer the respective Processor Programming Reference (PPR) for
the processor.

13.2.2 Profiling Concepts

Sampling

Sampling profilers works based on the logic that the part of a program that consumes most of the time
(or that triggers the most occurrence of the sampling event) have a larger number of samples. This is
because they have a higher probability of being executed while samples are being taken by the CPU
Profiler.

Sampling Interval

The time between the collection of every two samples is the Sampling Interval. For example, in TBP,
if the time interval is 1 millisecond, then roughly 1,000 TBP samples are being collected every
second for each processor core.

The purpose of a sampling interval depends on the resource used as the sampling event:

• OS timer — the sampling interval is in milliseconds.

• PMC events — the sampling interval is the number of occurrences of that sampling event.

• IBS — the number of processed instructions after which it will be tagged.

Smaller sampling interval increases the number of samples collected and the data collection
overhead. Since, the profile data is collected on the same system in which the workload is running,
more frequent sampling increases the intrusiveness of profiling. A very small sampling interval also
can cause system instability.

Sampling-point: When a sampling-point occurs upon the expiry of the sampling-interval for a
sampling-event, various profile data, such as Instruction Pointer, Process Id, Thread Id, and Call-stack
will be collected by the interrupt handler.

Event-Counter Multiplexing

If the number of the monitored PMC events is less than or equal to the number of available
performance counters, then each event can be assigned to a counter and monitored 100% of the time.
In a single-profile measurement, if the number of monitored events is larger than the number of
available counters, the CPU Profiler time-shares the available HW PMC counters. This is called event
counter multiplexing. It helps monitor more events and decreases the actual number of samples for
each event and thus, reduces the data accuracy. The CPU Profiler auto-scales the sample counts to

220 Reference Chapter 13

57368 Rev. 4.2 January 2024AMD uProf User Guide

compensate for this event counter multiplexing. For example, if an event is monitored 50% of the
time, the CPU Profiler scales the number of event samples by factor of 2.

13.2.3 Profile Types

The profile types are classified based on the hardware or software sampling events used to collect the
profile data.

Time-Based Profile (TBP)

In this profile, the profile data is periodically collected based on the specified OS timer interval. It is
used to identify the hotspots of the profiled applications.

Event-Based Profile (EBP)

In this profile, the CPU Profiler uses the PMCs to monitor the various micro-architectural events
supported by the AMD x86-based processor. It helps to identify the CPU and memory related
performance issues in the profiled applications. The CPU Profiler provides several predefined EBP
profile configurations. To analyze an aspect of the profiled application (or system), a specific set of
relevant events are grouped and monitored together. The CPU Profiler provides a list of predefined
event configurations, such as Assess Performance and Investigate Branching. You can select any of
these predefined configurations to profile and analyze the runtime characteristics of your application.
You also can create their custom configurations of events to profile.

In this profile mode, a delay called skid occurs between the time at which the sampling interrupt
occurs and the time at which the sampled instruction address is collected. This skid distributes the
samples in the neighborhood near the actual instruction that triggered a sampling interrupt. This
produces an inaccurate distribution of samples and events are often attributed to the wrong
instructions.

Instruction-Based Sampling (IBS)

In this profile, the CPU Profiler uses the IBS HW supported by the AMD x86-based processor to
observe the effect of instructions on the processor and on the memory subsystem. In IBS, HW events
are linked with the instruction that caused them. Also, HW events used by the CPU Profiler to derive
various metrics, such as data cache latency.

Custom Profile

This profile allows a combination of HW PMC events, OS timer, and IBS sampling events.

Chapter 13 Reference 221

AMD uProf User Guide57368 Rev. 4.2 January 2024

13.2.4 Predefined Core PMC Events

Some of the Core Performance events of AMD “Zen” processors are listed in the following table:
Table 64. Predefined Core PMC Events

Event Id,
Unit-mask Event Abbreviation Name and Description

AMD 2nd Gen EPYCTM Processors
0x76, 0x00 CYCLES_NOT_IN_HALT CPU clock cycles not halted

The number of CPU cycles when the thread is
not in halt state.

0xC0, 0x00 RETIRED_INST Retired Instructions
The number of instructions retired from
execution. This count includes exceptions and
interrupts. Each exception or interrupt is
counted as one instruction.

0xC1, 0x00 RETIRED_MICRO_OPS Retired Macro Operations
The number of macro-ops retired. This count
includes all processor activity - instructions,
exceptions, interrupts, microcode assists, and
so on.

0xC2, 0x00 RETIRED_BR_INST Retired Branch Instructions
The number of branch instructions retired. This
includes all types of architectural control flow
changes, including exceptions and interrupts

0xC3, 0x00 RETIRED_BR_INST_MISP Retired Branch Instructions Mispredicted
The number of retired branch instructions that
were mis-predicted.
Note: Only EX direct mis-predicts and indirect target

mis-predicts are counted.

0x03, 0x08 RETIRED_SSE_AVX_FLOPS Retired SSE/AVX Flops
The number of retired SSE/AVX flops. The
number of events logged per cycle can vary
from 0 to 64. This is a large increment per
cycle event as it can count more than 15 events
per cycle. This count both single precision and
double precision FP events.

222 Reference Chapter 13

57368 Rev. 4.2 January 2024AMD uProf User Guide

0x29, 0x07 L1_DC_ACCESSES_ALL All Data cache accesses
The number of load and store ops dispatched to
LS unit. This counts the dispatch of single op
that performs a memory load, dispatch of
single op that performs a memory store,
dispatch of a single op that performs a load
from and store to the same memory address.

0x60, 0x10 L2_CACHE_ACCESS_FROM_L1_IC_
MISS

L2 cache access from L1 IC miss
The L2 cache access requests due to L1
instruction cache misses.

0x60, 0xC8 L2_CACHE_ACCESS_FROM_L1_DC_
MISS

L2 cache access from L1 DC miss
The L2 cache access requests due to L1 data
cache misses. This also counts hardware and
software prefetches.

0x64, 0x01 L2_CACHE_MISS_FROM_L1_IC_MIS
S

L2 cache miss from L1 IC miss
Counts all the Instruction cache fill requests
that misses in L2 cache

0x64, 0x08 L2_CACHE_MISS_FROM_L1_DC_MIS
S

L2 cache miss from L1 DC miss
Counts all the Data cache fill requests that
misses in L2 cache

0x71, 0x1F L2_HWPF_HIT_IN_L3 L2 Prefetcher Hits in L3
Counts all L2 prefetches accepted by the L2
pipeline which miss the L2 cache and hit the
L3.

0x72, 0x1F L2_HWPF_MISS_IN_L2_L3 L2 Prefetcher Misses in L3
Counts all L2 prefetches accepted by the L2
pipeline which miss the L2 and the L3 caches

0x64, 0x06 L2_CACHE_HIT_FROM_L1_IC_MISS L2 cache hit from L1 IC miss
Counts all the Instruction cache fill requests
that hits in L2 cache.

0x64, 0x70 L2_CACHE_HIT_FROM_L1_DC_MISS L2 cache hit from L1 DC miss
Counts all the Data cache fill requests that hits
in L2 cache.

0x70, 0x1F L2_HWPF_HIT_IN_L2 L2 cache hit from L2 HW Prefetch
Counts all L2 prefetches accepted by L2
pipeline which hit in the L2 cache

Table 64. Predefined Core PMC Events
Event Id,

Unit-mask Event Abbreviation Name and Description

Chapter 13 Reference 223

AMD uProf User Guide57368 Rev. 4.2 January 2024

0x43, 0x01 L1_DEMAND_DC_REFILLS_LOCAL_
L2

L1 demand DC fills from L2
The demand Data Cache (DC) fills from local
L2 cache to the core.

0x43, 0x02 L1_DEMAND_DC_REFILLS_LOCAL_
CACHE

L1 demand DC fills from local CCX
The demand Data Cache (DC) fills from same
the cache of same CCX or cache of different
CCX in the same package (node).

0x43, 0x08 L1_DEMAND_DC_REFILLS_LOCAL_
DRAM

L1 demand DC fills from local Memory
The demand Data Cache (DC) fills from
DRAM or IO connected in the same package
(node).

0x43, 0x10 L1_DEMAND_DC_REFILLS_REMOTE
_CACHE

L1 demand DC fills from remote cache
The demand Data Cache (DC) fills from cache
of CCX in the different package (node).

0x43, 0x40 L1_DEMAND_DC_REFILLS_REMOTE
_DRAM

L1 demand DC fills from remote Memory
The demand Data Cache (DC) fills from
DRAM or IO connected in the different
package (node).

0x43, 0x5B L1_DEMAND_DC_REFILLS_ALL L1 demand DC refills from all data sources.
The demand Data Cache (DC) fills from all the
data sources.

0x60, 0xFF L2_REQUESTS_ALL All L2 cache requests.
0x84, 0x00 L1_ITLB_MISSES_L2_HITS L1 TLB miss L2 TLB hit

The instruction fetches that misses in the L1
Instruction Translation Lookaside Buffer
(ITLB) but hit in the L2-ITLB.

0x85, 0x07 L2_ITLB_MISSES L1 TLB miss L2 TLB miss
The ITLB reloads originating from page table
walker. The table walk requests are made for
L1-ITLB miss and L2-ITLB misses.

0x45, 0xFF L1_DTLB_MISSES L1 DTLB miss
The L1 Data Translation Lookaside Buffer
(DTLB) misses from load store micro-ops.
This event counts both L2-DTLB hit and L2-
DTLB miss.

0x45, 0xF0 L2_DTLB_MISSES L1 DTLB miss
The L2 Data Translation Lookaside Buffer
(DTLB) missed from load store micro-ops.

Table 64. Predefined Core PMC Events
Event Id,

Unit-mask Event Abbreviation Name and Description

224 Reference Chapter 13

57368 Rev. 4.2 January 2024AMD uProf User Guide

0x47, 0x00 MISALIGNED_LOADS Misaligned Loads
The number of misaligned loads.
Note: On AMD “Zen 3” core processors, this event

counts the 64B (cache-line crossing) and 4K
(page crossing) misaligned loads.

0x52, 0x03 INEFFECTIVE_SW_PF Ineffective Software Prefetches
The number of software prefetches that did not
fetch data outside of the processor core. This
event counts the Software PREFETCH
instruction that saw a match on an already -
allocated miss request buffer. Also counts the
Software PREFETCH instruction that saw a
DC hit.

AMD EPYCTM 3rd Generation Processors
0x76, 0x00 CYCLES_NOT_IN_HALT CPU clock cycles not halted

The number of CPUcycles when the thread is
not in halt state.

0xC0, 0x00 RETIRED_INST Retired Instructions
The number of instructions retired from
execution. This count includes exceptions and
interrupts. Each exception or interrupt is
counted as one instruction.

0xC1, 0x00 RETIRED_MACRO_OPS Retired Macro Operations
The number of macro-ops retired. This count
includes all processor activity - instructions,
exceptions, interrupts, microcode assists, and
so on.

0xC2, 0x00 RETIRED_BR_INST Retired Branch Instructions
The number of branch instructions retired. This
includes all types of architectural control flow
changes, including exceptions and interrupts

0xC3, 0x00 RETIRED_BR_INST_MISP Retired Branch Instructions Mis-predicted
The number of retired branch instructions, that
were mis-predicted. Note that only EX direct
mis-predicts and indirect target mis-predicts
are counted.

Table 64. Predefined Core PMC Events
Event Id,

Unit-mask Event Abbreviation Name and Description

Chapter 13 Reference 225

AMD uProf User Guide57368 Rev. 4.2 January 2024

0x03, 0x08 RETIRED_SSE_AVX_FLOPS Retired SSE/AVX Flops
The number of retired SSE/AVX flops. The
number of events logged per cycle can vary
from 0 to 64. This is large increment per cycle
event, since it can count more than 15 events
per cycle. This count both single precision and
double precision FP events.

0x29, 0x07 L1_DC_ACCESSES_ALL All Data cache accesses
The number of load and store ops dispatched to
LS unit. This counts the dispatch of single op
that performs a memory load, dispatch of
single op that performs a memory store, and
dispatch of a single op that performs a load
from and store to the same memory address.

0x60, 0x10 L2_CACHE_ACCESS_FROM_L1_IC_
MISS

L2 cache access from L1 IC miss
The L2 cache access requests due to L1
instruction cache misses.

0x60, 0xE8 L2_CACHE_ACCESS_FROM_L1_DC_
MISS

L2 cache access from L1 DC miss
The L2 cache access requests due to L1 data
cache misses. This also counts hardware and
software prefetches.

0x64, 0x01 L2_CACHE_MISS_FROM_L1_IC_MIS
S

L2 cache miss from L1 IC miss
Counts all the Instruction cache fill requests
that misses in L2 cache.

0x64, 0x08 L2_CACHE_MISS_FROM_L1_DC_MIS
S

L2 cache miss from L1 DC miss
Counts all the Data cache fill requests that
misses in L2 cache.

0x71, 0xFF L2_HWPF_HIT_IN_L3 L2 Prefetcher Hits in L3
Counts all L2 prefetches accepted by the L2
pipeline which miss the L2 cache and hit the
L3.

0x72, 0xFF L2_HWPF_MISS_IN_L2_L3 L2 Prefetcher Misses in L3
Counts all L2 prefetches accepted by the L2
pipeline which miss the L2 and the L3 caches.

0x64, 0x06 L2_CACHE_HIT_FROM_L1_IC_ MISS L2 cache hit from L1 IC miss
Counts all the Instruction cache fill requests
that hits in L2 cache.

Table 64. Predefined Core PMC Events
Event Id,

Unit-mask Event Abbreviation Name and Description

226 Reference Chapter 13

57368 Rev. 4.2 January 2024AMD uProf User Guide

0x64, 0xF0 L2_CACHE_HIT.FROM_L1_DC_MISS L2 cache hit from L1 DC miss
Counts all the Data cache fill requests that hits
in L2 cache.

0x70, 0xFF L2_HWPF_HIT_IN_L2 L2 cache hit from L2 HW Prefetch
Counts all L2 prefetches accepted by L2
pipeline which hit in the L2 cache

0x43, 0x01 L1_DEMAND_DC_REFILLS_LOCAL_
L2

L1 demand DC fills from L2
The demand Data Cache (DC) fills from local
L2 cache to the core.

0x43, 0x02 L1_DEMAND_DC_REFILLS_LOCAL_
CACHE

L1 demand DC fills from local CCX
The demand Data Cache (DC) fills from the L3
cache or L2 in the same CCX.

0x43, 0x04 L1_DC_REFILLS_EXTERNAL_CACH
E_LOCAL

L1 DC fills from local external CCX caches
The Data Cache (DC) fills from cache of
different CCX in the same package (node).

0x43, 0x08 L1_DEMAND_DC_REFILLS_LOCAL_
DRAM

L1 demand DC fills from local Memory
The demand Data Cache (DC) fills from
DRAM or IO connected in the same package
(node).

0x43, 0x10 L1_DEMAND_DC_REFILLS_EXTERN
AL_CACHE_REMOTE

L1 demand DC fills from remote external
cache
The demand Data Cache (DC) fills from cache
of CCX in the different package (node).

0x43, 0x40 L1_DEMAND_DC_REFILLS_REMOTE
_DRAM

L1 demand DC fills from remote Memory
The demand Data Cache (DC) fills from
DRAM or IO connected in the different
package (node).

0x43, 0x14 L1_DEMAND_DC_REFILLS_EXTERN
AL_CACHE

L1 demand DC fills from external caches
The demand Data Cache (DC) fills from cache
of different CCX in the same or different
package (node).

0x43, 0x5F L1_DEMAND_DC_REFILLS_ALL L1 demand DC refills from all data sources.
The demand Data Cache (DC) fills from all the
data sources.

0x44, 0x01 L1_DC_REFILLS.LOCAL_L2 L1 DC fills from local L2
The Data Cache (DC) fills from local L2 cache
to the core.

Table 64. Predefined Core PMC Events
Event Id,

Unit-mask Event Abbreviation Name and Description

Chapter 13 Reference 227

AMD uProf User Guide57368 Rev. 4.2 January 2024

0x44, 0x02 L1_DC_REFILLS_LOCAL_CACHE L1 DC fills from local CCX cache
The Data Cache (DC) fills from different L2
cache in the same CCX or L3 cache that
belongs to the same CCX.

0x44, 0x08 L1_DC_REFILLS_LOCAL_DRAM L1 DC fills from local Memory
The Data Cache (DC) fills from DRAM or IO
connected in the same package (node).

0x44, 0x04 L1_DC_REFILLS_EXTERNAL_CACH
E_LOCAL

L1 DC fills from local external CCX caches
The Data Cache (DC) fills from cache of
different CCX in the same package (node).

0x44, 0x10 L1_DC_REFILLS_EXTERNAL_CACH
E_REMOTE

L1 DC fills from remote external CCX caches
The Data Cache (DC) fills from cache of CCX
in the different package (node).

0x44, 0x40 L1_DC_REFILLS_REMOTE_DRAM L1 DC fills from remote Memory
The Data Cache (DC) fills from DRAM or IO
connected in the different package (node).

0x44, 0x14 L1_DC_REFILLS_EXTENAL_CACHE L1 DC fills from local external CCX caches
The Data Cache (DC) fills from cache of
different CCX in the same or different package
(node).

0x44, 0x48 L1_DC_REFILLS_DRAM L1 DC fills from local Memory
The Data Cache (DC) fills from DRAM or IO
connected in the same or different package
(node).

0x44, 0x50 L1_DC_REFILLS_REMOTE_NODE L1 DC fills from remote node
The Data Cache (DC) fills from cache of CCX
in the different package (node) or the DRAM /
IO connected in the different package (node).

0x44, 0x03 L1_DC_REFILLS_LOCAL_CACHE_L2
_L3

L1 DC fills from same CCX
The Data Cache (DC) fills from local L2 cache
to the core or different L2 cache in the same
CCX or L3 cache that belongs to the same
CCX

0x44, 0x5F L1_DC_REFILLS_ALL L1 DC fills from all the data sources
The Data Cache fills from all the data sources

0x60, 0xFF L2_REQUESTS_ALL All L2 cache requests.

Table 64. Predefined Core PMC Events
Event Id,

Unit-mask Event Abbreviation Name and Description

228 Reference Chapter 13

57368 Rev. 4.2 January 2024AMD uProf User Guide

0x84, 0x00 L1_ITLB_MISSES_L2_HITS L1 TLB miss L2 TLB hit
The instruction fetches that misses in the L1
Instruction Translation Lookaside Buffer
(ITLB) but hit in the L2-ITLB.

0x85, 0x07 L2_ITLB_MISSES L1 TLB miss L2 TLB miss
The ITLB reloads originating from page table
walker. The table walk requests are made for
L1-ITLB miss and L2-ITLB misses.

0x45, 0xFF L1_DTLB_MISSES L1 DTLB miss
The L1 Data Translation Lookaside Buffer
(DTLB) misses from load store micro-ops.
This event counts both L2-DTLB hit and L2-
DTLB miss

0x45, 0xF0 L2_DTLB_MISSES L1 DTLB miss
The L2 Data Translation Lookaside Buffer
(DTLB) missed from load store micro-ops

0x78, 0xFF ALL_TLB_FLUSHES All TLB flushes
0x47, 0x03 MISALIGNED_LOADS The number of misaligned loads.

Note: On AMD “Zen 3” core processors, this event
counts the 64B (cache-line crossing) and 4K
(page crossing) misaligned loads.

0x52, 0x03 INEFFECTIVE_SW_PF Ineffective Software Prefetches
The number of software prefetches that did not
fetch data outside of the processor core. This
event counts the Software PREFETCH
instruction that saw a match on an already
allocated miss request buffer. Also counts the
Software PREFETCH instruction that saw a
DC hit.

AMD EPYCTM 4th Generation Processors
0x76, 0x00 CYCLES_NOT_IN_HALT CPU clock cycles not halted

The number of CPU cycles when the thread is
not in halt state.

0xC0, 0x00 RETIRED_INST Retired Instructions
The number of instructions retired from
execution. This count includes exceptions and
interrupts. Each exception or interrupt is
counted as one instruction.

Table 64. Predefined Core PMC Events
Event Id,

Unit-mask Event Abbreviation Name and Description

Chapter 13 Reference 229

AMD uProf User Guide57368 Rev. 4.2 January 2024

0xC1, 0x00 RETIRED_MACRO_OPS Retired Macro Operations
The number of macro-ops retired. This count
includes all processor activity - instructions,
exceptions, interrupts, microcode assists, and
so on.

0xC2, 0x00 RETIRED_BR_INST Retired Branch Instructions
The number of branch instructions retired. This
includes all types of architectural control flow
changes, including exceptions and interrupts

0xC3, 0x00 RETIRED_BR_INST_MISP Retired Branch Instructions Mis-predicted
The number of retired branch instructions, that
were mis-predicted.
Note: Only EX direct mis-predicts and indirect target

mis-predicts are counted

0x03, 0x1F RETIRED_SSE_AVX_FLOPS Retired SSE/AVX Flops
The number of retired SSE/AVX flops. The
number of events logged per cycle can vary
from 0 to 64. This is a large increment per
cycle event as it can count more than 15 events
per cycle. This counts both the single precision
and double precision FP events.

0x29, 0x07 L1_DC_ACCESSES_ALL All Data Cache Accesses
The number of load and store ops dispatched to
the LS unit. This counts the dispatch of a
single op that performs a:
• memory load
• memory store
• load from and store to the same memory

address
0x60, 0x10 L2_CACHE_ACCESS_FROM_L1_IC_

MISS
L2 cache access from L1 IC miss
The L2 cache access requests due to the L1
instruction cache misses.

0x60, 0xE8 L2_CACHE_ACCESS_FROM_L1_DC_
MISS

L2 cache access from L1 DC miss
The L2 cache access requests due to the L1
data cache misses. This also counts the
hardware and software prefetches.

0x64, 0x01 L2_CACHE_MISS_FROM_L1_IC_MIS
S

L2 cache miss from L1 IC miss
Counts all the instruction cache fill request
misses in the L2 cache.

Table 64. Predefined Core PMC Events
Event Id,

Unit-mask Event Abbreviation Name and Description

230 Reference Chapter 13

57368 Rev. 4.2 January 2024AMD uProf User Guide

0x64, 0x08 L2_CACHE_MISS_FROM_L1_DC_MIS
S

L2 cache miss from L1 DC miss
Counts all the data cache fill request misses in
L2 cache.

0x71, 0xFF L2_HWPF_HIT_IN_L3 L2 Prefetcher Hits in L3
Counts all the L2 prefetches accepted by the
L2 pipeline which miss the L2 cache and hit
the L3.

0x72, 0xFF L2_HWPF_MISS_IN_L2_L3 L2 Prefetcher Misses in L3
Counts all the L2 prefetches accepted by the
L2 pipeline which miss the L2 and L3 caches.

0x64, 0x06 L2_CACHE_HIT_FROM_L1_IC_MISS L2 cache hit from L1 IC miss
Counts all the instruction cache fill requests
that hit the L2 cache.

0x64, 0xF0 L2_CACHE_HIT_FROM_L1_DC_MISS L2 cache hit from L1 DC miss
Counts all the data cache fill requests that hit
the L2 cache.

0x70, 0xFF L2_HWPF_HIT_IN_L2 L2 cache hit from L2 HW Prefetch
Counts all the L2 prefetches accepted by L2
pipeline which hit the L2 cache.

0x43, 0x01 L1_DEMAND_DC_REFILLS_LOCAL_
L2

L1 demand DC fills from L2
The demand Data Cache (DC) fills from the
local L2 cache to the core.

0x43, 0x02 L1_DEMAND_DC_REFILLS_LOCAL_
CACHE

L1 demand DC fills from local CCX
The demand Data Cache (DC) fills from the L3
cache or L2 in the same CCX.

0x43, 0x04 L1_DEMAND_DC_REFILLS_EXTERN
AL_CACHE_LOCAL

L1 DC fills from local external CCX caches
The DC fills from the cache of different CCX
in the same package (node).

0x43, 0x08 L1_DEMAND_DC_REFILLS_LOCAL_
DRAM

L1 demand DC fills from local Memory
The demand DC fills from DRAM or IO
connected in the same package (node).

0x43, 0x10 L1_DEMAND_DC_REFILLS_EXTERN
AL_CACHE_REMOTE

L1 demand DC fills from remote external
cache
The demand DC fills from the CCX cache in
the different package (node).

Table 64. Predefined Core PMC Events
Event Id,

Unit-mask Event Abbreviation Name and Description

Chapter 13 Reference 231

AMD uProf User Guide57368 Rev. 4.2 January 2024

0x43, 0x40 L1_DEMAND_DC_REFILLS_REMOTE
_DRAM

L1 demand DC fills from remote Memory
The demand DC fills from DRAM or IO
connected in the different package (node).

0x43, 0x14 L1_DEMAND_DC_REFILLS_EXTERN
AL_CACHE

L1 demand DC fills from external caches
The demand DC fills from the cache of
different CCX in the same or different package
(node).

0x43, 0xDF L1_DEMAND_DC_REFILLS_ALL L1 demand DC refills from all data sources.
The demand DC fills from all the data sources.

0x44, 0x01 L1_DC_REFILLS_LOCAL_L2 L1 DC fills from local L2
The DC fills from the local L2 cache to the
core.

0x44, 0x02 L1_DC_REFILLS_LOCAL_CACHE L1 DC fills from local CCX cache
The DC fills from different L2 cache in the
same CCX or L3 cache that belongs to the
same CCX.

0x44, 0x08 L1_DC_REFILLS_EXTERNAL_CACH
E_LOCAL

L1 DC fills from local Memory
The DC fills from DRAM or IO connected in
the same package (node).

0x44, 0x04 L1_DC_REFILLS_EXTERNAL_CACH
E_LOCAL

L1 DC fills from local external CCX caches
The DC fills from the cache of different CCX
in the same package (node).

0x44, 0x10 L1_DC_REFILLS_EXTERNAL_CACH
E_REMOTE

L1 DC fills from remote external CCX caches
The DC fills from the CCX cache in the
different package (node).

0x44, 0x40 L1_DC_REFILLS_REMOTE_DRAM L1 DC fills from remote Memory
The DC fills from DRAM or IO connected in
the different package (node).

0x44, 0x14 L1_DC_REFILLS_EXTENAL_CACHE L1 DC fills from local external CCX caches
The DC fills from cache of different CCX in
the same or different package (node).

0x44, 0x48 L1_DC_REFILLS_DRAM L1 DC fills from local Memory
The DC fills from DRAM or IO connected in
the same or different package (node).

Table 64. Predefined Core PMC Events
Event Id,

Unit-mask Event Abbreviation Name and Description

232 Reference Chapter 13

57368 Rev. 4.2 January 2024AMD uProf User Guide

0x44, 0x50 L1_DC_REFILLS_REMOTE_NODE L1 DC fills from remote node
The DC fills from the CCX cache in the
different package (node) or the DRAM / IO
connected in the different package (node).

0x44, 0x03 L1_DC_REFILLS_LOCAL_CACHE_L2
_L3

L1 DC fills from same CCX
The DC fills from the local L2 cache to the
core or different L2 cache in the same CCX or
L3 cache that belongs to the same CCX.

0x44, 0xDF L1_DC_REFILLS_ALL L1 DC fills from all the data sources
The DC fills from all the data sources

0x60, 0xFF L2_REQUESTS_ALL All L2 cache requests.

0x84, 0x00 L1_ITLB_MISSES_L2_HITS L1 TLB miss L2 TLB hit
The instruction fetches that misses in the L1
Instruction Translation Lookaside Buffer
(ITLB) but hit in the L2-ITLB.

0x85, 0x07 L2_ITLB_MISSES L1 TLB miss L2 TLB miss
The ITLB reloads originating from page table
walker. The table walk requests are made for
L1-ITLB miss and L2-ITLB misses.

0x45, 0xFF L1_DTLB_MISSES L1 DTLB miss
The L1 Data Translation Lookaside Buffer
(DTLB) misses from load store micro-ops.
This event counts both L2-DTLB hit and L2-
DTLB miss

0x45, 0xF0 L2_DTLB_MISSES L1 DTLB miss
The L2 Data Translation Lookaside Buffer
(DTLB) missed from load store micro-ops

0x78, 0xFF ALL_TLB_FLUSHES All TLB flushes

0x47, 0x03 MISALIGNED_LOADS The number of misaligned loads.
Note: On AMD “Zen 3” core processors, this event

counts the 64 B (cache-line crossing) and 4 K
(page crossing) misaligned loads.

Table 64. Predefined Core PMC Events
Event Id,

Unit-mask Event Abbreviation Name and Description

Chapter 13 Reference 233

AMD uProf User Guide57368 Rev. 4.2 January 2024

Following table shows the CPU performance metrics:

0x52, 0x03 INEFFECTIVE_SW_PF Ineffective Software Prefetches
The number of software prefetches that did not
fetch data outside of the processor core. This
event counts the Software PREFETCH
instruction that saw a match on allocated miss
request buffer. Also counts the Software
PREFETCH instruction that saw a DC hit.

0x18E, 0x1F IC_TAG_ALL_IC_ACCESS IC Tag All Instruction Cache Access

0x18E, 0x18 IC_TAG_IC_MISS IC Tag Instruction Cache Miss

0x28F, 0x07 OP_CACHE_ALL_ACCESS All OP Cache Accesses

0x28F, 0x04 OP_CACHE_MISS Op Cache Miss

Table 65. Core CPU Metrics
CPU Metric Description

Core Effective Frequency Core Effective Frequency (without halted cycles) over the sampling
period, reported in GHz. The metric is based on APERF and MPERF
MSRs. MPERF is incremented by the core at the P0 state frequency
while the core is in C0 state. APERF is incremented in proportion to the
actual number of core cycles while the core is in C0 state.

IPC Instructions Retired Per Cycle (IPC) is the average number of
instructions retired per cycle. This is measured using Core PMC events
PMCx0C0 [Retired Instructions] and PMCx076 [CPU Clocks not
Halted]. These PMC events are counted in both OS and User mode.

CPI Cycles Per Instruction Retired (CPI) is the multiplicative inverse of IPC
metric. This is one of the basic performance metrics indicating how
cache misses, branch mis-predictions, memory latencies, and other
bottlenecks are affecting the execution of an application. Lower CPI
value is better.

L1_DC_REFILLS_ALL (PTI) The number of demand data cache (DC) fills per thousand retired
instructions. These demand DC fills are from all the data sources like
Local L2/L3 cache, remote caches, local memory, and remote memory.

Table 64. Predefined Core PMC Events
Event Id,

Unit-mask Event Abbreviation Name and Description

234 Reference Chapter 13

57368 Rev. 4.2 January 2024AMD uProf User Guide

L1_DC_MISSES (PTI) The number of L2 cache access requests due to L1 data cache misses,
per thousand retired instructions. This L2 cache access requests also
includes the hardware and software prefetches.

L1_DC_ACCESS_RATE The DC access rate is the number of DC accesses divided by the total
number of retired instructions

L1_DC_MISS_RATE The DC miss rate is the number of DC misses divided by the total
number of retired instructions.

L1_DC_MISS_RATIO The DC miss ratio is the number of DC misses divided by the total
number of DC accesses.

RETIRED_BR_INST_MISP_R
ATIO

This metric is computed as the retired mis-predicted branches divided
by the total number of retired branch instructions.

RETIRED_BR_INST_RATE The number of retired branch instructions rate. This metric is computed
as the retired branches divided by the total number of retired
instructions.

RETIRED_BR_INST_MISP_R
ATE

This metric is computed as retired mis-predicted branches divided by
the total number of retired instructions.

RETIRED_TAKEN_BR_INST
(PTI)

The number of retired taken branches per thousand instructions.

RETIRED_TAKEN_BR_INST_
RATE

The number of retired taken branches rate. This metric is computed as
the retired taken branches divided by the total number of retired
instructions.

RETIRED_TAKEN_BR_INST_
MISP (PTI)

The number of retired mis-predicted taken branches per thousand
instructions.

RETIRED_INDIRECT_BR_IN
ST_MISP (PTI)

The number of retired indirect branches per thousand instructions.

RETIRED_NEAR_RETURNS
(PTI)

The number of retired near branches per thousand instructions.

RETIRED_NEAR_RETURNS_
MISP (PTI)

The number of retired mis-predicted near branches per thousand
instructions.

RETIRED_NEAR_RETURNS_
MISP_RATE

This metric is computed as the retired mis-predicted near returns
divided by the total number of retired instructions.

RETIRED_NEAR_RETURNS_
MISP_RATIO

This metric is computed as retired mis-predicted near returns divided by
the total number of retired return instructions.

L1_DTLB_MISS_RATE The DTLB L1 miss rate is the number of DTLB L1 misses divided by
the total number of retired instructions.

L2_DTLB_MISS_RATE The L2 DTLB miss rate is the number of L2 DTLB misses divided by
the total number of retired instructions.

Table 65. Core CPU Metrics
CPU Metric Description

Chapter 13 Reference 235

AMD uProf User Guide57368 Rev. 4.2 January 2024

13.2.5 IBS Derived Events

AMD uProf translates the IBS information produced by the hardware into derived event sample
counts that resemble EBP sample counts. All the IBS-derived events contain IBS in the event name
and abbreviation. Although IBS-derived events and sample counts look similar to the EBP events and
sample counts, the source and sampling basis for the IBS event information are different.

Arithmetic calculation should never be performed between IBS derived event sample counts and EBP
event sample counts. It is not meaningful to directly compare the number of samples taken for events
that represent the same hardware condition. For example, fewer IBS DC miss samples is not
necessarily better than a larger quantity of EBP DC miss samples.

L1_ITLB_MISS_RATE The ITLB L1 miss rate is the number of ITLB L1_Miss_L2_Hits and
L1_Miss_L2_Miss divided by the total number of retired instructions.

L2_ITLB_MISS_RATE The ITLB L2 miss rate is the number of ITLB L2 miss divided by the
total number of retired instructions.

MISALIGNED_LOADS_RATI
O

The misalign ratio is the number of misaligned loads divided by the
total number of DC accesses.

MISALIGNED_LOADS_RATE The misalign rate is the number of misaligned loads divided by the total
number of retired instructions.

STLI_OTHER Store-to-load conflicts: A load was unable to complete due to a non-
forwardable conflict with an older store. Most commonly, a load's
address range partially but not completely overlaps with an
uncompleted older store. Software can avoid this problem by using the
same size and alignment loads and stores when accessing the data.
Vector/SIMD code is particularly susceptible to this problem; software
should construct wide vector stores by manipulating the vector elements
in the registers using shuffle/blend/swap instructions prior to storing to
the memory, instead of using narrow element-by-element stores.

L2_CACHE_ACCESSES_FRO
M_IC_MISSES

The number of L2 cache access requests due to the L1 instruction cache
misses per thousand retired instructions. This L2 cache access requests
also includes the prefetches.

L2_CACHE_MISSES_FROM_I
C_MISSES

The number of L2 cache misses from L1 instruction cache misses per
thousand retired instructions.

Table 65. Core CPU Metrics
CPU Metric Description

236 Reference Chapter 13

57368 Rev. 4.2 January 2024AMD uProf User Guide

Following table shows the IBS fetch events:
Table 66. IBS Fetch Events

IBS Fetch Event Description

AMD “Zen1”, AMD “Zen2”, and AMD “Zen3” Client Platforms

IBS_FETCH The number of all the IBS fetch samples. This derived event counts the
number of all the IBS fetch samples that were collected including IBS-killed
fetch samples.

IBS_FETCH_KILLED The number of IBS sampled fetches that were killed fetches. A fetch operation
is killed if the fetch did not reach ITLB or IC access. The number of killed
fetch samples is not generally useful for analysis and are filtered out in other
derived IBS fetch events (except Event Select 0xF000 which counts all IBS
fetch samples including IBS killed fetch samples).

IBS_FETCH_ATTEMPT The number of IBS sampled fetches that were not killed fetch attempts. This
derived event measures the number of useful fetch attempts and does not
include the number of IBS killed fetch samples. This event should be used to
compute ratios such as the ratio of IBS fetch IC misses to attempted fetches.
The number of attempted fetches should equal the sum of the number of
completed fetches and the number of aborted fetches.

IBS_FETCH_COMP The number of completed IBS sampled fetches. A fetch is completed if the
attempted fetch delivers instruction data to the instruction decoder. Although
the instruction data was delivered, it may still not be used. For example, the
instruction data may have been on the “wrong path” of an incorrectly predicted
branch.

IBS_FETCH_ABORT The number of IBS sampled fetches that aborted. An attempted fetch is
aborted if it did not complete and deliver instruction data to the decoder. An
attempted fetch may abort at any point in the process of fetching instruction
data. An abort may be due to a branch redirection as the result of a
mispredicted branch. The number of IBS aborted fetch samples is a lower
bound on the number of unsuccessful, speculative fetch activity. It is a lower
bound as the instruction data delivered by completed fetches may not be used.

IBS_L1_ITLB_HIT The number of IBS attempted fetch samples where the fetch operation initially
hit in the L1 ITLB (Instruction Translation Lookaside Buffer).

IBS_ITLB_L1M_L2H The number of IBS attempted fetch samples where the fetch operation initially
missed in the L1 ITLB and hit in the L2 ITLB.

IBS_ITLB_L1M_L2M The number of IBS attempted fetch samples where the fetch operation initially
missed in both the L1 ITLB and the L2 ITLB.

IBS_IC_MISS The number of IBS attempted fetch samples where the fetch operation initially
missed in the IC (instruction cache).

IBS_IC_HIT The number of IBS attempted fetch samples where the fetch operation initially
hit in the IC.

Chapter 13 Reference 237

AMD uProf User Guide57368 Rev. 4.2 January 2024

IBS_4K_PAGE The number of IBS attempted fetch samples where the fetch operation
produced a valid physical address (that is, address translation completed
successfully) and used a 4-KByte page entry in the L1 ITLB.

IBS_2M_PAGE The number of IBS attempted fetch samples where the fetch operation
produced a valid physical address (that is, address translation completed
successfully) and used a 2 MB page entry in the L1 ITLB.

IBS_FETCH_LAT The total latency of all IBS attempted fetch samples. Divide the total IBS fetch
latency by the number of IBS attempted fetch samples to obtain the average
latency of the attempted fetches that were sampled.

IBS_FETCH_L2C_MISS The instruction fetch missed in the L2 Cache.
IBS_ITLB_REFILL_LAT The number of cycles when the fetch engine is stalled for an ITLB reload for

the sampled fetch. If there is no reload, the latency will be 0.
AMD “Zen3” and AMD “Zen4” Server Platforms

IBS_FETCH Number of all the IBS fetch samples. This derived event counts the number of
all the IBS fetch samples that were collected, including IBS-killed fetch
samples.

IBS_FETCH_ATTEMPT
ED

The number of IBS sampled fetches that were not killed fetch attempts. This
derived event measures the number of useful fetch attempts and does not
include the number of IBS killed fetch samples. This event should be used to
compute ratios such as the ratio of IBS fetch IC misses to attempted fetches.
The number of attempted fetches should equal the sum of the number of
completed fetches and the number of aborted fetches.

IBS_FETCH_COMPLET
ED

The number of IBS sampled fetches that completed. A fetch is completed if
the attempted fetch delivers instruction data to the instruction decoder.
Although the instruction data was delivered, it may still not be used (for
example, the instruction data may have been on the wrong path of an
incorrectly predicted branch.)

IBS_FETCH_ABORTED The number of IBS sampled fetches that aborted. An attempted fetch is
aborted if it does not complete and deliver instruction data to the decoder. An
attempted fetch may abort at any point in the process of fetching instruction
data. An abort may be due to a branch redirection as the result of a mis-
predicted branch. The number of IBS aborted fetch samples is a lower bound
on the amount of unsuccessful, speculative fetch activity. It is a lower bound as
the instruction data delivered by completed fetches may not be used.

IBS_FETCH_L1_ITLB_
HIT

The number of IBS attempted fetch samples where the fetch operation initially
hit in the L1 ITLB (Instruction Translation Lookaside Buffer).

IBS_FETCH_L1_ITLB_
MISS_L2_ITLB_HIT

The number of IBS attempted fetch samples where the fetch operation initially
missed in the L1 ITLB and hit in the L2 ITLB.

IBS_FETCH_L1_ITLB_
MISS_L2_ITLB_MISS

The number of IBS attempted fetch samples where the fetch operation initially
missed in both the L1 ITLB and the L2 ITLB.

Table 66. IBS Fetch Events
IBS Fetch Event Description

238 Reference Chapter 13

57368 Rev. 4.2 January 2024AMD uProf User Guide

Following table lists the IBS fetch metrics:

IBS_FETCH_L1_IC_MIS
S

The number of IBS attempted fetch samples where the fetch operation initially
missed in the IC (instruction cache).

IBS_FETCH_L1_IC_HIT The number of IBS attempted fetch samples where the fetch operation initially
hit in the IC.

IBS_FETCH_L1_ITLB_4
K_PAGE

The number of IBS attempted fetch samples where the fetch operation
produced a valid physical address (for example, address translation completed
successfully) and used a 4 KB page entry in the L1 ITLB.

IBS_FETCH_L1_ITLB_2
M_PAGE

The number of IBS attempted fetch samples where the fetch operation
produced a valid physical address (for example, address translation completed
successfully) and used a 2 MB page entry in the L1 ITLB.

IBS_FETCH_L1_ITLB_1
G_PAGE

The number of IBS attempted fetch samples where the fetch operation
produced a valid physical address (for example, address translation completed
successfully) and used a 1 GB page entry in the L1 ITLB.

IBS_FETCH_LAT The total latency of all IBS attempted fetch samples. Divide the total IBS fetch
latency by the number of IBS attempted fetch samples to obtain the average
latency of the attempted fetches that were sampled.

IBS_FETCH_L2_MISS The instruction fetch missed in the L2 Cache.
IBS_FETCH_ITLB_REFI
LL_LAT

The number of cycles when the fetch engine is stalled for an ITLB reload for
the sampled fetch. If there is no reload, the latency will be 0.

IBS_FETCH_OP_CACH
E_MISS

The number of IBS attempted fetch samples where the Op Cache was not able
to supply all the bytes for the tagged fetch.

IBS_FETCH_L3_MISS The number of IBS attempted fetch samples where the instruction fetch missed
in the L3 cache on the same CCX.

Table 67. IBS Fetch Metrics
IBS Fetch Metric Description

IBS_FETCH_L1_IC_MISS_R
ATE_%

Percentage of IBS fetch L1 instruction cache misses with respect to the
total number of IBS fetch attempts.

IBS_FETCH_LAT_AVE The average IBS fetch latency. Calculated by dividing the IBS fetch
latency by the total number of IBS fetch attempts.

IBS_FETCH_L1_ITLB_MISS_
L2_ITLB_HIT_RATE_%

Percentage of IBS fetch L1 ITLB miss and L2 ITLB hits with respect to
the total number of IBS fetch attempts.

IBS_FETCH_L1_ITLB_MISS_
L2_ITLB_MISS_RATE_%

Percentage of IBS fetch L1 and L2 ITLB misses with respect to the total
number of IBS fetch attempts.

Table 66. IBS Fetch Events
IBS Fetch Event Description

Chapter 13 Reference 239

AMD uProf User Guide57368 Rev. 4.2 January 2024

Following table lists the IBS op events:
Table 68. IBS Op Events

IBS Op Event Description

AMD “Zen1”, “Zen2”, and “Zen3” Client Platforms

IBS_ALL_OPS The number of all the IBS op samples collected. These op samples may be
branch ops, resync ops, ops that perform load/store operations, or
undifferentiated ops (for example, those ops that perform arithmetic
operations, logical operations, and so on). IBS collects data for the retired
ops. No data is collected for the ops that are aborted due to pipeline
flushes and so on. Thus, all the sampled ops are architecturally significant
and contribute to the successful execution of programs.

IBS_TAG_TO_RET The total number of tag-to-retire cycles across all the IBS op samples. The
tag-to-retire time of an op is the number of cycles from when the op was
tagged (selected for sampling) to when the op retired.

IBS_COMP_TO_RET The total number of completion-to-retire cycles across all the IBS op
samples. The completion-to-retire time of an op is the number of cycles
from when the op completed to when the op retired.

IBS_BR The number of IBS retired branch op samples. A branch operation is a
change in the program control flow and includes unconditional and
conditional branches, subroutine calls, and subroutine returns. Branch ops
are used to implement AMD64 branch semantics.

IBS_MISP_BR The number of IBS samples for retired branch operations that were mis-
predicted. This event should be used to compute the ratio of mis-predicted
branch operations to all the branch operations.

IBS_TAKEN_BR The number of IBS samples for the retired branch operations that were
taken branches.

IBS_MISP_TAKEN_BR The number of IBS samples for the retired branch operations that were
mis-predicted taken branches.

IBS_RET The number of IBS retired branch op samples where the operation was a
subroutine return. These samples are a subset of all the IBS retired branch
op samples.

IBS_MISP_RET The number of IBS retired branch op samples where the operation was a
mis-predicted subroutine return. This event should be used to compute the
ratio of the mis-predicted returns to all the subroutine returns.

IBS_RESYNC The number of IBS resync op samples. A resync op is only found in
certain microcoded AMD64 instructions and causes a complete pipeline
flush.

IBS_LOAD_STORE The number of IBS op samples for ops that perform either a load and/or
store operation. Each op may perform a load operation, a store operation,
or both a load and store operation (each to the same address).

IBS_LOAD The number of IBS op samples for ops that perform a load operation.

240 Reference Chapter 13

57368 Rev. 4.2 January 2024AMD uProf User Guide

IBS_STORE The number of IBS op samples for ops that perform a store operation.
IBS_L1_DTLB_HIT The number of IBS op samples where either a load or store operation

initially hit the L1 DTLB (data translation lookaside buffer).
IBS_DTLB_L1M_L2H The number of IBS op samples where either a load or store operation

initially missed in the L1 DTLB and hit the L2 DTLB.
IBS_DTLB_L1M_L2M The number of IBS op samples where either a load or store operation

initially missed in both the L1 DTLB and the L2 DTLB.
IBS_DC_MISS The number of IBS op samples where either a load or store operation

initially missed in the L1 DC.
IBS_DC_HIT The number of IBS op samples where either a load or store operation

initially hit the L1 DC.
IBS_MISALIGN_ACC The number of IBS op samples where either a load or store operation

caused a misaligned access (for example, the load or store operation
crossed a 128-bit boundary).

IBS_BANK_CONF_LOAD The number of IBS op samples where either a load or store operation
caused a bank conflict with a load operation.

IBS_BANK_CONF_STORE The number of IBS op samples where either a load or store operation
caused a bank conflict with a store operation.

IBS_FORWARDED The number of IBS op samples where data for a load operation was
forwarded from a store operation.

IBS_STLF_CANCELLED The number of IBS op samples where data forwarding to a load operation
from a store was canceled.

IBS_UC_MEM_ACC The number of IBS op samples where a load or store operation accessed
uncacheable (UC) memory.

IBS_WC_MEM_ACC The number of IBS op samples where a load or store operation accessed
write combining (WC) memory.

IBS_LOCKED_OP The number of IBS op samples where a load or store operation was a
locked operation.

IBS_MAB_HIT The number of IBS op samples where a load or store operation hit an
already allocated entry in the Miss Address Buffer (MAB).

IBS_L1_DTLB_4K The number of IBS op samples where a load or store operation produced a
valid linear (virtual) address and a 4 KB page entry in the L1 DTLB was
used for the address translation.

IBS_L1_DTLB_2M The number of IBS op samples where a load or store operation produced a
valid linear (virtual) address and a 2 M page entry in the L1 DTLB was
used for the address translation.

Table 68. IBS Op Events
IBS Op Event Description

Chapter 13 Reference 241

AMD uProf User Guide57368 Rev. 4.2 January 2024

IBS_L1_DTLB_1G The number of IBS op samples where a load or store operation produced a
valid linear (virtual) address and a 1 GB page entry in the L1 DTLB was
used for the address translation.

IBS_L2_DTLB_4K The number of IBS op samples where a load or store operation produced a
valid linear (virtual) address, hit the L2 DTLB, and used a 4 KB page
entry for the address translation.

IBS_L2_DTLB_2M The number of IBS op samples where a load or store operation produced a
valid linear (virtual) address, hit the L2 DTLB, and used a 2 MB page
entry for the address translation

IBS_L2_DTLB_1G The number of IBS op samples where a load or store operation produced a
valid linear (virtual) address, hit the L2 DTLB, and used a 1 GB page
entry for address translation.

IBS_LOAD_DC_MISS_LAT The total L1 DC miss load latency (in processor cycles) across all the IBS
op samples that performed a load operation and missed in the data cache.
The miss latency is the number of clock cycles from when the L1 data
cache miss was detected to when data was delivered to the core.

IBS_LOAD_RESYNC Load Resync.
IBS_NB_LOCAL The number of IBS op samples where a load operation was serviced from

the local processor. Northbridge IBS data is only valid for the load
operations that miss in both the L1 data cache and the L2 data cache. If a
load operation crosses a cache line boundary, he IBS data reflects the
access to the lower cache line.

IBS_NB_REMOTE The number of IBS op samples where a load operation was serviced from
a remote processor.

IBS_NB_LOCAL_L3 The number of IBS op samples where a load operation was serviced by
the local L3 cache.

IBS_NB_LOCAL_CACHE The number of IBS op samples where a load operation was serviced by a
cache (L1 or L2 data cache) belonging to a local core which is a sibling of
the core making the memory request.

IBS_NB_REMOTE_CACHE The number of IBS op samples where a load operation was serviced by a
remote L1 data cache, L2 cache, or L3 cache after traversing one or more
coherent Hyper Transport links.

IBS_NB_LOCAL_DRAM The number of IBS op samples where a load operation was serviced by
local system memory (local DRAM through the memory controller).

IBS_NB_REMOTE_DRAM The number of IBS op samples where a load operation was serviced by
the remote system memory (after traversing one or more coherent Hyper
Transport links and through a remote memory controller).

IBS_NB_LOCAL_OTHER The number of IBS op samples where a load operation was serviced from
local MMIO, configuration or PCI space, or from the local APIC.

Table 68. IBS Op Events
IBS Op Event Description

242 Reference Chapter 13

57368 Rev. 4.2 January 2024AMD uProf User Guide

IBS_NB_REMOTE_OTHER The number of IBS op samples where a load operation was serviced from
remote MMIO, configuration, or PCI space.

IBS_NB_CACHE_MODIFIED The number of IBS op samples where a load operation was serviced from
local or remote cache, and the cache hit state was the Modified (M) state.

IBS_NB_CACHE_OWNED The number of IBS op samples where a load operation was serviced from
local or remote cache, and the cache hit state was the Owned (O) state.

IBS_NB_LOCAL_LAT The total data cache miss latency (in processor cycles) for the load
operations that were serviced by the local processor.

IBS_NB_REMOTE_LAT The total data cache miss latency (in processor cycles) for the load
operations that were serviced by a remote processor.

AMD “Zen4” and AMD “Zen3” Server Platforms
IBS_ALL_OPS The number of all the IBS op samples that were collected. These samples

may be branch ops, resync ops, ops that perform load/store operations, or
undifferentiated ops. For example, the ops that perform arithmetic
operations, logical operations, and so on. IBS collects data for retired ops.
No data is collected for ops that are aborted due to pipeline flushes and so
on. Thus, all sampled ops are architecturally significant and contribute to
the successful program execution.

IBS_TAG_TO_RET The total number of tag-to-retire cycles across all the IBS op samples. The
tag-to-retire time of an op is the number of cycles from when the op was
tagged (selected for sampling) to when the op retired.

IBS_COMP_TO_RET The total number of completion-to-retire cycles across all the IBS op
samples. The completion-to-retire time of an op is the number of cycles
from when the op completed to when the op retired.

IBS_BR The number of IBS retired branch op samples. A branch operation is a
change in program control flow; includes unconditional and conditional
branches, subroutine and subroutine returns. Branch ops are used to
implement AMD64 branch semantics.

IBS_MISP_BR The number of IBS samples for the retired branch operations that were
mis-predicted. This event should be used to compute the ratio of mis-
predicted branch operations to all branch operations.

IBS_TAKEN_BR The number of IBS samples for retired branch operations that were taken
branches.

IBS_MISP_TAKEN_BR The number of IBS samples for the retired branch operations that were
mis-predicted taken branches.

IBS_RET The number of IBS retired branch op samples where the operation was a
subroutine return. These samples are a subset of all the IBS retired branch
op samples.

Table 68. IBS Op Events
IBS Op Event Description

Chapter 13 Reference 243

AMD uProf User Guide57368 Rev. 4.2 January 2024

IBS_MISP_RET The number of IBS retired branch op samples where the operation was a
mis-predicted subroutine return. This event should be used to compute the
ratio of the mis-predicted returns to all the subroutine returns.

IBS_RESYNC The number of IBS resync op samples. A resync op is only found in
certain microcoded AMD64 instructions and causes a complete pipeline
flush.

IBS_LOAD_STORE The number of IBS op samples for the ops that perform either a load and/
or store operation. Each op may perform a load/store operation or both a
load and store operation (each to the same address).

IBS_LOAD The number of IBS op samples for the ops that perform a load operation.
IBS_STORE The number of IBS op samples for the ops that perform a store operation.
IBS_L1_DTLB_HIT The number of IBS op samples where either a load or store operation

initially hit in the L1 DTLB (data translation look aside buffer).
IBS_DTLB_L1M_L2H The number of IBS op samples where either a load or store operation

initially missed in the L1 DTLB and hit in the L2 DTLB.
IBS_DTLB_L1M_L2M The number of IBS op samples where either a load or store operation

initially missed in both the L1 DTLB and the L2 DTLB.
IBS_DC_MISS The number of IBS op samples where either a load or store operation

initially missed in the L1 data cache (DC).
IBS_DC_HIT The number of IBS op samples where either a load or store operation

initially hit in the L1 data cache (DC).
IBS_MISALIGN_ACC The number of IBS op samples where either a load or store operation

caused a misaligned access (that is, the load or store operation crossed a
128-bit boundary).

IBS_BANK_CONF_LOAD The number of IBS op samples where either a load or store operation
caused a bank conflict with a load operation.

IBS_BANK_CONF_STORE The number of IBS op samples where either a load or store operation
caused a bank conflict with a store operation.

IBS_FORWARDED The number of IBS op samples where data for a load operation was
forwarded from a store operation.

IBS_STLF_CANCELLED The number of IBS op samples where data forwarding to a load operation
from a store was canceled.

IBS_UC_MEM_ACC The number of IBS op samples where a load or store operation accessed
uncacheable (UC) memory.

IBS_WC_MEM_ACC The number of IBS op samples where a load or store operation accessed
write combining (WC) memory.

IBS_LOCKED_OP The number of IBS op samples where a load or store operation was a
locked operation.

Table 68. IBS Op Events
IBS Op Event Description

244 Reference Chapter 13

57368 Rev. 4.2 January 2024AMD uProf User Guide

IBS_MAB_HIT The number of IBS op samples where a load or store operation hit an
allocated entry in the Miss Address Buffer (MAB).

IBS_L1_DTLB_4K The number of IBS op samples where a load or store operation produced a
valid linear (virtual) address and a 4 KB page entry in L1 DTLB was used
for the address translation.

IBS_L1_DTLB_2M The number of IBS op samples where a load or store operation produced a
valid linear (virtual) address and a 2 MB page entry in L1 DTLB was used
for the address translation.

IBS_L1_DTLB_1G The number of IBS op samples where a load or store operation produced a
valid linear (virtual) address and a 1 GB page entry in L1 DTLB was used
for the address translation.

IBS_L2_DTLB_4K The number of IBS op samples where a load or store operation produced a
valid linear (virtual) address, hit L2 DTLB, and used a 4 KB page entry
for the address translation.

IBS_L2_DTLB_2M The number of IBS op samples where a load or store operation produced a
valid linear (virtual) address, hit L2 DTLB, and used a 2 MB page entry
for the address translation.

IBS_L2_DTLB_1G The number of IBS op samples where a load or store operation produced a
valid linear (virtual) address, hit L2 DTLB, and used a 1 GB page entry
for the address translation.

IBS_LOAD_DC_MISS_LAT The total L1 DC miss load latency (in processor cycles) across all the IBS
op samples that performed a load operation and missed in the data cache.
The miss latency is the number of clock cycles from when the L1 data
cache miss was detected to when data was delivered to the core.

IBS_LOAD_RESYNC Load Resync.
IBS_NB_LOCAL The number of IBS op samples where a load operation was serviced from

the local processor. Northbridge IBS data is only valid for the load
operations that miss in both the L1 and L2 data cache. If a load operation
crosses a cache line boundary, the IBS data reflects the access to the lower
cache line.

IBS_NB_REMOTE The number of IBS op samples where a load operation was serviced from
a remote processor.

IBS_NB_LOCAL_L3 The number of IBS op samples where a load operation was serviced by
the local L3 cache.

IBS_NB_LOCAL_CACHE The number of IBS op samples where a load operation was serviced by a
cache (L1 data cache or L2 cache) belonging to a local core that is a
sibling of the core making the memory request.

Table 68. IBS Op Events
IBS Op Event Description

Chapter 13 Reference 245

AMD uProf User Guide57368 Rev. 4.2 January 2024

Following table lists the IBS op metrics for AMD “Zen4” and AMD “Zen3” server platforms:

IBS_NB_REMOTE_CACHE The number of IBS op samples where a load operation was serviced by a
remote L1 data, L2, or L3 cache after traversing one or more coherent
HyperTransport links.

IBS_NB_LOCAL_DRAM The number of IBS op samples where a load operation was serviced by
local system memory (local DRAM through the memory controller).

IBS_NB_REMOTE_DRAM The number of IBS op samples where a load operation was serviced by
the remote system memory (after traversing one or more coherent
HyperTransport links and through a remote memory controller).

IBS_NB_LOCAL_OTHER The number of IBS op samples where a load operation was serviced from
the local MMIO, configuration, PCI space, or local APIC.

IBS_NB_REMOTE_OTHER The number of IBS op samples where a load operation was serviced from
the remote MMIO, configuration, or PCI space.

IBS_NB_CACHE_MODIFIED The number of IBS op samples where a load operation was serviced from
the local or remote cache, and the cache hit state was the Modified (M)
state.

IBS_NB_CACHE_OWNED The number of IBS op samples where a load operation was serviced from
the local or remote cache, and the cache hit state was the Owned (O) state.

IBS_NB_LOCAL_LAT The total data cache miss latency (in processor cycles) for the load
operations that were serviced by the local processor.

IBS_NB_REMOTE_LAT The total data cache miss latency (in processor cycles) for the load
operations that were serviced by a remote processor.

Table 69. IBS Op Metrics for AMD “Zen4” and AMD “Zen3” Server Platforms
IBS Op Metric Description

%IBS_BR_TAG_TO_RETIRE_CYCLES Percentage of IBS Branch op tag to retire cycles.
%IBS_BR_MISP_TAG_TO_RETIRE_CYCLES Percentage of IBS Branch mis-predict op tag to retire

cycles.
%IBS_TAKEN_BR_TAG_TO_RETIRE_CYCLES Percentage of IBS Branch taken op tag to retire

cycles.
%IBS_RET_TAG_TO_RETIRE_CYCLES Percentage of IBS Branch return op tag to retire

cycles.
%IBS_BR_COMP_TO_RETIRE_CYCLES Percentage of IBS Branch op completion to retire

cycles.
%IBS_BR_MISP_COMP_TO_RETIRE_CYCLES Percentage of IBS Branch mis-predict op completion

to retire cycles.
%IBS_TAKEN_BR_COMP_TO_RETIRE_CYCLE
S

Percentage of IBS Branch taken op completion to
retire cycles.

Table 68. IBS Op Events
IBS Op Event Description

246 Reference Chapter 13

57368 Rev. 4.2 January 2024AMD uProf User Guide

%IBS_RET_COMP_TO_RETIRE_CYCLES Percentage of IBS Branch return op completion to
retire cycles.

IBS_BR_MISP_RATE_% Branch mis-predict rate in percentage. The number of
branch mis-predicts divided by the total number of
branch operations, expressed as percentage.

%IBS_L1_DTLB_REFILL_LAT_CYCLES Percentage of cycles wasted due to L1 DTLB misses.
The number of L1 DTLB refill latency cycles divided
by the total number of Tag-To-Retire cycles of all the
operations, expressed as percentage.

IBS_ST_L1_DC_MISS_RATE_% Store L1 DC Miss rate in percentage. The number of
store L1 DC misses divided by the total number of
store ops, expressed as percentage.

IBS_LD_L1_DC_MISS_RATE_% Load L1 DC Miss rate in percentage. The number of
load L1 DC misses divided by the total number of
load ops, expressed as percentage.

IBS_LD_L1_DC_HIT_RATE_% Load L1 DC Hit rate in percentage. The number of
load L1 DC hits divided by the total number of load
ops, expressed as percentage.

IBS_LD_L2_HIT_RATE_% Load L2 Hit rate in percentage. The number of load
L2 hits divided by the total number of load ops,
expressed as percentage.

IBS_LD_LOCAL_CACHE_HIT_RATE_% Percentage of load samples where the load operation
was serviced by the shared L3 cache or other L1/L2
cache in the same CCX. The number of
IBS_LD_LOCAL_CACHE_HIT divided by
IBS_LOAD, expressed in percentage.

IBS_LD_PEER_CACHE_HIT_RATE_% Percentage of load samples where the load operation
was serviced by L2/L3 cache in a different CCX of
same NUMA node. The number of
IBS_LD_PEER_CACHE_HIT divided by
IBS_LOAD, expressed in percentage.

IBS_LD_RMT_CACHE_HIT_RATE_% Percentage of load samples where the load operation
was serviced by L2/L3 cache of different CCX in
different NUMA node. The number of
IBS_LD_RMT_CACHE_HIT divided by
IBS_LOAD, expressed in percentage.

Table 69. IBS Op Metrics for AMD “Zen4” and AMD “Zen3” Server Platforms
IBS Op Metric Description

Chapter 13 Reference 247

AMD uProf User Guide57368 Rev. 4.2 January 2024

IBS_LD_LOCAL_DRAM_HIT_RATE_% Percentage of load samples where the load operation
was serviced by local system memory (local DRAM
via the memory controller) of same NUMA node. The
number of IBS_LD_LOCAL_DRAM_HIT divided
by IBS_LOAD, expressed in percentage.

IBS_LD_RMT_DRAM_HIT_RATE_% Percentage of load samples where the load operation
was serviced by DRAM in different NUMA node.
The number of IBS_LD_RMT_DRAM_HIT divided
by IBS_LOAD, expressed in percentage.

IBS_LD_DRAM_HIT_RATE_% Percentage of load samples where the load operation
was serviced by DRAM in the system. The number of
IBS_LD_DRAM_HIT divided by IBS_LOAD,
expressed in percentage.

IBS_LD_NVDIMM_HIT_RATE_% Percentage of load samples where the load operation
was serviced by NVDIMM in the system. The number
of IBS_LD_NVDIMM_HIT divided by IBS_LOAD,
expressed in percentage.

IBS_LD_EXT_MEM_HIT_RATE_% Percentage of load samples where the load operation
was serviced by Extension Memory in the system.
The number of IBS_LD_EXT_MEM_HIT divided by
IBS_LOAD, expressed in percentage.

IBS_LD_PEER_AGENT_MEM_RATE_% Percentage of load samples where the load operation
was serviced by Peer agent Memory in the system.
The number of IBS_LD_EXT_MEM_HIT divided by
IBS_LOAD, expressed in percentage.

IBS_LD_NON_MAIN_MEM_HIT_RATE_% Percentage of load samples where the load operation
was serviced from MMIO, configuration or PCI
space, or from the local APIC in the system. The
number of IBS_LD_NON_MAIN_MEM_HIT
divided by IBS_LOAD, expressed in percentage.

IBS_LD_L1_DC_MISS_LAT_AVE Average Load L1 DC Miss latency cycles. The
number of load L1 DC misses latency divided by the
total number of load L1 DC misses latency cycles.

%IBS_LD_L1_DC_MISS_LAT_CYCLES Percentage of cycles wasted to fetch the data. The
number of Load L1 DC misses latency cycles divided
by the total number of Tag-To-Retire cycles of all the
operations, expressed as percentage.

%IBS_LD_L2_HIT_LAT Percentage of IBS load L2 hit latency cycles wrt. load
L1 DC miss latency cycles.

Table 69. IBS Op Metrics for AMD “Zen4” and AMD “Zen3” Server Platforms
IBS Op Metric Description

248 Reference Chapter 13

57368 Rev. 4.2 January 2024AMD uProf User Guide

13.3 Useful URLs

For the processor specific PMC events and their descriptions, refer the following AMD developer
documents:

• Processor Programming Reference (PPR) for AMD Processors (https://developer.amd.com/
resources/developer-guides-manuals/)

• Software Optimization Guide for AMD Family 17h Processors (https://developer.amd.com/
wordpress/media/2013/12/55723_3_00.ZIP)

• Software Optimization Guide for AMD Family 19h Processors (https://www.amd.com/system/
files/TechDocs/56665.zip)

%IBS_LD_LOCAL_CACHE_HIT_LAT Percentage of IBS load local cache hit latency cycles
with respect to the load L1 DC miss latency cycles.

%IBS_LD_PEER_CACHE_HIT_LAT Percentage of IBS load peer cache hit latency cycles
with respect to the load L1 DC miss latency cycles.

%IBS_LD_RMT_CACHE_HIT_LAT Percentage of IBS load remote cache hit latency
cycles with respect to the load L1 DC miss latency
cycles.

%IBS_LD_LOCAL_DRAM_HIT_LAT Percentage of IBS load local DRAM hit latency
cycles with respect to the load L1 DC miss latency
cycles.

%IBS_LD_RMT_DRAM_HIT_LAT Percentage of IBS load remote DRAM hit latency
cycles with respect to the load L1 DC miss latency
cycles.

%IBS_LD_DRAM_HIT_LAT Percentage of IBS load DRAM hit latency cycles with
respect to the load L1 DC miss latency cycles.

%IBS_LD_NVDIMM_HIT_LAT Percentage of IBS load NVDIMM hit latency cycles
with respect to the load L1 DC miss latency cycles.

%IBS_LD_EXTN_MEM_HIT_LAT Percentage of IBS load Extension Memory hit latency
cycles with respect to the load L1 DC miss latency
cycles.

%IBS_LD_PEER_AGENT_MEM_HIT_LAT Percentage of IBS load Peer Agent Memory hit
latency cycles with respect to the load L1 DC miss
latency cycles.

%IBS_LD_NON_MAIN_MEM_HIT_LAT Percentage of IBS load Non main memory hit latency
cycles with respect to the load L1 DC miss latency
cycles.

Table 69. IBS Op Metrics for AMD “Zen4” and AMD “Zen3” Server Platforms
IBS Op Metric Description

https://developer.amd.com/wordpress/media/2013/12/55723_3_00.ZIP
https://developer.amd.com/wordpress/media/2013/12/55723_3_00.ZIP
https://www.amd.com/system/files/TechDocs/56665.zip
https://www.amd.com/system/files/TechDocs/56665.zip
https://developer.amd.com/resources/developer-guides-manuals/
https://developer.amd.com/resources/developer-guides-manuals/

	Contents
	List of Tables
	List of Figures
	Revision History
	About this Document
	Intended Audience
	Conventions
	Abbreviations
	Terminology

	Part 1: Introduction
	Chapter 1 Introduction
	1.1 Overview
	1.2 Specification
	1.2.1 Processors
	1.2.2 Operating Systems
	1.2.3 Compilers and Application Environment
	1.2.4 Virtualization Support
	1.2.5 Container Support

	1.3 Installing AMD uProf
	1.3.1 Windows
	1.3.2 Linux
	1.3.3 FreeBSD

	1.4 Sample Programs
	1.5 Support

	Part 2: System Analysis
	Chapter 2 Getting started with AMDuProfPcm
	2.1 Overview
	2.1.1 Prerequisite(s)

	2.2 Options
	2.3 Commands
	2.4 Examples
	2.4.1 Linux and FreeBSD
	2.4.2 Windows

	2.5 BIOS Settings - Known Behavior
	2.6 Monitoring without Root Privileges
	2.7 Roofline Model
	2.8 Pipeline Utilization

	Chapter 3 Getting Started with AMDuProfSys
	3.1 Overview
	3.2 Supported Platforms
	3.3 Supported Hardware Counters
	3.4 Supported Operating Systems
	3.5 Set up
	3.5.1 Linux
	3.5.2 Windows

	3.6 Options
	3.6.1 Generic
	3.6.2 Collect Command
	3.6.3 Report Command

	3.7 Examples
	3.8 Limitations

	Part 3: Application Analysis
	Chapter 4 Workflow and Key Concepts
	4.1 Workflow
	4.1.1 Collect Phase
	4.1.2 Translate and Report Phases
	4.1.3 Analyze Phase

	4.2 Predefined Sampling Configuration
	4.3 Predefined View Configuration

	Chapter 5 Getting Started with AMD uProf GUI
	5.1 User Interface
	5.2 Launching GUI
	5.3 Configure a Profile
	5.3.1 Select Profile Target
	5.3.2 Select Profile Type
	5.3.3 Advanced Options
	5.3.4 Start Profile

	5.4 Translation Progress
	5.5 Analyze the Profile Data
	5.5.1 Overview of Performance Hotspots
	5.5.2 Thread Concurrency Graph
	5.5.3 Function HotSpots
	5.5.4 Process and Functions
	5.5.5 Source and Assembly
	5.5.6 Top-down Callstack
	5.5.7 Flame Graph
	5.5.8 Call Graph
	5.5.9 IMIX View

	5.6 Importing Profile Database
	5.7 Analyzing Saved Profile Session
	5.8 Using Saved Profile Configuration
	5.9 Settings
	5.10 Shortcut Keys

	Chapter 6 Getting Started with AMD uProf CLI
	6.1 Overview
	6.2 Starting a CPU Profile
	6.2.1 List of Predefined Sample Configurations
	6.2.2 Profile Report

	6.3 Starting a Power Profile
	6.3.1 System-wide Power Profiling (Live)

	6.4 Collect Command
	6.4.1 Options
	6.4.2 Windows Specific Options
	6.4.3 Linux Specific Options
	6.4.4 Examples

	6.5 Report Command
	6.5.1 Options
	6.5.2 Windows Specific Options
	6.5.3 Linux Specific Options
	6.5.4 Examples

	6.6 Translate Command
	6.6.1 Options
	6.6.2 Windows Specific Options
	6.6.3 Linux Specific Options
	6.6.4 Examples

	6.7 Timechart Command
	6.7.1 Options
	6.7.2 Examples

	6.8 Diff Command
	6.8.1 Profile Comparison Eligibility Criteria
	6.8.2 Options
	6.8.3 Examples

	6.9 Profile Command
	6.9.1 Options
	6.9.2 Windows Specific Options
	6.9.3 Linux Specific Options
	6.9.4 Examples

	6.10 Info Command
	6.10.1 Options
	6.10.2 Examples

	Chapter 7 Performance Analysis
	7.1 CPU Profiling
	7.2 Analysis with Time-based Profiling
	7.2.1 Configuring and Starting Profile
	7.2.2 Analyzing Profile Data

	7.3 Analysis with Event-based Profiling
	7.3.1 Configuring and Starting Profile
	7.3.2 Analyzing Profile Data

	7.4 Analysis with Instruction-based Sampling
	7.4.1 Configuring and Starting Profile
	7.4.2 Analyzing Profile Data

	7.5 Analysis with Call Stack Samples
	7.5.1 Flame Graph
	7.5.2 Call Graph

	7.6 Profiling a Java Application
	7.6.1 Launching a Java Application
	7.6.2 Attaching a Java Process to Profile
	7.6.3 Java Source View
	7.6.4 Java Call Stack and Flame Graph

	7.7 Cache Analysis
	7.7.1 Supported Metrics
	7.7.2 Cache Analysis Using GUI
	7.7.3 Cache Analysis Using CLI

	7.8 Custom Profile
	7.8.1 Configuring and Starting Profile
	7.8.2 Analyzing Profile Data

	7.9 Advisory
	7.9.1 Confidence Threshold
	7.9.2 Issue Threshold

	7.10 ASCII Dump of IBS Samples
	7.11 Branch Analysis
	7.12 Export Session
	7.13 Limitations

	Chapter 8 Performance Analysis (Linux)
	8.1 Threading Analysis
	8.1.1 Threading Analyis Using CLI
	8.1.2 pthread Synchronization APIs
	8.1.3 libc System Call Wrapper APIs
	8.1.4 Timeline Analysis GUI in Linux

	8.2 OpenMP Analysis
	8.2.1 Profiling OpenMP Application using GUI
	8.2.2 Profiling OpenMP Application Using CLI
	8.2.3 Environment Variables
	8.2.4 Limitations

	8.3 MPI Profiling
	8.3.1 Collecting Data Using CLI
	8.3.2 Analyzing the Data with CLI
	8.3.3 Analyze the Data with GUI
	8.3.4 Limitations

	8.4 Profiling Support on Linux for perf_event_paranoid Values
	8.5 Profiling Linux System Modules
	8.6 Profiling Linux Kernel
	8.6.1 Enabling Kernel Symbol Resolution
	8.6.2 Downloading and Installing Kernel Debug Symbol Packages
	8.6.3 Build Linux kernel with Debug Symbols
	8.6.4 Analyzing Hotspots in Kernel Functions
	8.6.5 Linux Kernel Callstack Sampling
	8.6.6 Constraints

	8.7 Kernel Block I/O Analysis
	8.7.1 Kernel Block I/O Analysis Using CLI

	8.8 GPU Offloading Analysis (GPU Tracing)
	8.8.1 GPU Offload Analysis Using CLI

	8.9 GPU Profiling
	8.9.1 GPU Profiling Using CLI

	8.10 Other OS Tracing Events
	8.10.1 Tracing Page Faults and Memory Allocations Using CLI
	8.10.2 Tracing Function Call Count using CLI

	8.11 MPI Trace Analysis
	8.11.1 MPI Light-weight Tracing Using CLI
	8.11.2 MPI Full Tracing Using CLI
	8.11.3 MPI FULL Tracing Using GUI

	Chapter 9 Power Profile
	9.1 Overview
	9.2 Metrics
	9.3 Using Profile through GUI
	9.3.1 Configuring a Profile
	9.3.2 Analyzing a Profile

	9.4 Using CLI to Profile
	9.4.1 Examples

	9.5 AMDPowerProfileAPI Library
	9.5.1 Using the APIs

	9.6 Limitations

	Chapter 10 Remote Profiling
	10.1 Overview
	10.2 Setting up Authorization
	10.3 Launching AMDProfilerService
	10.4 Connecting to Remote Target
	10.5 Limitations

	Chapter 11 AMD uProf Virtualization Support
	11.1 OverView
	11.2 CPU Profiling
	11.2.1 Profiling of Guest VM from Guest VM
	11.2.2 Profiling of Guest VM from Host System (KVM Hypervisor)
	11.2.3 Preparing Host system to Profile Guest Kernel Modules
	11.2.4 AMD uProf CLI with Profiling Options
	11.2.5 Examples

	11.3 AMDuProfPcm
	11.4 AMDuProfSys

	Chapter 12 Profile Control APIs
	12.1 AMDProfileControl APIs
	12.1.1 CPU Profile Control APIs
	12.1.2 Using the APIs
	12.1.3 Compiling Instrumented Target Application
	12.1.4 Profiling Instrumented Target Application
	12.1.5 Limitations

	Chapter 13 Reference
	13.1 Preparing an Application for Profiling
	13.1.1 Generating Debug Information on Windows
	13.1.2 Generating Debug Information on Linux

	13.2 CPU Profiling
	13.2.1 Hardware Sources
	13.2.2 Profiling Concepts
	13.2.3 Profile Types
	13.2.4 Predefined Core PMC Events
	13.2.5 IBS Derived Events

	13.3 Useful URLs

