AMD L1

uProf User Guide

Publication # 57368 Revision # 4.2
Issue Date January 2024

Advanced Micro Devices T\

© 2024 Advanced Micro Devices Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice.
While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies,
omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this
information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or
completeness of the contents of this document, and assumes no liability of any kind, including the implied
warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or
use of AMD hardware, software or other products described herein. No license, including implied or arising by
estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the
purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's
Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.
Dolby is a trademark of Dolby Laboratories.

ENERGY STAR is a registered trademark of the U.S. Environmental Protection Agency.

HDMI is a trademark of HDMI Licensing, LLC.

HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.

Microsoft, Windows, Windows Vista, and DirectX are registered trademarks of Microsoft Corporation.
MMX is a trademark of Intel Corporation.

OpenCL is a trademark of Apple Inc. used by permission by Khronos.

PCle is a registered trademark of PCI-Special Interest Group (PCI-SIG).

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

Dolby Laboratories, Inc.

Manufactured under license from Dolby Laboratories.

Rovi Corporation

This device is protected by U.S. patents and other intellectual property rights. The use of Rovi Corporation's copy
protection technology in the device must be authorized by Rovi Corporation and is intended for home and other limited
pay-per-view uses only, unless otherwise authorized in writing by Rovi Corporation.

Reverse engineering or disassembly is prohibited.

USE OF THIS PRODUCT IN ANY MANNER THAT COMPLIES WITH THE MPEG-2 STANDARD IS EXPRESSLY
PROHIBITED WITHOUT A LICENSE UNDER APPLICABLE PATENTS IN THE MPEG-2 PATENT PORTFOLIO,
WHICH LICENSE IS AVAILABLE FROM MPEG LA, L.L.C., 6312 S. FIDDLERS GREEN CIRCLE, SUITE 400E,
GREENWOOD VILLAGE, COLORADO 80111.

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide
Contents

Revision Historycoiuiiiiiiiiiiiiiiiitiinreneeenreosessssssssssssssnssnsons 17
About this Documenti.iitiiiiiiiiiiiiitiiieieeneeseesessscssssscnscnnnns 18
Intended Audience. 18
CONVENtIONSo\ttt et e 18
AbDIeviations.ot 18
Terminology.ottt 20

Part 1:
Introduction..........coiitiiiiiiiiiiiiiiiiiiieennneennneanasl
Chapter 1 Introductionc.iuiiuiitiiiiiiiierneeeeeneensenscnsenssnsonss 2
1.1 OVEIVIEW . . oottt et e e e e e e e e 2
1.2 Specification 3
1.2.1 Processors 3
1.2.2 Operating SySteMS oottt 3
1.2.3 Compilers and Application Environment 3
1.2.4 Virtualization Support 4
1.2.5 Container SUPPOTto vt e 4
1.3 Installing AMD uProf 5
1.3.1 WINAOWS . . .o 5
1.3.2 LUK . . 5
1.33 FreeBSD 7
1.4 Sample Programsttt 7
1.5 SUPPOTt .. 7

Part 2:
System ANnalysiS. . ..ovviiiiiiiiiiiiiiiiieessssssnncsnnnnnnnssssd
Chapter 2 Getting started with AMDuProfPemottt 9
2.1 OVEIVIEW .« . oottt e e e e e e e e e e e e 9
2.1.1 Prerequisite(S) . ..o vvi e e 9
2.2 OPLIONS . vttt ittt e 10
23 Commands 24

Contents 3

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024
24 Examples 25
2.4.1 Linux and FreeBSD 25
242 WiIndows . ..o 26
2.5 BIOS Settings - Known Behavior 28
2.6 Monitoring without Root Privileges 28
2.7 Roofline Model 29
2.8 Pipeline Utilization 31
Chapter 3 Getting Started with AMDuProfSyscoiiiiiiiiiiiiiiiiininnenns 34
3.1 OVEIVIEW . . ot ittt e e e e e e e e e e e 34
3.2 Supported Platforms 34
33 Supported Hardware Countersc.iitirininiinennnnnnnn.. 34
34 Supported Operating SyStemsottt 34
3.5 SOt U .o 35
3.5.1 LInuUX . . 35
3.5.2 Windows 35
3.6 OPLIONS ..ottt 36
3.6.1 GENETIC . .ttt et e e 36
3.6.2 Collect Commandt 37
3.6.3 Report Command i 38
3.7 Examples 38
3.8 Limitationso 39
Part 3:
Application Analysis.ccviiiiiiiiiirrnnnteeiiieeeeessss.dl
Chapter4 Workflow and Key Conceptsciitiiiiiiiiiernrenrcnrcnssnnnns 42
4.1 Workflow . . 42
4.1.1 Collect Phase 42
4.1.2 Translate and Report Phases i, 44
4.13 Analyze Phase 44
4.2 Predefined Sampling Configuration, 44
4.3 Predefined View Configuration it inennenenan.. 46
Chapter 5 Getting Started with AMD uProf GUI iiiiiiiiiiiiiinnnnn, 50

4 Contents

AMDA1

57368 Rev.4.2 January 2024

5.1 User Interface
5.2 Launching GUI
53 Configure a Profile

53.1
532
533
534

5.4 Translation Progress
5.5 Analyze the Profile Data

5.5.1
552
553
554
555
5.5.6
5.5.7
5.5.8
5.59

5.6 Importing Profile Database
5.7 Analyzing Saved Profile Session
5.8 Using Saved Profile Configuration
59 Settings
5.10 Shortcut Keys
Chapter 6 Getting Started with AMD uProf CLI
6.1 Overview
6.2 Starting a CPU Profile

6.2.1
6.2.2

6.3 Starting a Power Profile

6.3.1

Select Profile Target
Select Profile Type
Advanced Options
Start Profile

Overview of Performance Hotspots
Thread Concurrency Graph
Function HotSpots

Process and Functions

Source and Assembly

Top-down Callstack
Flame Graph
CallGraph
IMIX View

List of Predefined Sample Configurations
Profile Report

System-wide Power Profiling (Live)
6.4 Collect Command

AMD uProf User Guide

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024
6.4.1 OPLIONS . o .ttt 84
6.4.2 Windows Specific Optionso ... 87
6.4.3 Linux Specific Optionsttt 88
6.4.4 Examples 91

6.5 ReportCommand i 94
6.5.1 OPtIONS . ottt 95
6.5.2 Windows Specific Options 97
6.5.3 Linux Specific Optionsttt i 98
6.5.4 Examples 98

6.6 Translate Command 99
6.6.1 OPLIONS .« ottt 100
6.6.2 Windows Specific Optionsttt 101
6.6.3 Linux Specific Optionsttt 101
6.6.4 Exampleso e 102

6.7 Timechart Command e 102
6.7.1 OPLIONS .ottt e 103
6.7.2 Examples 103

6.8 Diff Command e 104
6.8.1 Profile Comparison Eligibility Criteria 105
6.8.2 OPtIONS . ottt e 105
6.8.3 Exampleso 107

6.9 ProfileCommand 109
6.9.1 OPtIONS . ottt e 109
6.9.2 Windows Specific Options, 115
6.9.3 Linux Specific Optionsttt 116
6.9.4 Examples e 119

6.10 InfoCommand i 122
6.10.1 OPHIONS . ottt 122
6.10.2 Exampleso 123

Chapter 7 Performance Analysiscoitiiiiiiiiiiiiiiiiniinrenrenrenrennns 125

7.1 CPU Profiling e e e 125

6 Contents

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide
7.2 Analysis with Time-based Profiling 127
7.2.1 Configuring and Starting Profile 127
7.2.2 Analyzing Profile Data 128

7.3 Analysis with Event-based Profiling 128
7.3.1 Configuring and Starting Profile 128
7.3.2 Analyzing Profile Data 129

7.4 Analysis with Instruction-based Sampling 130
7.4.1 Configuring and Starting Profile 130
7.4.2 Analyzing Profile Data 131

7.5 Analysis with Call Stack Samples 131
7.5.1 Flame Graph 132
7.5.2 Call Graph e 133

7.6 Profiling a Java Application 134
7.6.1 Launching a Java Application 134
7.6.2 Attaching a Java Processto Profile 135
7.6.3 Java Source VIEWo 135
7.6.4 Java Call Stack and Flame Graph 136

7.7 Cache Analysist 137
7.7.1 Supported MEtricsot 138
7.7.2 Cache AnalysisUsing GUIL 138
7.7.3 Cache Analysis Using CLI i, 139

7.8 Custom Profile 141
7.8.1 Configuring and Starting Profile 141
7.8.2 Analyzing Profile Data 144

7.9 AAVISOTY .ottt 145
7.9.1 Confidence Threshold 145
7.9.2 Issue Threshold 145
7.10 ASCH Dump of IBS Samples 146
7.11 Branch Analysis 146
712 EXPOTt SESSION . . oottt it ettt e e e 148
713 LIMItationst 148
Contents 7

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024
Chapter 8 Performance Analysis (LINUX)ovuviiiiiiiiriiiiiiiirneneneennnens 150
8.1 Threading Analysisttt e 150
8.1.1 Threading Analyis Using CLI.......... 150
8.1.2 pthread Synchronization APIs 154
8.1.3 libc System Call Wrapper APIs i .. 154
8.1.4 Timeline AnalysisGUIinLinux 156

8.2 OpenMP Analysisooii 160
8.2.1 Profiling OpenMP Applicationusing GUI 161
8.2.2 Profiling OpenMP Application Using CLI 162
823 Environment Variables 164
8.2.4 Limitations 165

8.3 MPI Profiling e 165
8.3.1 Collecting Data Using CLI 166
8.3.2 Analyzingthe Datawith CLI 167
8.3.3 Analyze the Datawith GUL 168
8.3.4 Limitationsot 168

8.4 Profiling Support on Linux for perf event paranoid Values 168
8.5 Profiling Linux System Modules 169
8.6 Profiling Linux Kernel i 169
8.6.1 Enabling Kernel Symbol Resolution 169
8.6.2 Downloading and Installing Kernel Debug Symbol Packages 170
8.6.3 Build Linux kernel with Debug Symbols 171
8.6.4 Analyzing Hotspots in Kernel Functions 171
8.6.5 Linux Kernel Callstack Sampling 171
8.6.6 ConStraintsottt 172

8.7 Kernel Block I/O Analysis i 172
8.7.1 Kernel Block I/0 Analysis Using CLI 173

8.8 GPU Offloading Analysis (GPU Tracing), 174
8.8.1 GPU Offload Analysis Using CLI 175

8.9 GPUProfiling 177
8.9.1 GPU Profiling Using CLI i 178

8 Contents

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide
8.10 Other OS Tracing Events i 180

8.10.1 Tracing Page Faults and Memory Allocations Using CLI 180

8.10.2 Tracing Function Call Countusing CLI 181

8.11 MPITrace Analysisttt e 182

8.11.1 MPI Light-weight Tracing Using CLI 183

8.11.2 MPI Full Tracing Using CLI 185

8.11.3 MPI FULL Tracing Using GUL i, 190
Chapter9 Power Profilecoiuiiiiiiiiiiiiiiiiiiiiittnrenrsnssnsnnnns 195
9.1 OVEIVIEW . . oottt e e e e e e e e e e e e e e 195

0.2 MELIICS .« ottt ittt 195

9.3 Using Profile through GUI 197

9.3.1 Configuringa Profile 197

9.3.2 AnalyzingaProfile 198

9.4 Using CLItoProfile e 199

9.4.1 Examples 200

9.5 AMDPowerProfileAPI Library 201

9.5.1 Usingthe APIs 201

0.6 LImitationst 202
Chapter 10 Remote Profilingt iiiiiiiiiiiiiiiiiiiiiiinrenrenennnns 203
TO.T OVEIVIEW . ottt et et e e e e e e e e e e e e e 203

10.2 Setting up AuthOorizationttt e 203

10.3 Launching AMDProfilerService 204

10.4 Connecting to Remote Target i, 205

10.5 LIMItationsottt ettt e e e e 206
Chapter 11 AMD uProf Virtualization Supportciiiiiiiiiiiiininnrnnnns 208
LT1.T 0 OVEIVIBW . .ottt e e e e e e e e e e e 208

11.2 CPUProfiling e 209

11.2.1 Profiling of Guest VM from Guest VM 209

11.2.2 Profiling of Guest VM from Host System (KVM Hypervisor) 210

11.2.3 Preparing Host system to Profile Guest Kernel Modules 210

11.24 AMD uProf CLI with Profiling Options 210

Contents 9

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024
11.2.5 Exampleso 211

11.3 AMDUProfPemo 212

11.4 AMDUPIOfSYS . ..o 212
Chapter 12 Profile Control APIso iiiiiiiii it it iiiiitiiiiieeannnns 213
12.1 AMDProfileControl APIs 213

12.1.1 CPU Profile Control APIs 213

12.1.2 Usingthe APIs 214

12.1.3 Compiling Instrumented Target Application 215

12.1.4 Profiling Instrumented Target Application 215

12.1.5 Limitations 215

Chapter 13 Referencecoiuiiuiieiieinereeseesessessnssnssnssnssnssnsas 216
13.1 Preparing an Application for Profiling 216

13.1.1 Generating Debug Information on Windows 216

13.1.2 Generating Debug Informationon Linux 217

13.2 CPUProfiling e e 217

13.2.1 Hardware Sources 218

13.2.2 Profiling Conceptsot 219

13.2.3 Profile Types 220

13.2.4 Predefined Core PMC Events i, 221

13.2.5 IBS Derived Events 235

133 Useful URLS e e e e e 248

10 Contents

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide
List of Tables

Table 1. CONVENTIONS. . . o ottt ettt e e e e e e e e e e 18
Table 2. ADBDIEVIAtIONSo 18
Table 3. Terminologyot 20
Table 1. User Interfacet 2
Table 2. AMDUPTofPcm Optionso e 10
Table 3. Performance Metrics for AMD EPYC™ “Zen2” 13
Table 4. Performance Metrics for AMD EPYC™ “Zen3” 16
Table 5. Performance Metrics for AMD EPYC™ “Zen4” 20
Table 6. AMDUPTofPem Optionsottt 24
Table 7. Level-1 MetriCs.ottt e e e e e 31
Table 8. Level-2 MetriCs. . . .ot 32
Table 9. AMDUProfSys Generic Options vvt ittt e 36
Table 10. AMDuProfSys Collect Command Options.vtiririnennenen.n.. 37
Table 11. AMDuProfSys Report Command Options, 38
Table 12. Sampled Data 43
Table 13. Predefined Sampling Configurationsc.o it ininrnrenennn.. 44
Table 14. Assess Performance Configurationso ittt 46
Table 15. Threading Configuration.ttt 46
Table 16. Investigate Data Access Configurations.ot 46
Table 17. Investigate Branch Configurationst 47
Table 18. Assess Performance (Extended) Configurations. 47
Table 19. Investigate Instruction Access Configurations 47
Table 20. Investigate CPI Configurations.ttt 48
Table 21. Instruction Based Sampling Configurations. 48
Table 22. Summary OVEIVIEWttt e e et e 60
Table 23. Shortcut Keys 77
Table 24. Supported Commands. i 78
Table 25. AMDuProfCLI Collect Command Optionscciiriirinnenn ... 84
Table 26. AMDuProfCLI Collect Command — Windows Specific Options. 87

List of Tables 11

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024
Table 27. AMDuProfCLI Collect Command — Linux Specific Options. 88
Table 28. AMDuProfCLI Report Command Options.couitirininennenenn.. 95
Table 29. AMDuProfCLI Report Command - Windows Specific Options 97
Table 30. AMDuProfCLI Report Command - Linux Specific Options 98
Table 31. AMDuProfCLI Translate Command Options. 100
Table 32. Translate Command - Windows SpecificOptions 101
Table 33. Translate Command - Linux SpecificOptions 101
Table 34. AMDuProfCLI Timechart Command Options., 103
Table 35. AMDuProfCLI diff Command Optionst .. 105
Table 36. AMDuProfCLI profile Command Options., 109
Table 37. AMDuProfCLI Windows profile Command Options. 115
Table 38. AMDuProfCLI Linux profile Command Options. 116
Table 39. AMDuProfCLI Info Command Options.t .. 122
Table 40. AMDuProfCLI Info Command - Linux Specific Options 123
Table 41. IBS OP Derived MetriCsot e e e e e 138
Table 42. Sort-by MetriC.ot 140
Table 43. Supported CPU Events e 158
Table 44. CPU Trace Categories« vttt ettt e e e e e 158
Table 45. Support Matrixt e 160
Table 46. MPI Profiling Support MatriX. e 166
Table 47. Profiling perf event paranoid Valueson Linux............ 168
Table 48. T/O OPerations.ottt ettt e et e e et e 172
Table 49. Supported Interfaces for GPU Tracing, 174
Table 50. Supported Events for GPU Profiling. i 177
Table 51. Supported Metrics for GPU Profiling. 178
Table 52. Supported Events for OS Tracing. 180
Table 53. Support Matrixt e 183
Table 54. List of Supported MPI APIs for Light-weight Tracing. 183
Table 55. MPIL APIs. . ..o 186
Table 56. Family 17h Model 00h — OFh (AMD Ryzen™, AMD Ryzen ThreadRipper™™, and 1%
Gen AMD EPYC™)195

12 List of Tables

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide
Table 57. Family 17h Model 10h — 1Fh (AMD RyzenTM and AMD RyzenTM PRO APU)196
Table 58. Family 17h Model 70h — 7Fh (3" Gen AMD Ryzen™) 196
Table 59. Family 17h Model 30h — 3Fh (EPYC 7002). oot 196
Table 60. Family 19h Model Oh — 2Fh (EPYC 7003 and EPYC 9000) 197
Table 61. AMDProfilerService Optionsttt i e 204
Table 62. AMD uProf Virtualization Support. 208
Table 63. AMD uProf CLI Collect Command Optionsciuiinienen.... 210
Table 64. Predefined Core PMC Events. i, 221
Table 65. Core CPU MEtIiCS.o v it e e e e e e e 233
Table 66. IBS Fetch Events. e e 236
Table 67. IBS Fetch Metricsottt e e e et e e 238
Table 68. IBS Op Events. e e 239
Table 69. IBS Op Metrics for AMD “Zen4” and AMD “Zen3” Server Platforms. 245

List of Tables 13

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024
List of Figures

Figure 1. Sample Roofline Chart e 31
Figure 2. Sample Report.o e 32
Figure 3. AMD uProf GUI. 50
Figure 4. AMD uProf Welcome Screen. 51
Figure 5. Start Profiling - Select Profile Target. 53
Figure 6. Start Profiling - Select Profile Configuration. 54
Figure 7. Start Profiling - Advanced Options 1 55
Figure 8. Start Profiling - Advanced Options 2 it 56
Figure 9. Profile Data Collectiont 57
Figure 10. Translation Progress e 58
Figure 11. Summary - Hot Spots Screen e 59
Figure 12, OS TracCe oottt e e e e e 61
Figure 13, GPU Traceo e e e e 61
Figure 14. Summary - Thread Concurrency Graph 63
Figure 15. ANALYZE - Function Hotspots. 64
Figure 16. Analyze - MEtriCsottt 65
Figure 17. SOURCES - Source and Assembly 67
Figure 18. Top-down Callstack 68
Figure 19. ANALYZE -Flame Graph. e 69
Figure 20. ANALYZE-Call Graph. e 70
Figure 21. IMIX VieW . ..o e e 71
Figure 22. Import Session — Importing Profile Database. 72
Figure 23. PROFILE - Recent Session(S)uutnimtttin i 73
Figure 24. PROFILE - Saved Configurationsttt ininnnenen .. 74
Figure 25. SETTINGS - Preferencest e e 75
Figure 26. SETTINGS - Symbols e 75
Figure 27. SETTINGS - Source Data.ot 76
Figure 29. Collectand Report Commands. 79
Figure 30. Supported Predefined Configurationson Linux. 80
14 List of Figures

AMDA1

57368 Rev.4.2 January 2024

Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.

Supported Predefined Configurations on Windows
Output of timechart --list Command

Execution of timechart

Time-based Profile — Configure
Event-based Profile — Configure
IBS Configuration.
Start Profiling - Advanced Options
ANALYZE - Flame Graph
ANALYZE - Call Graph
Java Method - Source View
Java Application - Flame Graph
Cache Analysis.......................
Cache Analysis - Summary Sections
Cache Analysis - Detailed Report
CPUTrace..........coooviiiea..
GPUTracec.coiiiin...
Custom Config - Added Categories
CPI Metric - Threshold-based Performance
Branch Analysis Summary
Trace Report.........................
Timeline Analysis GUI in Linux
Enable OpenMP Tracing
HPC-Overview

HPC - Parallel Regions

An OpenMP Report
Disk I/0O Summary Tables
ANALYZE - Block I/O Stats
GPU Tracing Report.
GPU Profile Report.
Pagefault and Memory Allocation Summary

Function Count Summary

AMD uProf User Guide

List of Figures

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure §2.
Figure §3.

LWT Report . ..o 185
MPI Communicator Summary Table 188
MPI Rank Summary Table......... 188
MPI API Summary Table. i 189
MPI Communication MatriX.ottt e 189
MPI Collective API Summary Table 189
Import Profile Session 190
MPI Communication MatriX.ottt e 190
MPI Rank Timeline e 191
MPIP2P AP Summary e 192
MPI Collective APT Summary 192
Live System-wide Power Profile 198
Timechart Page. 199
-list Command Output. e 200
Timechart Run 200
Client ID . .o 203
Remote Profiling Connection Establishment 204
Selecting IP. 205
Connect to Remote Machine. i 205
Remote Target Data e 206
Disconnect Button. 206
AMDTClassicMatMul Property Page i, 217

16

List of Figures

AMDA1

57368 Rev.4.2 January 2024

Revision History

AMD uProf User Guide

Date Revision | Description

January 2024 4.2 Made some minor edits and updates

August 2023 4.1 Included AMD uProf 4.1 features

November 2022 | 4.0 Included AMD uProf 4.0 features

July 2022 3.6 Added the following:
* Chapters 11 and 12
* Sections 1.2.4,1.2.5,3.4,4.2.1,4.3,5.4.8, 6.6, 8.10.2, and 13.1.5
Deleted Supported Counter categories for older APU families in chapter 9
Performed general edits and included release related updates

January 2022 3.5 Included AMD uProf 3.5 features

April 2021 Initial Documented AMD uProf 3.4 features

Revision History

17

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

About this Document

This document describes how to use AMD uProf to perform CPU, GPU, and power analysis of
applications running on Windows®, Linux®, and FreeBSD® operating systems on AMD processors.

The latest version of this document is available in the AMD uProf web site (https://www.amd.com/en/
developer/uprof-html).

Intended Audience

This document is intended for the software developers and performance tuning experts who want to
improve the performance of their application. It assumes prior understanding of CPU architecture,
concepts of threads, processes, load modules, and familiarity with performance analysis concepts.

Conventions

The following conventions have been used in this document:

Table 1. Conventions
Convention Description
GUI element A Graphical User Interface element such as menu name or button
> Menu item within a Menu
[Contents are optional in syntax

Preceding element can be repeated

| Denotes “or”, like two options are not allowed together

File name Name of a file or path or source code snippet

Command Command name or command phrase

Hyperlink Links to external web sites
Abbreviations

The following abbreviations have been used in this document:
Table 2. Abbreviations

Abbreviation Description
APERF Actual Performance Frequency Clock Counter
ASLR Address Space Layout Randomization
CCD Core Complex Die that can contain one or more CCX(s) and GMI2
Fabric port(s) connecting to IOD

18 About this Document

https://www.amd.com/en/developer/uprof.html
https://www.amd.com/en/developer/uprof.html

AMDA1

57368 Rev.4.2 January 2024

Table 2. Abbreviations

AMD uProf User Guide

Abbreviation Description
CLI Command Line Interface
CPI Cycles Per Instruction
CSvV Comma Separated Values format
DC Data Cache
DIMM Dual In-line Memory Module
DRAM Dynamic Random Access Memory
DTLB Data Translation Lookaside Buffer
EBP Event Based Profiling, uses Core PMC events
GUI Graphical User Interface
IBS Instruction Based Sampling
IC Instruction Cache
10D 10 Die
IPC Instructions Per Cycle
ITLB Instruction Translation Lookaside Buffer
MPERF Maximum Performance Frequency Clock Counter
MSR Model Specific Register
NB Northbridge
oS Operating System
POFreq PO State Frequency
PMC Performance Monitoring Counter
PTI Per Thousand Instructions
RAPL Running Average Power Limit
SMU System Management Unit
TBP TimeBased Profiling
TSC Time Stamp Counter
UMC Unified Memory Controllers

Up to 8 UMC:s, each supporting one DRAM channel per socket; each
channel can have up to 2 DIMMs

About this Document

19

AMDA1

AMD uProf User Guide

Terminology

57368 Rev.4.2 January 2024

The following terms have been used in this document:

Table 3. Terminology

Term Description

AMD uProf The product name uProf.

AMDuProfGUI The name of the graphical user interface tool.

AMDuProfCLI The name of the command line interface tool.

AMDuProfPcm The name of the command line interface tool for System Analysis.

AMDuProfSys The name of the python based command line interface tool for System
Analysis.

Client Instance of AMD uProf or AMDuProfCLI running on a host system.

Core The logical core number, a core can contain one or two CPU(s) depending
on the SMT configuration.

Core Complex (CCX) Consists of one or many cores and a cache system.

CPU Logical CPU numbers as considered by the operating system.

Host system

System in which the AMD uProf client process runs.

L1D, L1I Cache

CPU exclusive data and instruction cache.

L2 Cache Shared by all the CPUs within the core.
L3 Cache Shared by all the CPUs within CCX.
Node Logical NUMA node.

Performance Profiling (or) CPU

Identify and analyze the performance bottlenecks. Performance Profiling

Profiling and CPU Profiling denotes the same.
Socket The logical socket number, a socket can contain multiple nodes.
System Analysis Refers to AMDuProfPcm or AMDuProfSys tools.

Target system

System in which the profile data is collected.

20

About this Document

AMDA1
January 2024 AMD uProf User Guide

Part 1:
Introduction

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Chapter 1 Introduction

1.1 Overview

AMD uProf is a performance analysis tool for applications running on Windows and Linux operating
systems. It allows developers to understand and improve the runtime performance of their
application.

AMD uProf offers the following functionalities:
* Performance Analysis (CPU Profile)
To identify runtime performance bottlenecks of the application.
* System Analysis
To monitor system performance metrics, such as IPC and memory bandwidth.
* Live Power Profile
To monitor thermal and power characteristics of the system.

AMD uProf has the following user interfaces:
Table 1. User Interface

Executable Description Supported OS
AMDuProf GUI to perform CPU and Power Profile | Windows and Linux
AMDuProfCLI CLI to perform CPU and Power Profile Windows, Linux, and FreeBSD
AMDuProfPcm CLI to perform System Analysis Windows, Linux, and FreeBSD
AMDPert/ Python script for System Analysis Windows and Linux
AMDuProfSys.py

AMD uProf can effectively be used to:

* Analyze the performance of one or more processes/applications.

* Track down the performance bottlenecks in the source code.

» Identify ways to optimize the source code for better performance and power efficiency.
* Examine the behavior of kernels, drivers, and system modules.

* Observe system level thermal and power characteristics.

* Observe system metrics, such as IPC and memory bandwidth.

2 Introduction Chapter 1

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

1.2 Specification

AMD uProf supports the following specifications. For a detailed list of supported processors and
operating systems, refer to the AMD uProf Release Notes available at:

https://www.amd.com/en/developer/uprof.htm!

1.2.1 Processors

* AMD “Zen”-based CPU and APU Processors
« AMD Instinct™ MI100 and MI200 accelerators (for GPU kernel profiling and tracing)

« Intel® Processors (Time based profiling only)

1.2.2 Operating Systems

AMD uProf supports the 64-bit versions of the following operating systems:
* Microsoft

— Windows 10 and 11

— Windows Server 2019 and 2022
* Linux

— Ubuntu 16.04 and later

— RHEL 7.0 and later

— CentOS 7.0 and later

— openSUSE Leap 15.0

— SLES 12 and 15
* FreeBSD 12.2 and later

For OS support on AMD EPYC™ processors, refer to AMD website (Attps://www.amd.com/en/
processors/epyc-minimum-operating-system).

1.2.3 Compilers and Application Environment

AMD uProf supports the following application environments:
* Languages

— Native languages: C, C++, Fortran, and Assembly

— Non-native languages: Java and C#

Chapter 1 Introduction 3

https://www.amd.com/en/processors/epyc-minimum-operating-system
https://www.amd.com/en/developer/uprof.html

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

* Programs compiled with

— Microsoft compilers, GNU compilers, and LLVM
— AMD Optimizing C/C++ and Fortran Compilers (AOCC)
— Intel Compilers (ICC)

« Parallelism

— OpenMP
— MPI
* Debug info formats: PDB, COFF, DWARF, and STABS

* Applications compiled with and without optimization or debug information
» Single-process, multi-process, single-thread, and multi-threaded applications
* Dynamically linked/loaded libraries
* POSIX development environment on Windows

— Cygwin

— MinGW
1.2.4 Virtualization Support

AMD uProf can be used on virtualized environments. There could be limitations related to access to
hardware performance counters. For more information, refer to “AMD uProf Virtualization Support”
on page 208. The following virtualized environments are supported:

» VMware ESXi
e Linux KVM
* (Citrix Xen

* Microsoft Hyper-V

1.2.5 Container Support

AMD uProf CPUProfiler can be used for analysis of applications running inside the Docker container
environments. This is supported only on Linux platforms. Choose one of the following approaches
for application analysis:

* Run AMD uProf inside the Docker container to analyze the application. CAP_SYS ADMIN
permission (docker run --cap-add=CAP_SYS ADMIN) is required to enable profiling. Both CLI
and GUI based profiling and analysis supported in this mode.

4 Introduction Chapter 1

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

* Run AMD uProf CLI outside the Docker container to profile and analyze the target application
running in the container:

— Attach uProf CLI to the containerized process using the --pid option during collection.
Alternatively, collect the system-wide data and filter by PID during report generation.

— During report generation, provide the path to the binary and source code (--bin-path and --
src-path) of the profiled application running in the container. AMD uProf GUI doesn't support
profiling and analysis in this mode.

1.3 Installing AMD uProf

Download the latest version of the AMD uProf installer package for the supported operating systems
from the AMD portal (https://www.amd.com/en/developer/uprof.-html). You can install it using one of
the following methods.

1.3.1 Windows

Run the 64-bit Windows installer binary AMDuProf-x.y.z.exe.
After the installation is complete, the executables, libraries, and the other required files are installed
in the folder C:\Program Files\AMD\AMDuProf\.

1.3.2 Linux

1.3.2.1 Installing Using a tar File

Extract the tar.bz2 binary file and install AMD uProf using the following command:
$ tar -xf AMDuProf_Linux_x64_x.y.z.tar.bz2

Note: The Power Profiler Linux Driver must be installed manually.

1.3.2.2 Installing Using a RPM Package (RHEL)

Install the AMD uProf RPM package by using the rpm or yum command:

$ sudo rpm --install amduprof-x.y-z.x86_64.rpm
$ sudo yum install amduprof-x.y-z.x86_64.rpm

After the installation is complete, the executables, libraries, and the other required files will be
installed in the directory /opt/AMDuProf X.Y-ZZZ/.

1.3.2.3 Installing Using a Debian Package (Ubuntu)

Install the AMD uProf Debian package by using the dpkg command:
$ sudo dpkg --install amduprof_x.y-z_amd64.deb

After the installation is complete, the executables, libraries, and the other required files will be
installed in the directory /opt/AMDuProf X.Y-ZZZ/.

Chapter 1 Introduction 5

https://www.amd.com/en/developer/uprof.html

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

1.3.2.4 Installing Power Profiling Driver on Linux

While installing AMD uProf using RPM and Debian installer packages, the Power Profiler Linux
Driver build is generated and installed automatically. However, if you downloaded the AMD uProf
tar.bz2 archive, you must install the Power Profiler Linux Driver manually.

The GCC and MAKE software packages are prerequisites for installing Power Profiler Driver. If you
do not have these packages, you can install them using the following commands:

On RHEL and CentOS distros:

$ sudo yum install gcc make

On Debian/Ubuntu distros:

$ sudo apt install build-essential

Execute the following commands:

$ tar -xf AMDuProf_Linux_x64 x.y.z.tar.bz2
$ cd AMDuProf_ Linux_x64_x.y.z/bin
$ sudo ./AMDPowerProfilerDriver.sh install

Installer will create a source tree for Power Profiler Driver in the directory /usr/src/
AMDPowerProfiler-<version>. All the source files required for module compilation are in this
directory and under MIT license.

To uninstall the driver run the following commands:

$ cd AMDuProf_Linux_x64_x.y.z/bin
$ sudo ./AMDPowerProfilerDriver.sh uninstall

1.3.2.5 Linux Power Profiling Driver Support for DKMS

On Linux machines, Power profiling driver can also be installed with Dynamic Kernel Module
Support (DKMS) framework support. DKMS framework automatically upgrades the Power Profiler
Driver module whenever there is a change in the existing kernel. This saves you from manually
upgrading the power profiling driver module. The DKMS package must be installed on target
machines before running the installation steps mentioned in the above section.
AMDPowerProfilerDriver.sh installer script will automatically handle the DKMS related
configuration if the DKMS package is installed on the target machine.

Example (for Ubuntu distros):

$ sudo apt-get install dkms

$ tar -xf AMDuProf_Linux_x64 x.y.z.tar.bz2
$ cd AMDuProf_Linux_x64_x.y.z/bin

$ sudo ./AMDPowerProfilerDriver.sh install

If you upgrade the kernel version frequently, it is recommended to use DKMS for the installation.

1.3.2.6 Installing ROCm

Complete the steps in the ROCm installation guide (https://docs.amd.com/bundle/ROCm-
Installation-Guide-v5.5/page/Introduction _to ROCm_Installation_Guide for Linux.html) to install
AMD ROCm™ v5.5 on the host system.

6 Introduction Chapter 1

https://docs.amd.com/bundle/ROCm-Installation-Guide-v5.5/page/Introduction_to_ROCm_Installation_Guide_for_Linux.html
https://docs.amd.com/bundle/ROCm-Installation-Guide-v5.5/page/Introduction_to_ROCm_Installation_Guide_for_Linux.html

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

After ROCm 5.5 installation, make sure symbolic link of /opt/rocm/ points to /opt/rocm-5.5.0/.
$ 1n -s /opt/rocm-5.5.0/ /opt/rocm/

AMD ROCm v5.5 installation is required for GPU tracing and profiling.
1.3.2.7 Installing BCC and eBPF

Complete the steps on the BCC website (https.//github.com/iovisor/bcc/blob/master/INSTALL.md) to
install it.

After installing BCC, run the following command to validate the BCC installation:

$ cd AMDuProf_Linux_x64_x.y.z/bin
$ sudo ./AMDuProfVerifyBpfInstallation.sh

If you install AMD uProf using RPM/DEB installer, the script is run by the installer and the info
about BCC installation and eBPF (Extended Berkeley Packet Filter) support on the host is provided.

1.3.3 FreeBSD

Extracting the tar.bz2 binary file and install AMD uProf:
$ tar -xf AMDuProf_FreeBSD_x64 x.y.z.tar.bz2

1.4 Sample Programs

A few sample programs are installed along with the product for you to use with the tool:
* Windows

A sample matrix multiplication application
C:\Program Files\AMD\AMDuProf\Examples\AMDTClassicMatMul\bin\AMDTClassicMatMul.exe

* Linux

— A sample matrix multiplication program with makefile
/opt/AMDuUProf_X.Y-ZZZ/Examples/AMDTClassicMat/

— An OpenMP example program and its variants with makefile
/opt/AMDUProf_X.Y-ZZZ/Examples/CollatzSequence_C-OMP/

* FreeBSD

A sample matrix multiplication program with makefile
/<install dir>/AMDuProf_FreeBSD_x64 X.Y.ZZZ/Examples/AMDTClassicMat/

1.5 Support

For support options, the latest documentation, and downloads refer the AMD portal (htps://
www.amd.com/en/developer/uprof.html).

Chapter 1 Introduction 7

https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://www.amd.com/en/developer/uprof.html
https://www.amd.com/en/developer/uprof.html

AMDA1

AMD uProf User Guide

Part 2:
System Analysis

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Chapter 2 Getting started with AMDuProfPcm

2.1 Overview

The System Analysis utility AMDuProfPcm helps to monitor basic performance monitoring metrics
for AMD EPYC™ 7001, AMD EPYC™ 7002, AMD EPYC™ 7003, and AMD EPYC™ 9000 of
family 17h and 19h processors. This utility periodically collects the CPU Core, L3, and DF
performance event count values and reports various metrics. It is supported on Windows, Linux, and
FreeBSD.

2.1.1 Prerequisite(s)

2.1.11 Linux

* AMDuProfPcm requires the MSR driver and either root privileges or read write permissions for
dev/cpu/*/msr devices only when it is used with --msr for data collection.

* NMI watchdog must be disabled (echo 0 > /proc/sys/kernel/nmi_watchdog).

» Set /proc/sys/kernel/perf event paranoid to -1.

* Use the following command to load the msr driver:

$ modprobe msr

* Roofline plotting script (AMDuProfModelling.py) requires python 3.x and python module
"'matplotlib’

2.1.1.2 FreeBSD

AMDuProfPcm uses cpuctl module and requires either root privileges or read write permissions for /
dev/cpuctl* devices.

Synopsis:

AMDUProfPcm [<COMMANDS>] [<OPTIONS>] -- <PROGRAM> [<ARGS>]

<PROGRAM> — Denotes the launch application to be profiled.

<ARGS> — Denotes the list of arguments for the launch application.

Common Usages:

$ AMDuProfPcm -h
AMDuProfPcm -m ipc -c core=0 -d 10 -o /tmp/pmcdata.txt
AMDuProfPcm -m memory -a -d 10 -o /tmp/memdata.txt -- /tmp/myapp.exe

Chapter 2 Getting started with AMDuProfPcm 9

AMDA1

AMD uProf User Guide

2.2 Options

57368 Rev.4.2 January 2024

The following table lists all the options:

Table 2. AMDuProfPcm Options

Option

Description

-h

Displays this help information on the console/terminal.

-m <metric,...>

Metrics to report, the default metric group is 'ipc'.

The supported metric groups and the corresponding metrics are
Platform, OS, and Hypervisor specific.

Run AMDuProfpem -h to get the list of supported metrics.
The following metric groups are supported:

* ipc — reports metrics such as CEF, Utilization, CPI, and IPC

* fp — reports GFLOPS

* 11 — L1 cache related metrics (DC access and IC Fetch miss
ratio)

* 12 — L.2D and L2I cache related access/hit/miss metrics

* 13 — L3 cache metrics like L3 Access, L3 Miss, and Average
Miss latency

* dc — advanced caching metrics such as DC refills by source
(supported only on AMD “Zen3” and AMD “Zen4”
processors)

* memory — approximate memory read and write bandwidths in
GB/s for all the channels

* pcie — PCle bandwidth in GB/s (supported only on AMD
“Zen2” and AMD “Zen4” processors)

* xgmi — approximate xGMI outbound databytes in GB/s for all
the remote links

* dma — DMA bandwidth in GB/s (supported only on AMD
“Zen4” processors)

» swpfdc — software prefetch data cache from various nodes and
CCX (supported only on AMD “Zen3” and AMD “Zen4”
processors)

» hwpfdc — hardware prefetch data cache from various nodes and
CCX (supported only on AMD “Zen3” and AMD “Zen4”
processors)

* pipeline_util — top-down metrics to visualize the bottlenecks in
the CPU pipeline (supported only on AMD “Zen4” processors)

10 Getting started with AMDuProfPcm Chapter 2

AMDA1
57368 Rev.4.2 January 2024 AMD uProf User Guide

Table 2. AMDuProfPcm Options

Option Description

-c <core|cex|13|ced|package>=<n> Collect from the specified core | ccx | ced | package. The default

1s 'core=0".

If 'eex' or '13' is specified:

» The core events will be collected from all the cores of this ccx.

» The 13 and df events will be collected from the first core of this
CCX.

If 'ced’ is specified:

» The core events will be collected from all the cores of this die.

 The I3 events will be collected from the first core of all the
ccx's of this die.

» The df events will be collected from the first core of this die.

If 'package’ is specified:

» The core events will be collected from all the cores of this
package.

» The 13 events will be collected from the first core of all the
ccx's of this package.

» The df events will be collected from the first core of all the die
of this package.

-a Collect from all the cores.

Note: Options -c and -a cannot be used together.

-C Prints the cumulative data at the end of the profile duration.
Otherwise, all the samples will be reported as timeseries data.

-A <system,package, ccd, ccx, core> Prints aggregated metrics at various component level.
The following granularities are supported:

* system — samples from all the cores in the system will be
aggregated

» package — samples from all the cores in the package will be
aggregated and reported for all the packages available in the
system; applicable for multi-package systems.

* ccd —samples from all the cores in CCD will be aggregated and
reported for all the CCDs.

* ccx — samples from all the cores in CCX will be aggregated and
reported for all the CCXGs.

* core — samples from all the cores on which samples are
collected will be reported without aggregation.

Notes:

1. Option -a should be used along with this option to collect samples
from all the cores.

2. Comma separated list of components can be specified.

Chapter 2 Getting started with AMDuProfPcm 11

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Table 2. AMDuProfPcm Options

Option Description
-1 <config file> User defined XML config file that specifies Core|L3|DF counters
to monitor.
Refer sample files in <install-dir>/bin/Data/Config/ dir for the
format.
Notes:

1. Options -i and -m cannot be used together.

2. Ifoption -i is used, all the events mentioned in the user defined config

file will be collected.

-d <seconds> Profile duration to run.

-t < multiplex interval in ms> The interval in which pmc count values will be read, the
minimum is 16 ms.

-0 <output file> The output file name, it is in CSV format.

-D <dump file> The output file that contains the event count dump for all the
monitored events. It is in CSV format.

-p <n> Sets precision of the metrics reported, the default value is 2.

-q Hide CPU topology section in the output report.

-r Force resets the MSRs.

-k Prefixes 'pkg' in package level counters.

-s Displays time stamp in the time series report.

-1 Lists the supported raw PMC events.

-z <pmc-event> Prints the name, description, and available unit masks for the
event.

-X <core-id,...> Core affinity for launched application, comma separated list of
core IDs.

Note: This is supported only on Linux.

-w <dir> Specifies the working directory. The default will be the path of
the launched application.

-V Print version.

-X Collect data using perf subsystem without root privileges.

Note: This is only supported on Linux.

-P <process ID> Specify the target process ID to monitor.
Note: This is only supported with the option -X on Linux.

-f <util:<n>> Filter the roofline data based on the utilization. For example, -f
util:90 will filter all data points with less than 90% utilization.

Note: This is a applicable only with the roofline command.

12 Getting started with AMDuProfPcm Chapter 2

AMDA1

57368 Rev.4.2 January 2024

AMD uProf User Guide

Following are the performance metrics for AMD EPYC™ “Zen 27 core architecture processors:

Table 3.

Performance Metrics for AMD EPYC™ «Zen 27

Metric Group

Metric

Description

ipc

Utilization (%)

Percentage of time the core was running, that is non-
idle time.

Eff Freq

Core Effective Frequency (CEF) without halted cycles
over the sampling period, reported in GHz. The metric
is based on CEF = (APERF / TSC) * POFreq. APERF is
incremented in proportion to the actual number of core
cycles while the core is in C6 state.

IPC

Instructions Per Cycle (IPC) is the average number of
instructions retired per CPU cycle. This is measured
using Core PMC events PMCx0CO [Retired
Instructions] and PMCx076 [CPU Clocks not Halted].
These PMC events are counted in both OS and User
mode.

CPI

Cycles Per Instruction (CPI) is the multiplicative
inverse of IPC metric. This is one of the basic
performance metrics indicating how cache misses,
branch mis-predictions, memory latencies, and other
bottlenecks are affecting the execution of an
application. A lower CPI value is better.

Branch Mis-prediction Ratio

The ratio between mis-predicted branches and retired
branch instructions.

fp

Retired SSE/AVX Flops
(GFLOPs)

The number of retired SSE/AVX FLOPs.

Mixed SSE/AVX Stalls

Mixed SSE/AVX stalls.
This metric is in per thousand instructions (PTI).

11

IC(32B) Fetch Miss Ratio

Instruction cache fetch miss ratio.

DC Access

All data cache (DC) accesses. This metric is in PTL.

Chapter 2

Getting started with AMDuProfPcm

13

AMDA1

AMD uProf User Guide

57368 Rev.4.2 January 2024

Table 3. Performance Metrics for AMD EPYC™ «Zen 27
Metric Group Metric Description
L2 Access All the L2 cache accesses. This metric is in PTI.
L2 Access from IC Miss The L2 cache accesses from IC miss. This metric is in
PTL
L2 Access from DC Miss The L2 cache accesses from DC miss. This metric is in
PTI.
L2 Access from HWPF The L2 cache accesses from L2 hardware pre-fetching.
This metric is in PTL.
L2 Miss All the L2 cache misses. This metric is in PTI.
L2 Miss from IC Miss The L2 cache misses from IC miss. This metric is in
PTIL.
2 L2 Miss from DC Miss The L2 cache misses from DC miss. This metric is in
PTI.
L2 Miss from HWPF The L2 cache misses from L2 hardware pre-fetching.
This metric is in PTL.
L2 Hit All the L2 cache hits. This metric is in PTI.
L2 Hit from IC Miss The L2 cache hits from IC miss. This metric is in PTI.
L2 Hit from DC Miss The L2 cache hits from DC miss. This metric is in PTI.
L2 Hit from HWPF The L2 cache hits from L2 hardware pre-fetching. This
metric is in PTL.
L1 ITLB Miss The instruction fetches the misses in the L1 Instruction
Translation Lookaside Buffer (ITLB), but hit in the L2-
ITLB plus the ITLB reloads originating from page table
walker. The table walk requests are made for L1-ITLB
miss and L2-ITLB misses. This metric is in PTI.
L2 ITLB Miss The number of ITLB reloads from page table walker
due to L1-ITLB and L2-ITLB misses. This metric is in
b PTIL
t
L1 DTLB Miss The number of L1 Data Translation Lookaside Buffer
(DTLB) misses from load store micro-ops. This event
counts both L2-DTLB hit and L2-DTLB miss. This
metric is in PTI.
L2 DTLB Miss The number of L2 Data Translation Lookaside Buffer
(DTLB) missed from load store micro-ops. This metric
isin PTI.
14 Getting started with AMDuProfPcm Chapter 2

AMDA1

57368 Rev.4.2 January 2024

AMD uProf User Guide

Table 3. Performance Metrics for AMD EPYC™ «Zen 27

PCle3 (GB/s)

Metric Group Metric Description
L3 Access The L3 cache accesses. This metric is in PTI.
L3 Miss The L3 cache miss. This metric is in PTL.

13 L3 Miss (%) The L3 cache miss percentage. This metric is in PTI.
Ave L3 Miss Latency Average L3 miss latency in core cycles.

Memory Mem Ch-A RdBw (GB/s) Memory Read and Write bandwidth in GB/s for all the
Mem Ch-A WrBw (GB/s) channels.

xgmi xGMIO BW (GB/s) Approximate XxGMI outbound data bytes in GB/s for all
xGMI1 BW (GB/s) the remote links.
xGMI2 BW (GB/s)
xGMI3 BW (GB/s)

pcie PClIe0 (GB/s) Approximate PCle bandwidth in GB/s.
PClel (GB/s)
PCle2 (GB/s)

Chapter 2

Getting started with AMDuProfPcm

15

AMDA1

AMD uProf User Guide

57368 Rev.4.2 January 2024

Following are the performance metrics for AMD EPYC™ “Zen 3” core architecture processors:

Table 4. Performance Metrics for AMD EPYC™ «Zen 3”
Metric Group Metric Description

Utilization (%) Percentage of time the core was running, that is non-
idle time.

Eff Freq Core Effective Frequency (CEF) without halted cycles
over the sampling period, reported in GHz. The metric
is based on CEF = (APERF / TSC) * POFreq. APERF is
incremented in proportion to the actual number of core
cycles while the core is in C6 state.

IPC Instructions Per Cycle (IPC) is the average number of
instructions retired per CPU cycle. This is measured
using Core PMC events PMCx0CO [Retired
Instructions] and PMCx076 [CPU Clocks not Halted].
These PMC events are counted in both OS and User

ipc mode.

CPI Cycles Per Instruction (CPI) is the multiplicative
inverse of IPC metric. This is one of the basic
performance metrics indicating how cache misses,
branch mis-predictions, memory latencies, and other
bottlenecks are affecting the execution of an
application. A lower CPI value is better.

Branch Mis-prediction Ratio | The ratio between mis-predicted branches and retired
branch instructions.

Retired SSE/AVX Flops The number of retired SSE/AVX FLOPs.

fp (GFLOPs)

Mixed SSE/AVX Stalls Mixed SSE/AVX stalls.

This metric is in per thousand instructions (PTI).

IC (32B) Fetch Miss Ratio Instruction cache fetch miss ratio.

Op Cache (64B) Fetch Miss | Operation cache fetch miss ratio.

Ratio

1 IC Access All instruction cache accesses. This metric is in PTL.

IC Miss The instruction cache miss. This metric is in PTL.

DC Access All the DC accesses. This metric is in PTIL.

16 Getting started with AMDuProfPcm Chapter 2

AMDA1

57368 Rev.4.2 January 2024

AMD uProf User Guide

Table 4. Performance Metrics for AMD EPYC™ «Zen 37
Metric Group Metric Description
L2 Access All the L2 cache accesses. This metric is in PTI.
L2 Access from IC Miss The L2 cache accesses from IC miss. This metric is in
PTI.
L2 Access from DC Miss The L2 cache accesses from DC miss. This metric is in
PTI.
L2 Access from HWPF The L2 cache accesses from L2 hardware pre-fetching.
This metric is in PTL.
L2 Miss All the L2 cache misses. This metric is in PTI.
L2 Miss from IC Miss The L2 cache misses from IC miss. This metric is in
PTI.
2 L2 Miss from DC Miss The L2 cache misses from DC miss. This metric is in
PTIL.
L2 Miss from HWPF The L2 cache misses from L2 hardware pre-fetching.
This metric is in PTL.
L2 Hit All the L2 cache hits. This metric is in PTI.
L2 Hit from IC Miss The L2 cache hits from IC miss. This metric is in PTI.
L2 Hit from DC Miss The L2 cache hits from DC miss. This metric is in PTL.
L2 Hit from HWPF The L2 cache hits from L2 hardware pre-fetching. This
metric is in PTI.
L1 ITLB Miss The instruction fetches the misses in the L1 Instruction
Translation Lookaside Buffer (ITLB), but hit in the L2-
ITLB plus the ITLB reloads originating from page table
walker. The table walk requests are made for L1-ITLB
miss and L2-ITLB misses. This metric is in PTI.
L2 ITLB Miss The number of ITLB reloads from page table walker
due to L1-ITLB and L2-ITLB misses. This metric is in
b PTI.
t
L1 DTLB Miss The number of L1 Data Translation Lookaside Buffer
(DTLB) misses from load store micro-ops. This event
counts both L2-DTLB hit and L2-DTLB miss. This
metric is in PTIL.
L2 DTLB Miss The number of L2 Data Translation Lookaside Buffer
(DTLB) missed from load store micro-ops. This metric
isin PTIL.
All TLBs Flushed All the TLBs flushed. This metric is in PTL.

Chapter 2

Getting started with AMDuProfPcm

17

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Table 4. Performance Metrics for AMD EPYC™ «Zen 37

Metric Group Metric Description

DC Fills from Same CCX The number of DC fills from local L2 cache to the core
or different L2 cache in the same CCX or L3 cache that
belongs to the CCX. This metric is in PTL.

DC Fills from different CCX | The number of DC fills from cache of different CCX in

in same node the same package (node). This metric is in PTL
DC Fills from Local Memory | The number of DC fills from DRAM or IO connected
de in the same package (node). This metric is in PTL
DC Fills from Remote CCX | The number of DC fills from cache of CCX in the
Cache different package (node). This metric is in PTL
DC Fills from Remote The number of DC fills from DRAM or IO connected
Memory in the different package (node). This metric is in PTI.
All DC Fills The total number of DC fills from all the data sources.
This metric is in PTL
L3 Access The L3 cache accesses. This metric is in PTL
L3 Miss The L3 cache miss. This metric is in PTL
13 L3 Miss (%) The L3 cache miss percentage. This metric is in PTIL.
Ave L3 Miss Latency The average L3 miss latency in core cycles.
Memory Mem Ch-A RdBw (GB/s) Memory Read and Write bandwidth in GB/s for all the
Mem Ch-A WrBw (GB/s) channels.
xgmi xGMIO BW (GB/s) Approximate xGMI outbound data bytes in GB/s for all
xGMI1 BW (GB/s) the remote links.
xGMI2 BW (GB/s)

xGMI3 BW (GB/s)

18 Getting started with AMDuProfPcm Chapter 2

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Table 4. Performance Metrics for AMD EPYC™ «Zen 37

Metric Group Metric Description

swpfdc SwPf DC Fills from DRAM | Software prefetch data cache from various nodes and
or IO connected in remote CCX.

node (pti)

SwPf DC Fills from CCX
Cache in remote node (pti)
SwPf DC Fills from DRAM
or IO connected in local node
(pti)

SwPfDC Fills from Cache of
another CCX in local node
(pti)

SwPf DC Fills from L3 or
different L2 in same CCX
(pti)

SwPf DC Fills from L2 (pti)
hwpfdc HwPf DC Fills from DRAM | Hardware prefetch data cache from various nodes and
or IO connected in remote CCX.

node (pti)

HwPf DC Fills from CCX
Cache in remote node (pti)
HwPf DC Fills from DRAM
or IO connected in local node
(pti)

HwP{DC Fills from Cache of
another CCX in local node
(pti)

HwPf DC Fills from L3 or
different L2 in same CCX
(pti)

HwPf DC Fills From L2 (pti)

Chapter 2 Getting started with AMDuProfPcm 19

AMDA1

AMD uProf User Guide

57368 Rev.4.2 January 2024

Following are the performance metrics for AMD EPYC™ “Zen 4” core architecture processors:

Table 5. Performance Metrics for AMD EPYC™ “Zen 4”
Metric Group Metric Description

Utilization (%) Percentage of time the core was running, that is non-
idle time.

Eff Freq Core Effective Frequency (CEF) without halted cycles
over the sampling period, reported in GHz. The metric
is based on CEF = (APERF / TSC) * POFreq. APERF is
incremented in proportion to the actual number of core
cycles while the core is in C6 state.

IPC Instructions Per Cycle (IPC) is the average number of
instructions retired per CPU cycle. This is measured
using Core PMC events PMCx0CO [Retired

ipc Instructions] and PMCx076 [CPU Clocks not Halted].
These PMC events are counted in both OS and User
mode.

CPI Cycles Per Instruction (CPI) is the multiplicative
inverse of IPC metric. This is one of the basic
performance metrics indicating how cache misses,
branch mis-predictions, memory latencies, and other
bottlenecks are affecting the execution of an
application. A lower CPI value is better.

Branch Mis-prediction Ratio | The ratio between mis-predicted branches and retired
branch instructions.

Retired SSE/AVX Flops The number of retired SSE/AVX FLOPs.

fp (GFLOPs)

FP Dispatch Faults (PTI) The floating point instruction dispatch fault. This
metric is in per thousand instructions (PTI).

IC (32B) Fetch Miss Ratio Instruction cache fetch miss ratio.

Op Cache Fetch Miss Ratio | Operation cache (64B) fetch miss ratio.

1 IC Access (PTI) Instruction cache access in PTI.

IC Miss (PTI) Instruction cache Miss in PTI.

DC Access (PTI) All the data cache (DC) accesses. This metric is in PTI.

20 Getting started with AMDuProfPcm Chapter 2

AMDA1

57368 Rev.4.2 January 2024

AMD uProf User Guide

Table 5. Performance Metrics for AMD EPYC™ «Zen 47
Metric Group Metric Description
L2 Access All the L2 cache accesses. This metric is in PTI.
L2 Access from IC Miss The L2 cache accesses from IC miss. This metric is in
PTI.
L2 Access from DC Miss The L2 cache accesses from DC miss. This metric is in
PTI.
L2 Access from HWPF The L2 cache accesses from L2 hardware pre-fetching.
This metric is in PTL.
L2 Miss All the L2 cache misses. This metric is in PTI.
L2 Miss from IC Miss The L2 cache misses from IC miss. This metric is in
PTIL.
2 L2 Miss from DC Miss The L2 cache misses from DC miss. This metric is in
PTI.
L2 Miss from HWPF The L2 cache misses from L2 hardware pre-fetching.
This metric is in PTL.
L2 Hit All the L2 cache hits. This metric is in PTI.
L2 Hit from IC Miss The L2 cache hits from IC miss. This metric is in PTI.
L2 Hit from DC Miss The L2 cache hits from DC miss. This metric is in PTI.
L2 Hit from HWPF The L2 cache hits from L2 hardware pre-fetching. This
metric is in PTL.
L1 ITLB Miss The instruction fetches the misses in the L1 Instruction
Translation Lookaside Buffer (ITLB), but hit in the L2-
ITLB plus the ITLB reloads originating from page table
walker. The table walk requests are made for L1-ITLB
miss and L2-ITLB misses. This metric is in PTI.
L2 ITLB Miss The number of ITLB reloads from page table walker
due to L1-ITLB and L2-ITLB misses. This metric is in
PTI.
b L1 DTLB Miss The number of L1 Data Translation Lookaside Buffer

(DTLB) misses from load store micro-ops. This event
counts both L2-DTLB hit and L2-DTLB miss. This
metric is in PTL

L2 DTLB Miss The number of L2 Data Translation Lookaside Buffer
(DTLB) missed from load store micro-ops. This metric
isin PTI.

All TLBs Flushed All the flushed TLBs.

Chapter 2

Getting started with AMDuProfPcm

21

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024
Table 5. Performance Metrics for AMD EPYC™ “Zen 4”
Metric Group Metric Description
L3 Access The L3 cache accesses. This metric is in PTL
L3 Miss The L3 cache miss. This metric is in PTL.
13 L3 Miss (%) The L3 cache miss percentage. This metric is in PTI.
Ave L3 Miss Latency Average L3 miss latency in core cycles.
Total Memory Bw (GB/s) Total read and write memory bandwidth.
Local DRAM Read Data DRAM read and write data bytes for a local processor.
Bytes (GB/s)
Local DRAM Write Data
Bytes (GB/s)
Remote DRAM Read Data DRAM read and write data bytes for a remote
Memory Bytes (GB/s) processor.
Remote DRAM Write Data
Bytes (GB/s)
Mem Ch-A RdBw (GB/s) Memory read and write bandwidth in GB/s for all the
Mem Ch-A WrBw (GB/s) channels.
Local Inbound Read Data Local inbound data bytes to the CPU, for example, read
Bytes (GB/s) data.
Local Outbound Write Data | Local outbound data bytes from the CPU, for example,
Bytes (GB/s) write data.
Remote Inbound Read Data | Remote socket inbound data bytes to the CPU, for
xgmi Bytes (GB/s) example, read data.
Remote Outbound Write Data | Remote socket outbound data bytes from the CPU for
Bytes (GB/s) example, write data.
xGMI Outbound Data Bytes | Total outbound data bytes in Gigabytes per second.
(GB/s)
Total Upstream DMA Read | Total upstream DMA including read and write.
Write Data Bytes (GB/s)
Local Upstream DMA Read | Local upstream DMA read data bytes.
Data Bytes (GB/s)
dma Local Upstream DMA Write | Local upstream DMA write data bytes.
(notavailablein | Data Bytes (GB/s)
AMD “Zenl”,
. ., | Remote Upstream DMA Remote socket upstream DMA read data bytes
AMD “Zen2”, Read Data Bytes (GB/s)
and AMD
“7en3” Remote Upstream DMA Remote socket upstream DMA write data bytes.
processors) Write Data Bytes (GB/s)
22 Getting started with AMDuProfPcm Chapter 2

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Table 5. Performance Metrics for AMD EPYC™ «Zen 47

Metric Group Metric Description

pcie PClIe0 (GB/s) Approximate PCle bandwidth in GB/s.
PClel (GB/s)
PCle2 (GB/s)
PCle3 (GB/s)

swpfdc SwPf DC Fills from DRAM | Software prefetch data cache from various nodes and
or 1O connected in remote CCX.

node (pti)

SwPf DC Fills from CCX
Cache in remote node (pti)
SwPf DC Fills from DRAM
or IO connected in local node
(pti)

SwPf DC Fills from Cache of
another CCX in local node
(pti)

SwPf DC Fills from L3 or
different L2 in same CCX
(pti)

SwPf DC Fills from L2 (pti)
hwptdc HwP{ DC Fills from DRAM | Hardware prefetch data cache from various nodes and
or 10 connected in remote CCX.

node (pti)

HwPf DC Fills from CCX
Cache in remote node (pti)
HwPf DC Fills from DRAM
or IO connected in local node
(pti)

HwPf DC Fills from Cache of
another CCX in local node
(pti)

HwPf DC Fills from L3 or
different L2 in same CCX
(pti)

HwP{ DC Fills From L2 (pti)

Chapter 2 Getting started with AMDuProfPcm 23

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Table 5. Performance Metrics for AMD EPYC™ «Zen 47

Metric Group Metric Description
Total Dispatch_Slots Up to 6 instructions can be dispatched in one cycle.
SMT Disp_contention Fraction of unused dispatch slots as other thread was
selected.
Frontend Bound Fraction of dispatch slots that remained unused as the
frontend did not supply enough instructions/operations.
Bad_Speculation Fraction of unused dispatch slots as other thread was
selected.
Backend Bound Fraction of dispatch slots that remained unused because
of the backend stalls.
Retiring Fraction of dispatch slots used by the retired
operations.
pipeline_util IPC Instructions per cycle.
Frontend Bound.Latency Fraction of dispatch slots that remained unused because

of a latency bottleneck in the frontend, such as
Instruction Cache or ITLB misses.

Frontend Bound.BW Fraction of dispatch slots that remained unused because
of a bandwidth bottleneck in the frontend, such as
decode bandwidth or Op Cache fetch bandwidth.

Bad_Speculation.Mispredicts | Fraction of dispatched ops that were flushed due to
branch mis-predicts.

Bad Speculation.Pipeline R | Fraction of dispatched ops that were flushed due to the

estarts pipeline restarts (resyncs).

Backend Bound.Memory Fraction of dispatched slots that remained unused
because of stalls due to the memory subsystem.

Backend Bound.CPU Fraction of dispatched slots that remained unused
because of stalls not related to the memory subsystem.

Retiring.Fastpath Fraction of dispatch slots used by the retired fastpath
operations.

Retiring.Microcode Fraction of dispatch slots used by the retired microcode
operations.

2.3 Commands

The following table lists all the commands:
Table 6. AMDuProfPcm Options

Command Description

roofline Collects data required for generating roofline model.

24 Getting started with AMDuProfPcm Chapter 2

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

24 Examples

2.4.1 Linux and FreeBSD

Collect IPC data from core 0 for the duration of 60 seconds:

./AMDuProfPcm -m ipc -c core=0 -d 60 -o /tmp/pcmdata.csv

Collect IPC/L3 metrics for CCX=0 for the duration of 60 seconds:

./AMDuProfPcm -m ipc,13 -c ccx=0 -d 60 -o /tmp/pcmdata.csv

Collect only the memory bandwidth across all the UMCs for the duration of 60 seconds and save
the output in /tmp/pcmdata.csv file:

./AMDuProfPcm -m memory -a -d 60 -o /tmp/pcmdata.csv

Collect IPC data for 60 seconds from all the cores:

./AMDuProfPcm -m ipc -a -d 60 -o /tmp/pcmdata.csv

Collect IPC data from core 0 and run the program in core 0:

./AMDuProfPcm -m ipc -c core=0 -o /tmp/pcmdata.csv -- /usr/bin/taskset -c @ <application>

Collect IPC data from cores 0-7 and run the application on cores 0-3:

./AMDuProfPcm -m ipc -c core=0-7 -o /tmp/pcmdata.csv -- /usr/bin/taskset -c ©-3
<application>

Collect IPC and data 12 data from core 0 and report the cumulative (not timeseries) and run the
program in core 0

./AMDuProfPcm -m ipc,12 -c core=0 -o /tmp/pcmdata.csv -C -- /usr/bin/taskset -c @
<application>

List the supported raw Core PMC events:

./AMDuProfPcm -1

Print the name, description, and the available unit masks for the specified event:
./AMDuProfPcm -z pmcx03

Collect roofline data in root mode:

sudo ./AMDuProfPcm roofline -o /tmp/roofline.csv <application>

Collect roofline data in non-root mode:

./AMDUProfPcm roofline -X -o /tmp/roofline.csv <application>

Plot roofline data and generate a PDF in the output directory /tmp:
AMDuProfModelling.py -i /tmp/roofline.csv -o /tmp/

Chapter 2 Getting started with AMDuProfPcm 25

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

2.4.2 Windows

Core Metrics

* Get the list of supported metrics:
C:\> AMDuProfPcm.exe -h

* Collect IPC data from core 0 for the duration of 30 seconds:
C:\> AMDuProfPcm.exe -m ipc -c core=0 -d 30 -o c:\tmp\pcmdata.csv

* Collect IPC/L2 metrics for all the core in CCX=0 for the duration of 30 seconds:
C:\> AMDuProfPcm.exe -m ipc,12 -c ccx=0 -d 30 -o c:\tmp\pcmdata.csv

* Collect IPC data for 30 seconds from all the cores in the system:
C:\> AMDuProfPcm.exe -m ipc -a -d 30 -o c:\tmp\pcmdata.csv

* Collect IPC data from core 0 and run the program:
C:\> AMDuProfPcm.exe -m ipc -c core=0 -o c:\tmp\pcmdata.csv myapp.exe

* Collect IPC and data 12 data from all the cores and report the aggregated data at the system and
package level:
C:\> AMDuProfPcm.exe -m ipc,12 -a -o c:\tmp\pcmdata.csv -d 30 -A system,package

* Collect IPC and data 12 data from all the cores in CCX=0 and report the cumulative (not
timeseries):
C:\> AMDuProfPcm.exe -m ipc,12 -c ccx=0 -o c:\tmp\pcmdata.csv -C -d 30

* Collect IPC and data 12 data from all the cores and report the cumulative (not timeseries):
C:\> AMDuProfPcm.exe -m ipc,12 -a -o c:\tmp\pcmdata.csv -C -d 30

* Collect IPC and data 12 data from all the cores and report the cumulative (not timeseries) and
aggregate at system and package level:
C:\> AMDuProfPcm.exe -m ipc,12 -a -o c:\tmp\pcmdata.csv -C -A system,package -d 30

L3 Metrics

* Collect L3 data from ccx=0 for the duration of 30 seconds:
C:\> AMDuProfPcm.exe -m 13 -c ccx=0 -d 30 -o c:\tmp\pcmdata.csv

* Collect L3 data from all the CCXs and report for the duration of 30 seconds:
C:\> AMDuProfPcm.exe -m 13 -a -d 30 -o c:\tmp\pcmdata.csv

* Collect L3 data from all the CCXs and aggregate at system and package level and report for the
duration of 30 seconds:
C:\> AMDuProfPcm.exe -m 13 -a -d 30 -A system,package -o c:\tmp\pcmdata.csv

* Collect L3 data from all the CCXs and aggregate at system and package level and report for the
duration of 30 seconds; also report for the individual CCXs:
C:\> AMDuProfPcm.exe -m 13 -a -d 30 -A system,package,ccx -o c:\tmp\pcmdata.csv

26 Getting started with AMDuProfPcm Chapter 2

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

* Collect L3 data from all the CCXs for the duration of 30 seconds and report the cumulative data
(no timeseries data):

C:\> AMDuProfPcm.exe -m 13 -a -d 30 -C -o c:\tmp\pcmdata.csv

* Collect L3 data from all the CCXs and aggregate at system and package level and report
cumulative data (no timeseries data)
C:\> AMDuProfPcm.exe -m 13 -a -d 30 -A system,package -C -o c:\tmp\pcmdata.csv

* Collect IPC data from core 0 for the duration of 30 seconds:

C:\> AMDuProfPcm.exe -m ipc -c core=0 -d 30 -o c:\tmp\pcmdata.csv

Memory Bandwidth

* Report memory bandwidth for all the memory channels for the duration of 60 seconds and save
the output in c:\tmp\pcmdata.csv file:

C:\> AMDuProfPcm.exe -m memory -a -d 60 -o c:\tmp\pcmdata.csv

* Report total memory bandwidth aggregated at the system level for the duration of 60 seconds and
save the output in c:\tmp\pcmdata.csv file:
C:\> AMDuProfPcm.exe -m memory -a -d 60 -o c:\tmp\pcmdata.csv -A system

* Report total memory bandwidth aggregated at the system level and also report for every memory
channel:
C:\> AMDuProfPcm.exe -m memory -a -d 60 -o c:\tmp\pcmdata.csv -A system,package

* Report total memory bandwidth aggregated at the system level and also report for all the available
memory channels. To report cumulative metric value instead of the timeseries data:
C:\> AMDuProfPcm.exe -m memory -a -d 60 -o c:\tmp\pcmdata.csv -C -A system,package

Raw Event Count Dump

* Monitor events from core 0 and dump the raw event counts for every sample in timeseries
manner, no metrics report will be generated:

C:\> AMDuProfPcm.exe -m ipc -d 60 -D c:\tmp\pcmdata_dump.csv

* Monitor events from all the cores and dump the raw event counts for every sample in timeseries
manner, no metrics report will be generated:
C:\> AMDuProfPcm.exe -m ipc -a -d 60 -D c:\tmp\pcmdata_dump.csv

Custom Config File

A sample config XML file is available in <uprof-install-dir>\bin\Data\Config\SamplePcm-core.conf.
This file can be copied and modified to certain user-specific interesting events and formula to
compute metrics. All the metrics defined in that file will be monitored and reported.

C:\> AMDuProfPcm.exe -i SamplePcm-core.conf -a -d 60 -o c:\tmp\pcmdata.csv
C:\> AMDuProfPcm.exe -i SamplePcm-core-13-df.conf -a -d 60 -o c:\tmp\pcmdata.csv

Chapter 2 Getting started with AMDuProfPcm 27

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Miscellaneous

» List the supported raw Core PMC events:
C:\> AMDuProfPcm.exe -1

* Print the name, description, and the available unit masks for the specified event:
C:\> AMDuProfPcm.exe -z pmcx03

2.5 BIOS Settings - Known Behavior

Following is the known behavior of L2 Hit/Miss from HWPF metrics based on the BIOS settings:

* AMDuProfPcm L2 Hit/Miss from HWPF metric doesn't collect any data when all following
options are disabled in BIOS:
— L1 Stream HW Prefetcher
— L1 Stride Prefetcher
— L1 Region Prefetcher
— L2 Stream HW Prefetcher
L2 up/Down Prefetcher
* AMDuProfPcm L2 Hit/Miss from HWPF metric collects very less samples with the following
BIOS settings:
— L1 Stream HW Prefetcher: Disable
— L1 Stride Prefetcher: Disable
— L1 Region Prefetcher: Enable
— L2 Stream HW Prefetcher: Disable
— L2 up/Down Prefetcher: Disable

2.6 Monitoring without Root Privileges

On Linux, use the option -x to monitor the metrics without having a dependency on the "msr" module
and root access. This option collects Core, L3, and DF PMC events on AMD “Zen”-based processors.
The newer processors may require the latest kernel support.

Examples
* Timeseries monitoring of IPC of a benchmark, aggregate metrics per thread:
$ AMDuProfPcm -X -m ipc -o /tmp/pcm.csv -- /tmp/myapp.exe

* Timeseries monitoring of IPC of a benchmark, aggregate metrics per processor package:
$ AMDuProfPcm -X -m ipc -A package -o /tmp/pcm.csv -- /tmp/myapp.exe

* Timeseries monitoring of IPC of a benchmark, aggregate metrics at system level:
$ AMDuProfPcm -X -m ipc -A system -o /tmp/pcm.csv -- /tmp/myapp.exe

28 Getting started with AMDuProfPcm Chapter 2

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

+ Cumulative reporting of IPC metrics at the end of the benchmark execution:
$ AMDuProfPcm -X -m ipc -C -o /tmp/pcm.csv -- /tmp/myapp.exe

* Cumulative reporting of IPC metrics at the end of the benchmark execution, aggregate metrics per
processor package:

$ AMDuProfPcm -X -m ipc -C -A package -o /tmp/pcm.csv -- /tmp/myapp.exe

+ Cumulative reporting of IPC metrics at the end of the benchmark execution, aggregate metrics at
system level:

$ AMDuProfPcm -X -m ipc -C -A system -o /tmp/pcm.csv -- /tmp/myapp.exe

* Timeseries monitoring of memory bandwidth reporting at package and memory channels level:

$ AMDuProfPcm -X -m memory -a -A system,package -o /tmp/mem.csv

* Timeseries monitoring of level-1 and level-2 top-down metrics (pipeline utilization):
$ AMDuProfPcm -X -m pipeline_util -A system -o /tmp/td.csv -- /tmp/myapp.exe

* Cumulative reporting of level-1 and level-2 top-down metrics (pipeline utilization):
$ AMDuProfPcm -X -m pipeline_util -C -A system -o /tmp/td.csv -- /tmp/myapp.exe

For better top-down results, disable NMI watchdog and run the following command as root:
echo @ > /proc/sys/kernel/nmi_watchdog

2.7 Roofline Model

AMDuProfPcm provides basic roofline modeling that relates the application performance to memory
traffic and floating point computational peaks. This is a visual performance model offering insights
on improving the parallel software for floating point operations. This helps to characterize an
application and identify whether a benchmark is memory or compute bound.

The tool monitors the memory traffic and floating point operations when the profiled application is
running. Also, it computes the Arithmetic Intensity that is “operations per byte of DRAM traffic
[FLOPS/BYTE]”. The roofline chart is plotted as:

* X-axis: (Al) Arithmetic Intensity (FLOPS/byte) in logarithmic scale
* Y-axis: Throughput (GFLOPS/sec) in logarithmic scale
* Horizontal line showing peak theoretical floating-point performance of the system (HW Limit).

* Diagonal line showing peak memory performance. This line is plotted using the formula
Throughput = min (peak theoretical GFLOPS/Second, Peak theoretical Memory Bandwidth *
Al).

By default, the tool plots horizontal rooflines for:

* Single Precision Floating Point Peak ("SP FP Peak")

* Double Precision Floating Point Peak ("DP FP Peak")

The options available to plot the max peak horizontal (computational) peak rooflines are:

* Single precision noSIMD and noFMA

Chapter 2 Getting started with AMDuProfPcm 29

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

* Double precision noSIMD and noFMA
Generating the roofline chart of an application:

1. Collect the profile data using AMDuProfPcm:
$ AMDuProfPcm roofline -X -o /tmp/myapp-roofline.csv -- /tmp/myapp.exe

On AMD “Zen4” 9xx4 Series processors, if the Linux kernel doesn't support accessing DF
counters, use the following command with root privilege:

$ AMDuProfPcm roofline -o /tmp/myapp-roofline.csv -- /tmp/myapp.exe
2. To generate the roofline chart, run the following command:
$ AMDuProfModelling.py -i /tmp/myapp-roofline.csv -o /tmp/ --memspeed 3200 -a myapp

The roofline chart is saved in the file /tmp/AMDuProf roofline-2022-10-28-19h00m 1 0s.pdf.
A few pointers for generating the roofline chart:

* While collecting the data, if the AMDuProfPcm is launched with non-root privilege, specify the
DRAM speed using -memspeed option. You can use dmidecode or Ishw command to get the
memory speed.

» To plot additional computational horizontal peaks line, use the following options:

— --sp-roofs: Plot maximum peak roof for single-precision noSIMD and noFMA

— --dp-roofs: Plot maximum peak roof for double-precision noSIMD and noFMA

Example:

$ AMDuProfModelling.py -i /tmp/myapp-roofline.csv -o /tmp/ --memspeed 3200 -a myapp -dp-roofs

* Use -a <appname> option to specify the application name to print in the graph chart.

* As this tool uses the maximum theoretical peaks for memory traffic and floating-point
performance, you can use benchmarks such as STREAM to get the peak memory bandwidth and
HPL or GEMM for peak FLOPS. Those scores can be used to plot the roofline charts. Use the
following options:

— --stream <STREAM score>
— --hpl <HPL score>
— --gemm <SGEMM | DGEMM score>

30 Getting started with AMDuProfPcm Chapter 2

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

A sample roofline chart is as follows:

Classic Roofline
AMD EPYC 7742 64-Core Processor
sockets(2), cpus(256), base frequency(2250.00 MHz)

10000.00 1. myapp Al : 1.11 FLOP/B Throughput: 37.90 GFLOPS ... SPEPPeak 921600 Gl OPS
System Al (SP FP) : 22.50 FLOP/B
System Al (DP FP) : 11.25 FLOP/B

DP EP Peak 460800 GFLOPS

1000.00

(6}

Throughput [GFLOPS]
G

100.00

d

0.100 1.000 10.000 100.000
Arithmetic Intensity [FLOP/Byte]

Figure 1. Sample Roofline Chart

2.8 Pipeline Utilization

On AMD “Zen4”-based processors, AMDuProfPcm supports monitoring and reporting the pipeline
utilization (pipeline util) metrics. This feature provides pipeline util metrics to visualize the
bottlenecks in the CPU pipeline. Use the option -m pipeline_util to monitor and report the level-1
and level-2 top-down metrics.

The level-1 metrics are as follows:
Table 7. Level-1 Metrics

Metric Description

Total Disp Slots Total dispatch slots; up to six instructions can be dispatched in one cycle.

SMT Disp contention | Unused dispatch slots as the other thread was selected.

Frontend Bound Dispatch slots that remained unused because the frontend did not supply
appropriate instructions/ops.

Bad_Speculation Dispatched operations that did not retire.

Backend Bound Dispatch slots that remained unused because of backend stalls.

Retiring Dispatch slots used by operations that retired.

Chapter 2 Getting started with AMDuProfPcm 31

AMDZ\
AMD uProf User Guide

57368 Rev.4.2 January 2024

The level-2 metrics are as follows:

Table 8. Level-2 Metrics

Metric

Description

Frontend Bound.Latency

Unused dispatch slots due to latency bottleneck in the frontend,
such as Instruction Cache or ITLB misses.

Frontend Bound.BW

Unused dispatch slots due to bandwidth bottleneck in the frontend,
such as decode bandwidth or Op Cache fetch bandwidth.

Bad_Speculation.Mispredicts

Dispatched operations that were flushed due to branch mis-
predicts.

Bad_Speculation.Pipeline Restarts

Dispatched operations that were flushed due to pipeline restarts
(resyncs).

Backend Bound.Memory

Dispatched slots that remained unused because of stalls due to
memory subsystem.

Backend Bound.CPU

Dispatched slots that remained unused because of stalls not related
to the memory subsystem.

Retiring.Fastpath

Dispatch slots used by fastpath operations that retired.

Retiring.Microcode

Dispatch slots used by microcode operations that retired.

Due to multiplexing, the reported metrics may be inconsistent. To minimize the impact of
multiplexing, use the option -x. For better results, use taskset to bind the monitored application to a
specific set of cores and monitor only the cores on which the monitored application is running.

Run the following command to collect the top-down metrics:

$ sudo AMDuProfPCm -m pipeline_util -c core=@ -A system -o /tmp/myapp-td.csv -- /usr/bin/

taskset -c @ myapp.exe
(or, use the option -X that does not require root access)

$ AMDUProfPCm -X -m pipeline_util -A system -o /tmp/myapp-td.csv -- /usr/bin/taskset -c @

myapp . exe

A sample report is as follows:

Total_Dispatch_Slots SMT_Disp_cFrontend_Bound Bad_Speculation Backend_Bound Retiring IPC Frontend_Bound.Latency Frontend_Bound.BW Bad_Speculation.Mispredicts Bad_Spect Backend_Bound.Memory Backend_Bound.CPU R

31528583352 0 0.18 0 33.19 66.39 3.85 0.18 0 0 0 13.15 20.04
31801404234 0 0.19 0.96 32.79 66.98 3.95 0.19 0 0.91 0.05 13.13 19.66
31876659852 0 0.18 0.22 32.73 67.53 3.95 0.18 0 0.2 0.02 13 19.73
31889169876 0 0.18 0.08 32.54 66.96 4.01 0.19 0 0.08 0 12.94 19.6
31914934404 0 0.19 0 32.76 66.92 3.97 0.19 0 0 0 12.99 19.77
31991329650 0 0.19 0 30.84 59.33 3.53 0.21 0 0 0 14.25 25.59
31851469458 0 0.19 0.22 59.47 40.21 236 0.22 0 0.04 0.18 16.48 42.99
31949156628 0.01 0.19 0.21 59.3 40.39 233 0.22 0 0.04 0.17 16.43 42.87
31817293530 0 0.19 0.6 59.15 40.39 238 0.22 0 0.1 0.5 16.52 42.64
31832631192 0 5.95 18.46 43.48 32.79 1.84 5.44 0.5 18.39 0.07 20.61 22.87
31912889772 0 10 3177 31.46 26.5 1.48 9.21 0.79 31.75 0.02 19.36 12.1
31883125182 0 10.08 3178 3171 26.5 147 9.24 0.84 31.76 0.02 19.51 12.2
31993782744 0 10 30.81 3172 26.47 1.45 9.15 0.85 30.79 0.02 19.37 12.35
31858516134 0 10 31.56 31.83 26.32 1.45 9.15 0.85 31.54 0.02 19.6 12.23
31928600622 0 9.95 31.78 31.85 26.49 1.43 9.03 0.92 31.76 0.02 19.62 12.24
31802799444 0 9.98 32.24 3171 26.48 1.45 9.13 0.85 32.22 0.02 19.66 12.05
31827460368 0 5.4 17.59 38.25 40.03 2.25 5.04 0.37 17.56 0.03 21.73 16.52
31937807754 0 0.14. 0.05 44.44 54.97 3.22 0.17 0 0.03 0.02 22.78 21.66
31865155098 0 0.15 0.07 44.79 54.97 3.22 0.17 0 0.04 0.03 22.97 21.83
31977071160 0 0.15 0 44.79 54.89 3.18 0.17 0 0 o 22.8 22
.
Figure 2. Sample Report
32 Getting started with AMDuProfPcm Chapter 2

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Examples

* Timeseries monitoring of level-1 and level-2 top-down metrics (pipeline utilization) of a single-
threaded program:

AMDuProfPcm -m pipeline_util -c core=1 -o /tmp/td.csv -- /usr/bin/taskset -c 1 /tmp/
myapp .exe

» Timeseries monitoring of level-1 and level-2 top-down metrics of a multi-threaded program
running on all the cores:
AMDuProfPcm -m pipeline_util -a -A system -o /tmp/td.csv -- /tmp/myapp.exe

* Cumulative monitoring of level-1 and level-2 top-down metrics of a multi-threaded program
running on all the cores:
AMDuProfPcm -m pipeline_util -a -A system -C -o /tmp/td.csv -- /tmp/myapp.exe

Chapter 2 Getting started with AMDuProfPcm 33

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Chapter 3 Getting Started with AMDuProfSys

3.1 Overview

AMDuProfSys is a python-based system analysis tool for AMD processors. It can be used to collect
the hardware events and evaluate the simple counter values or complex recipes using collected raw
events. The performance metrics are based on the profile data collected using Core, L3, DF, and UMC
PMC:s. This tool can be used to get the overall performance details of the hardware blocks used in the
system.

3.2 Supported Platforms

AMDuProfSys supports AMD EPYC™ 7002, 7003, and 9000 Series processors with the following
variants:

* Family 17, model 0x30 - Ox3F
* Family 19, model 0x0 - OxF

* Family 19, model 0x1 - Ox1F

* Family 19, model 0x20 - 0x2F
* Family 19, model 0xAO - 0OxAF

3.3 Supported Hardware Counters

* CORE PMC
« DFPMC

« L3PMC

« UMC PMC

3.4 Supported Operating Systems

* Linux

* Windows

34 Getting Started with AMDuProfSys Chapter 3

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

3.5 Set up

Follow the installation steps in the section "Installing AMD uProf"” on page 5.

3.5.1 Linux

If tar ball is used, uProf driver must be used manually. If you are not using uProf driver, optionally,
you can use Linux perf. However, you must ensure that Linux user space tool is installed and Perf
tools support the required PMC event monitoring. If uProf driver is not used, command line must
include the option --use-1linux-perf.

To install user space perf tool:

$ sudo apt-get install linux-tools-common linux-tools-generic linux-tools- uname -r°

NMI watchdog must be disabled, this requires root privileges:
$ sudo echo @ > /proc/sys/kernel/nmi_watchdog
Perf parameter should be set to -1 if system-wide profile data or DF and L3 metrics must be collected:

$ sudo sh -c 'echo -1 >/proc/sys/kernel/perf_event_paranoid'

3.5.2 Windows

Setup file will install all the required components to run AMDuProfSys.
After installation, AMDuProfSys is available in the following directory:
<Installed Directory>/bin/AMDPerf/AMDuProfSys.py

Python Packages

AMDuProfSys requires Python to be installed on the target platform. Supported minimum Python
version is 3.6. When the tool is executed for the first time, it will prompt to install the following
Python modules:

* tqdm — use pip3 install tqdm to install

e xIsxwriter — use pip3 install XlsxWriter to install

* yaml — use apt-get install python-yaml OT pip3 install pyyaml to install

* yamlordereddictloader — use pip3 install yamlordereddictloader to install
e rich — use pip3 install rich to install

Synopsis

AMDUProfSys.py [<OPTIONS>] -- [<PROGRAM>] [<ARGS>]

<opTIONS> — To collect, generate report, or get help for this tool

<PROGRAM> — Denotes a launch application to be profiled

<ARGS> — Denotes the list of arguments for the launch application

Chapter 3 Getting Started with AMDuProfSys 35

AMDA1

AMD uProf User Guide 57368 Rev.4.2

Common Usages
* Display help:
AMDuUProfSys.py -h
* Default metrics (core, L3 and DF) collection:
AMDuUProfSys.py -o default -a -d 100
* Collect and report all counters together:
AMDUProfSys.py --config core,13,df,umc -o all -a -d 100
* Collect any user defined custom metrics from command line:

./AMDUProfSys.py --metrics core/BrMisPredExTime="(0x4300C3)/(0x4300C2)",core/
ratio="((BrMisPredExTime * ©x430076)/0x4300C0)" -d 20

* Collect core metrics for core 0 and run application on core:
AMDUProfSys.py collect --config core -C @ -o output taskset -c @ <application>
* Generate the .csv format report from the session file generated during collection:
AMDUProfSys.py report -i output_core.ses
* Generate report in .x/s format:

AMDUProfSys.py report -i output_core.ses -f xls

January 2024

* Time series profile data for core metrics (core 0-5) with an interval of 1000 ms and set affinity of

running application to core O:

AMDUProfSys.py --config core -C ©-5 -I 1000 --use-linux-perf -T -o output --affinity ©

<application>

Note: Time series profile data collection is available only with the option -use-linux-perf .

* Collect metrics for CORE, L3, DF and UMC metrics together:
AMDUProfSys.py collect --config core,13,df,umc -C ©-10 <application>

3.6 Options

3.6.1 Generic

The following table lists the generic options:
Table 9. AMDuProfSys Generic Options

Option Description

-h, --help Display the usage

-v, --version Print the version
--system-info System information
--enable-irperf Enable irperf

Note: Itis available only on Linux and requires root privilege.
--mux-interval-core <ms> Set the multiplexing interval in millisecond(s)
36 Getting Started with AMDuProfSys Chapter 3

AMDA1

57368 Rev.4.2 January 2024

Table 9.

AMD uProf User Guide

AMDuProfSys Generic Options

Option

Description

--mux-interval-13 <ms>

Set the multiplexing interval in millisecond(s)

--mux-interval-df <ms>

Set the multiplexing interval in millisecond(s), the default MUX interval
is 4 ms

3.6.2 Collect Command

The following table lists the collect command options:

Table 10.

AMDuProfSys Collect Command Options

Option

Description

--config

To launch the given application and to monitor the raw events. Collect
commands can be configured to use predefined set of config files or a
single config file with its path.

-a, --all-cpus

Collect from all the cores.

Note: Options -c and -a cannot be used together.

-C, --cpu <CPUs>

List of CPUs to monitor. Multiple CPUs can be provided as a comma
separated list with no space: 0,1.

Ranges of CPUs: 5-10.

-d, --duration <seconds>

Profile duration to run.
Note: It will not work if launch application is specified.

-t, --tid <tid>

Monitor events on existing thread(s). Multiple TIDs can be provided as a
comma separated list.
Note: Itis available only on Linux.

-p, --pid <pid>

Monitor events on existing process(es). Multiple PIDs can be provided as
comma separated list.

Note: Itis available only on Linux.

-0,--output <file>

Output file name to save the raw event count values.

--no-inherit

The child tasks will not be monitored.

Note: Itis available only on Linux.

-I, --interval <n>

Interval at which raw event count deltas will be stored in the file. This is a
must for collecting time series data.

Note: Itis available only on Linux.

-V, --verbose

Print verbose.

-r --collect-raw

Collect events using raw events file. The report can be generated only at
AMD. This option helps collect bigger set of metrics.

--use-linux-perf

This option can be used in Linux to collect the profile data using Linux
Perf instead of AMDuProf driver.

-m --metrics

Collect user defined custom metrics through command line.

Chapter 3

Getting Started with AMDuProfSys

37

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024
Table 10. AMDuProfSys Collect Command Options
Option Description
--affinity Comma separated list of CPUs. Workload is run on the configured CPUs.

3.6

3 Report Command

To generate a profile report with computed metrics. The collect command generates a profile session
file with .ses extension and a raw counter data file for each type of profile collection. To generate the
report, you must provide the session file with -i option as shown in the following command options:

Table 11.

AMDuProfSys Report Command Options

Option

Description

-j_,

--input-file <file>

Input the session file generated by collect command.

--config <file>

Config file or options core, df, and 13 for event sets and metrics.

<system,package,numa, ccx>

-0, --output <file> Output file name in .csv or .xls format as configured.
-f, --format Output file format in .x/s or .csv. Default file format is .csv.
--group-by Aggregate result based on group selected. Default is none.

_T,

--time-series

Note: Itis available only on Linux.

Generate per core time series report. Only .csv format is supported.
Must be collected with -I option to generate the time series data.

--set-precision <n>

2.

Set floating point precision for reported metrics, the default value is

-V,

--verbose Print verbose.

3.7

Examples

Monitor the entire system to collect and generate metrics defined in config file and generate the

profile report:
AMDUProfSys.py --config core -a sleep 50

Launch the program with core affinity set to core 0 and monitor that core and generate profile

report:
AMDUProfSys.py --config core -C @ taskset -c @ /tmp/scimark2

Launch the program and monitor it to generate the profile report:

AMDUProfSys.py --config core -a /tmp/scimark2

Note: -a or -C option is mandatory for multiplexing to work.

38

Getting Started with AMDuProfSys

Chapter 3

AMDA1

57368 Rev.4.2 January 2024

» Collect and generate report in two steps:

a.

b.

To generate a binary datafile sci_perf.data containing raw event count values:
AMDUProfSys.py collect --config data/@x17_0x3/configs/core/core_config.yaml -C @ -o
sci_perf taskset -c @ scimark2

To generate a report file sci_perf.csv containing computed metrics:

AMDUProfSys.py report -i sci_perf/sci_perf.ses -o sci_perf

* Collect using multiple config files and generate report in two steps:

a.

b.

To generate a binary datafile sci_perf.data containing raw event count values:
AMDUProfSys.py collect --config core,13,df -C 0-10 -o sci_perf taskset -c @ scimark2

Note: -C, -a option can be used only with the core counters.

To generate a report file sci_perf.csv containing computed metrics:
AMDUProfSys.py report -i sci_perf/sci_perf.ses -o all_events

» Update the multiplexing interval:

AMDUProfSys.py --mux-interval-core 16

Note: --mux-interval-core option requires root access.

3.8

Limitations

* UMC profiling is not available in Linux for the following platforms:

Family 17, model 0x30 - 0x3F
Family 19, model 0x0 - OxF

AMD uProf User Guide

» Time series profile data collection is available only in Linux using the option --use-linux-perf.

Chapter 3 Getting Started with AMDuProfSys

39

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

40 Getting Started with AMDuProfSys Chapter 3

AMDA1
January 2024 AMD uProf User Guide

Part 3:
Application Analysis

41

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Chapter4 Workflow and Key Concepts

4.1 Workflow

The AMD uProf workflow has the following phases:
1. Collect — Run the application program and collect the profile data.
2. Translate — Process the profile data to aggregate, correlate, and organize into database.

3. Analyze — View and analyze the performance data to identify the bottlenecks.

4.1.1 Collect Phase

Important concepts of the collect phase are explained in this section.

Profile Target

The profile target is one of the following for which profile data will be collected:
* Application — Launch application and profile that process and its children.
* System — Profile all the running processes and/or kernel.

* Process — Attach to a running application (native applications only).

Profile Type

The profile type defines the type of profile data collected and how the data should be collected. The
following profile types are supported:

* CPU Profile

e CPU Trace
 GPU Profile
« GPU Trace

* System-wide Power Profile
The data collection is defined by Sampling Configuration:

* Sampling Configuration identifies the set of Sampling Events, their Sampling Interval, and
mode.

+ Sampling Event is a resource used to trigger a sampling point at which a sample (profile data)
will be collected.

* Sampling Interval defines the number of the occurrences of the sampling event after which an
interrupt will be generated to collect the sample.

42 Workflow and Key Concepts Chapter 4

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

* Mode defines when to count the occurrences of the sampling event — in User mode and/or OS
mode.

Type of profile data to collect — Sampled Data:

Sampled Data — the profile data that can be collected when the interrupt is generated (upon the
expiry of the sampling interval of a sampling event).

The following table shows the type of profile data collected and sampling events for a profile type:
Table 12. Sampled Data

Profile Type Type of Profile Data Collected Sampling Events
CPU Profiling * Process ID * OS Timer
* Thread ID * Core PMC events
o [P « IBS

* Callstack

* ETL tracing (Windows only)

* OpenMP Trace — OMPT (Linux)
* MPI Trace — PMPI (Linux)

* OS Trace — Linux BPF

CPU Tracing * User mode trace — Collects Not applicable
syscall and pthread data

¢ OS trace — Collects schedule,
diskio, syscall, pthread, and
funccount data

GPU Profiling Perfmon Metrics Not applicable
GPU Tracing Runtime Trace — HIP and HSA Not applicable

For CPU Profiling, there are numerous micro-architecture specific events available to monitor. The
tool groups the related and interesting events to monitor called Predefined Sampling Configuration.
For example, Assess Performance is one such configuration used to get the overall assessment of the
performance and to find potential issues for investigation. For more information, refer ‘“Predefined
View Configuration” on page 46.

A Custom Sampling Configuration is the one in which you can define a sampling configuration
with events of interest.

Profile Configuration

A profile configuration identifies all the information used to collect the measurement. It contains the
information about profile target, sampling configuration, data to sample, and profile scheduling
details.

The GUI saves these profile configuration details with a default name (for example, AMDuProf-TBP-
Classic), you can define them too. As the performance analysis is iterative, this is persistent (can be
deleted) and hence, you can also reuse the same configuration for the future data collection runs.

Chapter 4 Workflow and Key Concepts 43

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Profile Session (or Profile Run)

A profile session represents a single performance experiment for a profile configuration. The tool
saves all the profile and translated data (in a database) in the folder named as <profile config name>-
<timestamp>.

Once the profile data is collected, uProf processes the data to aggregate and attribute the samples to
the respective processes, threads, load modules, functions, and instructions. This aggregated data is
then written into an SQLite database used during the Analyze phase. This process of the translating
the raw profile data happens when CLI generates the profile report or GUI generates the visualization.

4.1.2 Translate and Report Phases

The collected raw profile data is processed to aggregate and attribute to the respective processes,
threads, load modules, functions, and instructions. The debug information for the launched
application generated by the compiler is needed to correlate the samples to functions and source lines.

This phase is performed automatically in the GUI after the profiling is stopped. In the CLI, the report
command implicitly processes (translates) the raw profile data and generates the report in CSV
format. Also, the CLI provides translate command to perform only the translation and the translated
data files can be imported to GUI for visualization.

4.1.3 Analyze Phase

View Configuration

A View is a set of sampled event data and computed performance metrics either displayed in the GUI
pages or in the text report generated by the CLI. Each predefined sampling configuration has a list of
associated predefined views.

The tool can be used to filter/view only specific configurations, which is called Predefined View. For
example, IPC assessment view lists metrics such as CPU Clocks, Retired Instructions, IPC, and CPI.
For more information, refer “Predefined Sampling Configuration” on page 44.

4.2 Predefined Sampling Configuration

The Predefined Sampling Configuration provides a convenient way to select a useful set of
sampling events for profile analysis. The following table lists all such configurations:

Table 13. Predefined Sampling Configurations

Profile Type Predefined Configuration Abbreviation Description

Name
Time-based Time-based profile tbp To identify where the programs are
profile (TBP) consuming time.

44 Workflow and Key Concepts Chapter 4

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide
Table 13. Predefined Sampling Configurations
Profile Type Predefined Configuration Abbreviation Description
Name

Assess performance assess Provides an overall assessment of the
performance.

Assess performance (Extended) | assess_ext Provides an overall assessment of the
performance with additional metrics.

Investigate data access data_access To find data access operations with poor
L1 data cache locality and poor DTLB
behavior.

Event-based | Investigate instruction access inst_access To find instruction fetches with poor L1
profile (EBP) instruction cache locality and poor
ITLB behavior.

Investigate branching branch To find poorly predicted branches and
near returns.

Investigate CPI cpi To analyze the CPI and IPC metrics of
the running application or the entire
system.

Threading Analysis threading To get an overall threading analysis and
find potential issues for further
investigation.

Note: This configuration is available only on
Linux. It is supported only on AMD
“Zen3” and AMD “Zen4” processors.

Instruction based sampling ibs To collect the sample data using IBS

Fetch and IBS OP. Precise sample
IBS attribution to instructions.

Cache Analysis memory To identify the false cache-line sharing
issues. The profile data will be collected
using IBS OP.

Notes:

1. The AMDuProf GUI uses the name of the predefined configuration in the above table.

2. The abbreviation (in Table 13 on page 44) is used with AMDuProfCLI collect command’s --
config option.

3. The supported predefined configurations and the sampling events used in them is based on
the processor family and model.

Chapter 4

Workflow and Key Concepts

45

AMDA1

AMD uProf User Guide

4.3

A View is a set of sampled event data and computed performance metrics either displayed in the GUI

57368 Rev.4.2 January 2024

Predefined View Configuration

or in the text report generated by the CLI. Each predefined sampling configuration has a list of
associated predefined views.

Following is the list of predefined view configurations for Assess Performance:

Table 14.

Assess Performance Configurations

View Configuration

Abbreviation

Description

Assess Performance

triage_assess

This view gives the overall picture of performance,
including the instructions per clock cycle (IPC), data cache
accesses/misses, mis-predicted branches, and misaligned
data access. You can use it to find the possible issues for a
deeper investigation.

assessment

IPC assessment ipc_assess Find hot spots with low instruction level parallelism, it
provides performance indicators — [PC and CPI.

Branch assessment br_assess You can use this view to find code with a high branch
density and poorly predicted branches.

Data access dc_assess Provides information about data cache (DC) access

including DC miss rate and DC miss ratio.

Misaligned access
assessment

misalign_assess

You can use this to identify regions of code that access
misaligned data.

Following table lists the threading configuration:

Table 15. Threading Configuration
View Configuration | Abbreviation Description
IPC assessment ipc_assess Find hot spots with low instruction level parallelism, it

provides performance indicators — IPC and CPI.

Note: This configuration is available only on Linux. It is supported only
on AMD “Zen3” and AMD “Zen4” processors.

The following table lists the predefined view configurations for Investigate Data Access:

Table 16. Investigate Data Access Configurations
View configuration Abbreviation Description
IPC assessment ipc_assess Find hotspots with low instruction level parallelism. Provides
performance indicators — IPC and CPI.
Data access dc_assess Provides information about data cache (DC) access including
assessment DC miss rate and DC miss ratio.
Data access report dc_focus You can use this view to analyze L1 Data Cache (DC)

behavior and compare misses versus refills.

46

Workflow and Key Concepts

Chapter 4

AMDA1

57368 Rev.4.2 January 2024

AMD uProf User Guide

Table 16. Investigate Data Access Configurations
Misaligned access misalign_assess Identify regions of code that access misaligned data.
assessment
DTLB report dtlb_focus Provides information about L1 DTLB access and miss rates.

The following table lists the predefined view configurations for Investigate Branch:

Table 17.

Investigate Branch Configurations

View configuration Abbreviation Description
Investigate Branching | Branch You can use this view to find code with a high branch density
and poorly predicted branches.
IPC assessment ipc_assess Find hotspots with low instruction level parallelism, provides
performance indicators — [IPC and CPIL
Branch assessment br_assess You can use this view to find code with a high branch density

and poorly predicted branches.

Taken branch report

taken focus

You can use this view to find the code with a high number of
taken branches.

Near return report

return_focus

You can use this view to find code with poorly predicted near
returns.

The following table lists the predefined view configurations for Assess Performance (Extended):

Table 18.

Assess Performance (Extended) Configurations

View configuration

Abbreviation

Description

Assess Performance
(Extended)

triage assess_ext

This view gives an overall picture of performance. You can
use it to find possible issues for deeper investigation.

assessment

IPC assessment ipc_assess Find hotspots with low instruction level parallelism, provides
performance indicators — IPC and CPI.

Branch assessment br_assess Use this view to find code with a high branch density and
poorly predicted branches.

Data access dc_assess Provides information about data cache (DC) access including

DC miss rate and DC miss ratio.

Misaligned access
assessment

misalign_assess

Identify regions of code that access misaligned data.

The following table lists the predefined view configurations for Investigate Instruction Access:

Table 19. Investigate Instruction Access Configurations
View configuration Abbreviation Description
IPC assessment ipc_assess Find hotspots with low instruction level parallelism. Provides

performance indicators — IPC and CPIL.

Chapter 4

Workflow and Key Concepts

47

AMDA1

AMD uProf User Guide

Table 19.

57368 Rev.4.2 January 2024

Investigate Instruction Access Configurations

Instruction cache ic_focus You can use this view to identify regions of code that miss in

report the Instruction Cache (IC).

ITLB report itlb_focus You can use this view to analyze and break out ITLB miss
rates by levels L1 and L2.

The following table lists the predefined view configurations for Investigate CPI:

Table 20.

Investigate CPI Configurations

View configuration

Abbreviation

Description

IPC assessment

ipc_assess

Find hotspots with low instruction level parallelism. Provides
performance indicators — [PC and CPL

The following table lists the predefined view configurations for Instruction Based Sampling:

Table 21.

Instruction Based Sampling Configurations

View configuration

Abbreviation

Description

IBS fetch overall

ibs_fetch_overall

You can use this view to display an overall summary of the
IBS fetch sample data.

IBS fetch instruction
cache

ibs_fetch _ic

You can use this view to display a summary of IBS
attempted fetch Instruction Cache (IC) miss data.

IBS fetch instruction
TLB

ibs_fetch_itlb

You can use this view to display a summary of IBS
attempted fetch ITLB misses.

and bank conflicts

IBS fetch page ibs_fetch page You can use this view to display a summary of the IBS L1

translations ITLB page translations for attempted fetches.

IBS All ops ibs_op overall You can use this view to display a summary of all IBS Op
samples.

IBS MEM all load/ ibs_op_ls You can use this view to display a summary of IBS Op

store load/store data.

IBS MEM data cache |ibs op ls dc You can use this view to display a summary of DC
behavior derived from IBS Op load/store samples.

IBS MEM data TLB |ibs op Is dtlb You can use this view to display a summary of DTLB
behavior derived from IBS Op load/store data.

IBS MEM locked ops |ibs_op_ls memacc | You can use this view to display the uncacheable (UC)

and access by type memory access, write combining (WC) memory access,
and locked load/store operations.

IBS MEM translations | ibs op Is page You can use this view to display a summary of DTLB

by page size address translations broken out by page size.

IBS MEM forwarding |ibs op ls expert You can use this view to display the memory access bank

conflicts, data forwarding, and Missed Address Buffer
(MAB) hits.

48

Workflow and Key Concepts

Chapter 4

AMDA1

57368 Rev.4.2 January 2024

AMD uProf User Guide

Table 21. Instruction Based Sampling Configurations
View configuration Abbreviation Description

IBS BR branch ibs_op_branch You can use this view to display the IBS retired branch op
measurements including mis-predicted and taken
branches.

IBS BR return ibs_op_return You can use this view to display the IBS return op
measurements including the return mis-prediction ratio.

IBS NB local/remote | ibs_op _nb_access You can use this view to display the number and latency of

access local and remote accesses.

IBS NB cache state

ibs op nb cache

You can use this view to display the cache owned (O) and
modified (M) state for NB cache service requests.

IBS NB request ibs_op_nb_service You can use this view to display the breakdown of NB
breakdown access requests.
New Views in AMD “Zen3” and AMD “Zen4” Processors
IBS Load Op Analysis | ibs_op_1d You can use this view to analyze the memory load
performance issues of an application.
IBS Load Op Analysis | ibs op 1d ext You can use this view to analyze the memory load
(ext) performance issues of an application.

IBS Branch Overview

mibs_op _br overvie
w

You can use this view to analyze the branch metrics.

IBS Load Latency ibs_op _Id lat You can use this view to analyze the memory load latency
Analysis performance issues of an application.

IBS Memory ibs_op_Is_overview | You can use this view to understand the memory access
Overview pattern of an application.

IBS Perf Overview

ibs_op_overview

You can use this view to understand the performance

characteristics of an application.

Notes:
1.

mentioned in the above table.

the processor family and model.

The AMDuProf GUI uses the ‘View configuration’ name of the predefined configuration

The abbreviation is used in the CLI generated report file.

The supported predefined configurations and the sampling events used in them is based on

Chapter 4

Workflow and Key Concepts

49

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Chapter 5 Getting Started with AMD uProf GUI

5.1 User Interface

The AMD uProf GUI provides a visual interface to profile and analyze the performance data. It has
various pages and each page has several sub-windows. You can navigate the pages through the top
horizontal navigation bar. When a page is selected, its sub-windows will be listed in the leftmost
vertical pane as follows:

PROFILE SUMMARY ANALYZE SOURCES

Welcome to AMD uProf!

Recent Session(s)

Import Session Start Here Quick Links
About Profile an Application? See what's keeping y¥oUT System busy

Profile running Process(es)?
Profile entire System? This starts a system wide Time based profile.
Import existing Session?

P — See what's guzzling power in your System

2 This starts a system wide power profile.
Recently Used Configuration(s) AMD uProf Resources
[IRPETRN ASSESS Launch fjaval [View Details] Visit AMD uProf Page
(TATIRTEI ASSESS Launch [Scimarkstable] [T
[IRTRELE T CUSTOM Launch [scimarkstable] RN e Sesihe atest AMD UTot telease Fllea bur.

See more information about the product and tutorials.
(LY TARIZII TBP Launch [Scimarkstable] [View Details]

Visit Server Guru Forums

AMD Server Guru Forums exist to serve the EPYC

Recently Opened Session(s) community for all discussions on performance tuning.

6 JUL 14:37:15 [Edit Options]
6 JUL 14:16:47 [Edit Options]
6 JUL 14:14:30 [Edit Options]
18:33:04 MAY 17 2022 [Edit Options]

Figure 3. AMD uProf GUI

1. The menu names in the horizontal bar such as HOME, PROFILE, SUMMARY, and
ANALYZE are called pages.

2. Each page has its sub-windows listed in the leftmost vertical pane. For example, HOME page has
various windows such as Welcome, Recent Session(s), Import Session, and so on.

3. Each window has various sections. These sections are used to specify various inputs required for
a profile run, display the profile data for analysis, buttons and links to navigate to associated
sections. In the Welcome window, Quick Links section has two links that allows you to start a
profile session with minimal configuration steps.

50 Getting Started with AMD uProf GUI Chapter 5

AMDZ1
57368 Rev.4.2 January 2024 AMD uProf User Guide

5.2 Launching GUI

To launch the AMDuProf GUI program:
Windows

Launch GUI from C:\Program Files\AMD\AMDuProf\bin\AMDuProf.exe or using the Desktop
shortcut.

Linux
Launch GUI from /opt/AMDuProf X.Y-ZZZ/bin/AMDuProf binary.

The Welcome screen is displayed as follows:

Pa] AMDuProf

A PROFILE

Welcome to AMD uProf!

Recent Session(s)

Import Session Start Here Quick Links

About Profile an Application? See what's keeping your System busy
Profile running Process(es)?

Profile entire System? This starts a system wide Time based profile.
Import existing Session?

St HrAREe FRasb e See what's guzzling power in your System

This starts a system wide power profile.

Recently Used Configuration(s) AMD uProf Resources

[F KL ASSESS Launch [java] [View Details] Visit AMD uProf Page
[FUREATIN ASSESS Launch [ScimarkStable] [N ST |
IR el CUSTOM ITESETRTE] N aexils] See the Ia(_est AMD‘uPer release. File a bug.)

AMDuProf-EBP-Scim. I See more information about the product and tutorials.
[UARTSIW TBP Launch [SGinarksidvie) vTE eralls]
See Full List.. Visit Server Guru Forums

AMD Server Guru Forums exist to serve the EPYC
5 3 community for all discussions on performance tuning.

Recently Opened Session(s)
6JUL 14:37:15 ASSESS Launched [java] [Edit Options]
6 JUL 14:16:47 ASSESS + CS | Launched [ScimarkStable] (LYl ITNLE]
6JUL 14:14:30 ASSESS + CS Launched [ScimarkStable] [NIZTdel i TiN]
[EEERAVINEVSIPPl CUSTOM + CS Launched [ScimarkStable] JiZtHg el tn]

See Full List...

Figure 4. AMD uProf Welcome Screen

It has many sections as follows:
1. Start Here section provides quick links to start profile for the various profile targets.

2. Recently used profile configurations are listed in Recently Used Configuration(s) section. You
can click on this configuration to reuse that profile configuration for subsequent profiling.

3. Recently opened profile sessions are listed in Recently Opened Session(s) section. You can click
on any one of the sessions to load the corresponding profile data for further analysis.

4. Quick Links section contains two entries which lets you to start profiles with minimal
configuration.

Chapter 5 Getting Started with AMD uProf GUI 51

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

c. Click See what’s keeping your System busy to start a system-wide time-based profiling until
you stop it and then display the collected data.

d. Click See what’s guzzling power in your System to select various power and thermal related
counters and display a live view of the data through graphs.

5. AMD uProf Resources section provides links to the AMD uProf release page and AMD server
community forum for discussions on profiling and performance tuning.

5.3 Configure a Profile

To perform a collect run, first you should configure the profile by specifying the:
1. Profile target

2. Profile type

a. What profile data should be collected (CPU Profile, CPU Trace, GPU Trace, or Power Profile)
b. Monitoring events - how the data should be collected
c. Additional profile data (if needed) - callstack samples, profile scheduling, and so on

This is called profile configuration “Profile Configuration” on page 43 that identifies all the
information used to perform a collect measurement.

Note: The additional profile data to be collected depends on the selected profile type.
5.3.1 Select Profile Target

To start a profile, either click the PROFILE page at the top navigation bar or Profile an
Application? link in HOME page Welcome screen. The Start Profiling screen is displayed. Select
Profile Target is available in the Start Profiling window as follows:

52 Getting Started with AMD uProf GUI Chapter 5

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

X AMDuProf - a X

L. PROFILE

[t Profiiing; Select Profile Target Appication =
Saved Configurations

Launch an application by specifying the path to the executable. Note that you can optionally specify program options, environment variables required and the working directory. The working
directory defaults to the same location where the executable is located unless specified by you. Despite launching application, you can still collect system wide data but core affinity wil not work
however. Optionally you can specify whether to terminate the application after profiling or not.

Remote Profile

Application Path Browse
Application Options

Working Directory Browse
Environment Variables

Collect System Wide Data a

Terminate Application After Profiling @

Core Affinity

Config Name Reset Name

Figure 5. Start Profiling - Select Profile Target

You can select the one of the following profile targets from the Select Profile Target drop-down:

+ Application: Select this target when you want to launch an application and profile it (or launch
and do a system-wide profile). The only compulsory option is a valid path to the executable. (By
default, the path to the executable becomes the working directory unless you specify a path).

* System: Select this if you do not wish to launch any application but perform either a system-wide
profile or profile specific set of cores.

* Process(es): Select this if you want to profile an application/process which is already running.
This will bring up a process table which can be refreshed. Selecting any one of the processes from
the table 1s mandatory to start profile.

Once profile target is selected and configured with valid data, the Next button will be enabled to go
the next screen of Start Profiling.

Note: The Next button will be enabled only if all the selected options are valid.

5.3.2 Select Profile Type

Once profile target is selected and configured, click the Next button. The Select Profile
Configuration screen is displayed as follows:

Chapter 5 Getting Started with AMD uProf GUI 53

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

f

PROFILE

Predefined Configs

Live Power Profile Custom Configs

saved Configurations Time-based Sampling

O N | B sote Data Accens Use this configuration to identify where programs are spending time.

rrrrrrrrrrr] 1 %) willi seconds

Assess Performance (Extended)
Threading Analysis

Investigate Branching
Investigate Instruction Access

Cache Analysis

Advanced Options

CLI Command Copy

Config Name AMDUProf-TBP-AMDTClassicMatMul-bin ol Previous Next

Figure 6. Start Profiling - Select Profile Configuration

This screen lets you to decide the type of profile data collected and how the data should be collected.
You can select the profile type based on the performance analysis that you intend to perform. In the
above figure:

1. Select one of the following tabs:
— Predefined Configs consists of all the predefined configurations, such as Time-based
Profiling, Cache Analysis, and Assess Performance.
— Live Power Profiling consists of options to perform real-time power profiling.

— Custom Configs has options to perform Custom CPU Profile, CPU Tracing, and GPU
Tracing.
2. Once you select a profile type, the left vertical pane within this window will list the options
corresponding to the selected profile type. For CPU Profile type, all the available predefined
sampling configurations will be listed.

Modify event options are available only for the predefined configurations.

4. Click Advanced Options button to proceed to the Advanced Options screen and set the other
options such as the Call Stack Options, Profile Scheduling, Sources, Symbols, and so on.

5. The details in “Profile Configuration” on page 43 are persistent and saved by the tool with a name
(here, it is AMDuProf-EBP-ScimarkStable). You can define this name and navigate to PROFILE
> Saved Configurations to reuse/select the same configuration later.

54 Getting Started with AMD uProf GUI Chapter 5

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

6. The Next and Previous buttons are available to navigate to various screen of the Start Profiling

screen.

The CLI command is available at the bottom of this page, which displays the CLI version of the
GUI option selected on the Select Profile Configuration page.

5.3.3

Advanced Options

Click the Advanced Options button in Select Profile Type screen. The Advanced Options screen is
displayed as follows:

X AvDuPret

L PROFILE

saved Configurations

Remote Profile

Figure 7.

Advanced Options

i enable the openMP tracing option to collect openMP metrics data

Specify callstack settings which will collect data regarding function callstack. FPO s related to Frame Pointer Omission which when enabled leads to better call stack reconstruction and better call graph views.Note that for call stack size, setting a large value willlead
to generation of large profile sessions and considerable time in processing the sa

Enable FPO

Call Stack size - 1024

Enable start Paused switch to launch the application (i specified) but not collect the profile data or if you are using Profile API instrumentation then you can specify that or specify a start delay which is launch the application (i specified) but start the profiling only afte
in seconds) af |, Delay an n

E
 the delay period. Op can speci which the p ot supported for Power Profiling)

Limit Data Collection by First n(MB) ' x

0
Enable start paused (e)
[o]

Are you using Profile Instrumentation API?

Start Profiling After [o .
Profile Duration E o .

ry for the application being profiled which enabl attribution of the code which can be used to identify bottlenecks)

5 (Note: This leads to recur:

ConfigName | AMDUProf-Custor AMDTCIasscMathul-bn « [E— e I --

Start Profiling - Advanced Options 1

Chapter 5

Getting Started with AMD uProf GUI 55

AMDA1

AMD uProf User Guide

57368 Rev.4.2 January 2024

AMDuProf - X
A PROFILE e
Limit Data Collection by Firstn(MB) [0 ~ ~
Saved Configurations Enable start paused S
e RE Are you using Profile Instrumentation API? (e)
Start Profiling After [0 =
Profile Duration [0 .

Provide extra options such as Sources directory (the sources directory for the application being profiled which enables source-level attribution of the code which can be used to identify bottlenecks)

Root to Sources Enter path to root of the sources (Note: This leads to recursive search from root for sources)

Sources Directory B

Browse

Use these Symbol Configuration settings to configure symbol and server locations. Press enter to add multiple symbol file locations.
Use Microsoft Symbol Server(s) @

Environment Variable: _NT_SYMBOL_PATH cache*c:\symbols;srv....com/download/symbols

Symbols Download Path c\symbols X Browse
Add Symbol File Location(s) Path in srv/local-directory/network-share format Browse
Download Timeout (ms) 10000 x

Discard Current Changes

Specify the coarseness of the data aggregation.This affects how the data is plotted in the timeline view. The lower the data aggregation coarseness level,the more fine grained data will be plotted in the
timeline view.

Data Coarseness Level wedium [

v

Config Name AMDuProf-Custom-ScimarkStable X Reset Name Previous Next _-

Figure 8. Start Profiling - Advanced Options 2

You can set the following options on the Advanced Options screen:

1.

AN

Enable Thread Concurrency to collect the profile data and to show Thread Concurrency Chart
in Windows.

Call Stack Options to enable callstack sample data collection. This profile data is used to show
Top-Down Callstack, Flame Graph, and Call Graph views.

Profile Scheduling to schedule the profile data collection.

The Next and Previous buttons are available to navigate to various fragments within the Start
Profiling screen.

Sources line-edit to specify the path(s) to locate the source files of the profiled application.

Symbols to specify the Symbols servers (Windows only) and to specify the path(s) to locate the
symbol files of the profiled application.

You can also provide Download timeout for symbol file download from the server.

Getting Started with AMD uProf GUI Chapter 5

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

5.34 Start Profile

Once all the options are set correctly, click the Start Profile button to start the profile and collect the
profile data. After the profile initialization the following screen is displayed:

] AMDUProf - [C/Users/amd/AMDu. .- 17-2021_08-43-18.db] - [m] X

PROFILE SUMMARY ANALYZE X o

00:00:12

Collecting data...

Cancel Pause Stop

Figure 9. Profile Data Collection

1. The time elapsed during the data collection is displayed.
2. When the profiling is in progress, you can:
* Click the Stop button to stop the profiling.

* Clicking Cancel button to cancel the profiling. It will take you back to Select Profile Target
screen of PROFILE.

* Click the Pause button to pause the profiling. The profile data will not be collected and you
can click the Resume button to continue the profiling.

Chapter 5 Getting Started with AMD uProf GUI 57

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

5.4 Translation Progress

AMDuProf - X

A PROFILE e
90.00%

Processing data...

Profile Logs Cancel Symbol Download

or symbol ucrtbased. pdb 100.00% *
Downloading symbo or symbol bindfit.pdb 100.00%

Loaded debug for, sys

Downloading symbol debug inf

Loaded debug information for.

Downloading symbol debug information for symbol cldfit.pdb 100.00%
Loaded debug for...c: d Idflt.sys

Downloading symbol debug information for symbol usbxhci.pdb 100.00%
Loaded debug for...c:

Figure 10. Translation Progress

This screen displays:
1. The percentage of translation completed.

2. Profile Logs display the currently loaded symbol and the corresponding download percentage it is
being downloaded.

3. Cancel Symbol Download button to stop the symbol download from the server provided in the
symbol settings page.

Note: This option is available only on Windows.

5.5 Analyze the Profile Data

When the profiling stopped, the collected raw profile data will be processed automatically and you
can analyze the profile data through various Ul sections to identify the potential performance
bottlenecks:

« SUMMARY page to look at overview of the hotspots for the profile session.

* ANALYZE page to examine the profile data at various granularities.

* SOURCES page to examine the data at source line and assembly level.

« MEMORY page to examine the cache-line data for potential false cache sharing.

* HPC page to examine the OpenMP tracing data for potential load imbalance issue.

58 Getting Started with AMD uProf GUI Chapter 5

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

*+ TIMECHART page to visualize the MPI API trace, OS event trace, and information as a timeline
chart.

The sections available depends on the profile type. The CPU Profile will have SUMMARY,
ANALYZE, MEMORY, HPC, TIMECHART, and SOURCES pages to analyze the data.

5.5.1 Overview of Performance Hotspots

When the translation is complete, the SUMMARY page will be populated with the profile data and
Hot Spots screen will be displayed. The SUMMARY page provides an overview of the hotspots for
the profile session through various screens such as Hot Spots and Session Information.

In the Hot Spots screen, hotspots will be displyed for functions, modules, process, and threads.
Processes and threads will be displayed only if there are more than one.

The following figure shows the Hot Spots screen:

PROFILE SUMMARY ANALYTE

‘arget Application : C\Multithread Threadneme\Debug\Multithresd Threadname.exe
™ profile Duration : 9.8415 Thread Count: 13 Sarial Time : 574125 Paralial Time : 0.003s

Thread Concurrency Graph Copy Values Select Process [PID: Y6075] mtithenad thee. -

B

3}

l . . .
0 — — e
4 5 &

Inacive 1 2 k]

Elspasd Tims (saconds]

Thread Count

Sebect Mastric CPULTIME (%8 Sebect Sumemary View Hot Funciions (98

Hot Functions

Function CPU_TIME Module
clansic, moltiply, matrcesivold) [EITY ealitbresd theesedrame exe
mltiply.matricespeaid %) |25 muatithread_theeadname.exe
Imprenved muktily matricesivoid) 1,485 mailtithread_threadname.exe

||||||| _sartiveid) 0.76s mhithresd theesdname exe

FlaatSwapifiaat fioat) 0735 muitithread_threadname. ene

Figure 11. Summary - Hot Spots Screen
In the above Hot Spots screen:

1. The top 5 hottest functions, processes, modules and threads for the selected event are displayed.

2. The Hot Functions pie chart is interactive in nature. You can click on any section and the
corresponding function's source will open in a separate tab in the SOURCES page.

3. The hotspots are shown per event and the monitored event can be selected from drop-down in the
top-right corner. You can change it to any other event to update the corresponding hotspot data.

Chapter 5 Getting Started with AMD uProf GUI 59

AMDA1

AMD uProf User Guide

57368 Rev.4.2 January 2024

4. From the Select Summary View drop-down, select one of the following:

— Hot Threads
— Hot Processes

— Hot Functions
— Hot Modules
Based on the selection, one donut will be displayed at a time.

Summary Overview

Based on the selection, the Summary Overview screen will look similar to the following:

Table 22. Summary Overview
Data At . q
Collected Table Present Description Timing Details
OS Trace Schedule Summary | Summary of per thread running/wait time * Profile Duration
(percentages). * Parallel Time
Wait Object Time spent in operations related to several) Seqal Tlme
Summary types of synchronization objects, that is, locks, | galt T1rpe
mutexes, condition variables, and so on. * Sleep Time
Wait Function Time spent in several types of pthread blocking
Summary functions, that is, pthread join, and so on.
Syscall Summary | Time spent in syscall(s)
GPU Trace | GPU Kernel Time spent per GPU kernel in execution in the |+ Profile Duration
Summary enqueued device.
Data Transfer Time spent in GPU data copy operations.
Summary
MPI Trace | MPI P2P API Time spent in various MPI P2P API across all |+ Profile Duration
Summary ranks of the profile. * Parallel Time
MPI Collective API | Time spent in various MPI collective * Serial Tlme
Summary communication API across all ranks of the * MPI Time
profile.
CPU Profile | Hot Functions Hottest functions based on CPU profile. * Profile Duration
Hot Modules Hottest modules based on CPU profile. * Pargllel 'Tlme
* Serial Time
Hot Threads Hottest threads based on CPU profile.
Hot Processes Hottest processes based on CPU profile.
60 Getting Started with AMD uProf GUI Chapter 5

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

OS Trace

The OS Trace screen will look as follows:

A PROFILE SUMMARY ANALYZE

Wait Object Summary Thread Summary

Session Information

Wait Object Thread Total Wait Time % From Object Total Wait Time ¥ Wait Count Process Thread Time Wait Time(% From
Mutex@0x6120c0 Thread-139151 51.2415s 49.97 1 classic_lock classic lock(139142) 68.45s

Mutex@0x6120c0 Thread-139150 34.2019s 3335 1 classic lock Thread-139151(139151) 68.33s

Mutex@0x6120c0 Thread-139149 17.0971s 16.67 1 classic lock Thread-139150(139150) 51.24s

Mutex@0xcf6f99d8 classic_lock 7.973e-6s 100.00 4 Classic_lock Thread-139149(139149) 34.20s

Mutex@0x6120c0 Thread-139148 6.58e-6s 0.00 1

classic_lock Thread-139148(139148) 17.10s

Syscall summary Wait Function Summary

System Call Total Time AvgTime v Count Function Wait Count
futex 170.87s 15.53s 1" pthread_mutex_lock@0x0x6120c0 4
clone3 0.00s 0.00s 4 pthread_mutex_lock@0x0x7f5dcf6f99d8 4
execve 0.00s 0.00s 1 pthread_mutex_lock@0x0x7f5dcf6f3988 1
mmap 0.00s 0.00s 3

Figure 12. OS Trace
GPU Trace

The GPU Trace screen will look as follows:

Ba] AMDuProf — X

A PROFILE SUMMARY o

Target Application : /home/amd/jarpith/apps/HPC/BabelStream/hip-stream

Profile Duration : 6.911s

Session Information

GPU Kernel Summary Data Transfer Summary

Kernel Elapsed Time Count ¥ Data Copy Elapsed Time Count ¥
void add_kernel<1u, 1u, double>[x3] 0.50s 100 CopyDeviceToHost 0.01s 3
void triad_kernel<1u, 1u, double>[x3] 0.50s 100
void dot_kernel<1u, 1u, double>[x3] 0.36s 100
void copy_kernel<1u, 1u, double>[x2] 0.31s 100
void mul_kernel<1u, 1u, double>[x2] 0.31s 100

Figure 13. GPU Trace

Chapter 5 Getting Started with AMD uProf GUI 61

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

MPI Trace

The MPI Trace screen will look as follows:

P&l AMDuProf

A PROFILE SUMMARY ANALYZE HPC

Target Application : /home/uprofguest/apps/HPC/Is1-mardyn/src/MarDyn_c2762d13.PAR_DEBUG_SSE

Profile Duration:9.954s Thread Count: 36 Serial Time : 0.000s Parallel Time : 0.000s MPI Time : 0.000s OpenMP Imbalance : 0

Session Information

Select Metric CPU_TIME Select Summary View Hot Functions
Hot Functions
Function CPU_TIME Module
void VectorizedCellProcessor:_calculatePairs, true, ...>(CellDataSoA&, CellDataSoA&) 34.49s MarDyn_c2762d13.PAR_DEBUG_SSE
__kmp_hardware_timestamp 15.67s libomp.so
3 0 . 8 2 % __kmp_hyper _barrier_release(barrier_type, kmp_info*, int, int, int, void*) 14.28s libomp.so

void VectorizedCellProcessor::_calculatePairs, false, ...>(CellDataSoA&, CellDataSoA&) | 13.70s MarDyn_c2762d13.PAR_DEBUG_SSE
void VectorizedCellProcessor::_calculatePairs, true ...>(CellDataSoA&, CellDataSoA&) 9.04s MarDyn_c2762d13.PAR_DEBUG_SSE
Others 24.73s

MPI Collective API Summary MPI P2P API Summary

Function MPI Time(%) ¥ Function MPI Time(%) ¥

MPI_Allreduce inf MPI_Send inf

MPI_Barrier inf MPI_Cart_create inf

MPI_Bcast inf MPI_Recv inf v

CPU Profile
The CPU Profile screen will look as Figure 11.

62 Getting Started with AMD uProf GUI Chapter 5

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

5.5.2 Thread Concurrency Graph

Click ANALYZE > Thread Concurrency to view the following graph to analyze the thread
concurrency of the profiled application:

] PROFILE SUMMARY ANALYZE

ot b] Thread Concurrency Graph

Grouped Metrics -
Copy Valee Select rocess (PR 1200] mltthened thie W

Top-Down Calistack &

Flarme Graph

Thettad Comntl Rintage
Elapaed Time 3

;ﬁ Deaest s

Figure 14. Summary - Thread Concurrency Graph

The thread concurrency graph displays the duration (in seconds) of the specific number of threads
that were running simultaneously.

Bucketization approach is used for this graph. Instead of showing the Elapsed Time for each core,
the weighted average based on the bucket size will be taken. The bucket size will be determined based
on the cores and number of available pixels available. This is done to avoid the horizontal scrolling.

Chapter 5 Getting Started with AMD uProf GUI 63

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

5.5.3 Function HotSpots

Click ANALYZE on the top horizontal navigation bar to go to Function Hotspots screen, which
displays the hot functions across all the profiled processes and load modules as follows:

.3 PROFILE SUMMARY ANALYZE X o

Grouped Metrics ! by SelectMatric Thread Concurrency | %
i ration (me) 0.00 13067.00 | Apply -

e sl e LB w0025 W, 00,000 w0z

A & b Profile Duratier

ame Grap P

— ey . P
Call Graph
CPU_TIME(s) ¥

Thread Timeline ~ (e multithread _thi 13.48

hread_thr e 13.48
TID- 16700 : Thread 16700 9.67

TID-130 hread-13084 3.8

multiply_matric

muktithread_th 27
impreved multiply_matrices(void) muktithread_thi 2.25
insertion_sart{vaid)
Floatswapifloat,float)
rand

1.02
0.92
0.58

crt_interlocked_read_32(int const volatile *) ucrthased.dll 0.51
initialize_array(void) multithread_thi 0.48

€all Stacks [2] Medules CPU TiME(s) ¥

assic_multiply_mats (void) [PI0:4024] [TID:1 670 multithread_thi 9.67
classic multiply matricesivoid) [PI0:4024] [TID:1308< multithread thi 381

Figure 15. ANALYZE - Function Hotspots

Function Hotspots screen contains the following:

1. Process and thread wise breakdown of data is available if the entries are expanded in Function
Hotspots View. The Functions table lists the hot functions. The IP samples are aggregated and
attributed at the function-level granularity. On the table, you can do the following:

* Double-click on a function entry to navigate to the corresponding SOURCE view of that
function.

* Right-click to view the following options:

— Copy selected row(s) to copy the highlighted row to clipboard.
— Copy all rows to copy all the rows to clipboard.
2. Filters and Options pane allows you filter the profile data as follows:

* You can click the Select View drop-down to control the counters that are displayed. The
relevant counters and their derived metrics are grouped in predefined views.

* You can use the Value Type drop-down to display the counter values as follows:

— Sample Count is the number of samples attributed to a function.
— Event Count is the product of sample count and sampling interval.
— Percentage is the percentage of samples collected for a function.
* You can use the System Modules option to either Exclude or Include the profile data
attributed to system modules.

3. [If callstack is enabled, the unique hot call-paths for the selected function is displayed in the
Functions column.

64 Getting Started with AMD uProf GUI Chapter 5

AMDZ1
57368 Rev.4.2 January 2024 AMD uProf User Guide

4. Event Timeline is the line graph showing the number of aggregated sample values over the
period of time. You can use it to identify the hot functions within a profile region. From the Select
Metric drop-down you can select the event for which event timeline must be plotted.

All the entries will not be loaded for a profile. To load more than the default number of entries,
click the vertical scroll bar on the right. When the entries are expanded, process and thread-wise
breakdown of data is available.

554 Process and Functions

Click ANALYZE > Grouped Metrics to display the profile data table at various program unit
granularities - Process, Load Modules, Threads, and Functions. This screen contains data in two
different formats as follows:

Pl AMDuProf - [C:\Users\amd\AMDuPr...-07-2022_15-58-30]

£ PROFILE SUMMARY ANALYZE

Function HotSpots SelectView Time based hotspots [GroupBy Process W Value Type Sample Count | System Modules Exclude

CPUTIME v ”

[l scimarkstable.exe (PID 19496)

Flame Graph Load Modules
v Threads -
Call Graph 1
Thread-12152 1] 18022
Thread-26923

v conhost.exe (PID 13088) 37

w Load Modules

ntdll.dll 25

feagpphsa.dl

conhost.exe

kernelbase.dl
ediz2dl
user32.di

Functions

CPUTIME ¥

Random_nextDouble m scimarkstable.e: 3732
SparseCompRow_matmult | Z I scmarkstable.: 3590
LU_factor — samarkstable.e: 3143
static void FFT_transform_internal(int, double *, int) scimarkstable.e: 1909
MonteCarlo_integrate scimarkstable.e: 1257
FFT_bitreverse samarkstable.s: 350
Array2D_double_copy scimarkstable.e 7
_libm_sse2_sin_precise ucrebase.dl 26
FFT_inverse scimarkstable.e: 24
RelRandomEx nedlLall (7
WhNT32ThunkProcessinformationEx wowsa.dll l 21]
RtlpHeapGenerateRandomvalue3z ntdlldl e .

Figure 16. Analyze - Metrics

Chapter 5 Getting Started with AMD uProf GUI 65

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

The above figure consists of the following:

1. The upper tree represents samples grouped by Process. You can expand the tree to view the child
entries for each parent (that is for a process). The Load Modules and Threads are child entries
for the selected process entry.

You can right-click to view the following options:

* Expand All Entries to list the modules and threads of all the processes.
* Collapse All Entries to list only the top-level entries.

» Copy selected row(s) to copy the highlighted row to clipboard.

* Copy all rows to copy all the rows to clipboard.

2. The lower Functions table contains samples attributed to corresponding functions. The function
entries depend on what is selected in the upper tree. For more specific data, you can select a child
entry from the upper tree and the corresponding function data will be updated in the lower tree.-
You can do any of the following:

* Double-click on a function entry to navigate to the corresponding SOURCE view.
* Right-click to view the following options:

— Copy selected row(s) to copy the highlighted row to clipboard.

— Copy all rows to copy all the rows to clipboard.

3. You can use the Filters and Options pane to filter the profile data displayed by various controls.

* The Select View controls the counters that are displayed. The relevant counters and their
derived metrics are grouped in predefined views. You can select the views from the Select
View drop-down.

* The Group By drop-down is used to group the data by Process, Module, and Thread. By
default, the sample data is grouped-by Process.

* Click the ValueType drop-down to display the counter values as follows:
— Sample Count is the number of samples attributed to a function.
— Event Count is the product of sample count and sampling interval.
— Percentage is the percentage of samples collected for a function.

* You can use the System Modules option to Exclude or Include the profile data attributed to
system modules.

4. Confidence level — The metrics that cannot be calculated reliably due to low number of samples
collected for a program unit will be grayed out.

All entries will not be loaded for a profile. To load more than the default number of entries, click
the vertical scroll bar on the right.

66 Getting Started with AMD uProf GUI Chapter 5

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

5.5.5 Source and Assembly

Double-click on any entry in the Functions table in the Metrics screen to load the source tab for the
corresponding function in SOURCES page. If the GUI can find the path to the source file for that
function, then it will try to open the file, failing which you will be prompted to locate it.

The following figure depicts the source and assembly screen:

Bl AMDuProf - [C:\Users\amd\AMDUPr...1-07-2022_16-02-16] - 0o X
A PROFILE SUMMARY ANALYZE SOURCES
SOR_execute x
SelectView Overall assessment s\ue Type EventCount |W Process scimarkstable.exe (PID 16392) | 100.00% | W Threads Thread-24176 | 100.00% | ¥ Show Assembly @D
A Line Source RETIRED._INST | CYCLES_NOT_IN_HALT | L2_CACHE ACCESS_FROM_L1_DC_MISS k‘NEBRUIIEMUNSﬁMISP =
22 int Nmi = N-1;

oo resinalsh_

2 for (i=l; ichml; itt)
33 {

34 6i = G[i]s I ‘| l

35 Giml = G[i-1]; | L | 2500000 2500000
E] Gipl = G[i+1];

37 for (3=1; Jeuml; j++) 4750000

] = omega_over_four * (Gimi[§] + Gipl[j] + Gi[j-1] 1831750000 5041500000 40275000

reelinels)

0 for (p=8; p<num_iterations; pit)

42 } v
< >
l 2 I Address Line Assembly RETIRED.INST | CYCLES NOT IN HALT | L2_CACHE ACCESS FROM L1 DC_MISS | MISALIGNED LOADS |RETIRE|
) 8 movsd sam@, [edx] 5250000
ox2784 8 lea eax, [edi+edx] 3250000 4250000
ox2787 EL] movsd smml, [eax+esi] 3750000
Bx278c 38 addsd xmml, [eax] 2
ex2790 EL] mulsd xame, xam3 |] 191500000, 291250000 1775000
ox2794 EL] addsd xmml, [edx-88h] 3500000
@x2799 8 addsd xmmi, [edx+88h] 1836 6: 18350000
.akzne 8 mulsd saml, xmm2 502750000 845750000 5375000
ex27a2 EL] addsd xmm1, xmme 851250000 1397250000 9450000
ox2726 8 movsd [edx] ,xmml 436000000 718750000 5225000
ox273a L] add edx,@sh 3500000
ex27ad 38 sub ebx,@1h
v e 8 jnz @ese2788h 4000000/ 4000000 v
< >

Figure 17. SOURCES - Source and Assembly

Following section are present in the SOURCES screen:

1. The source lines of the selected function are listed and the corresponding metrics are populated in
various columns against each source line. If no samples are collected when a source line was
executed, the metrics column will be empty.

2. The assembly instruction of the corresponding highlighted source line. The tree will also show the
offset for each assembly instruction along with metrics.

3. Heatmap — overview of the hotspots at source level.

Chapter 5 Getting Started with AMD uProf GUI 67

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

4. Filters pane lets you filter the profile data by providing the following options.

* The Select View controls the counters that are displayed. The relevant counters and their
derived metrics are grouped in predefined views. You can select it from the Select View drop-
down.

* The Process drop-down lists all the processes on which this selected function is executed and
has samples.

* The Threads drop-down lists all the threads on which this selected function is executed and
has samples.

* You can use the ValueType drop-down to display the counter values as follows:

— Sample Count is the number of samples attributed to a function.
— Event Count is the product of sample count and sampling interval.
— Percentage is the percentage of samples collected for a function.
* The Show Assembly button shows/hides visibility of the assembly instruction table shown at
the bottom of the view.

For multi-threaded or multi-process applications, if a function has been executed from multiple
threads or processes, each of them will be listed in the Process and Threads drop-downs in the
Filters pane. Changing them will update the profile data for that selection. By default, profile data
for the selected function, aggregated across all processes and all threads will be displayed.

Note: Ifthe source file cannot be located or opened, only disassembly will be displayed.

5.5.6 Top-down Callstack

Top-down Callstack view can be used to explore the call-sequence flow of the application to analyze
the time spent in functions and its callees.

Click ANALYZE > Top-down Callstack to view it as follows:

L PROFILE SUMMARY ANALYZE X
| Function Hotspots Select Metric CYCLES NOT_IN_ HALT - Process qs [PID: 12442] | 100.00% - Threads All Thread(s) | 100.00% -
4 Value Type Event Count - Hide C++ std Library Calls * Search
1 Grouped Metrics ” v
T (T { !

oy AR DaE Module Inclusive Sample Exclusive Sample
1521083000000/ 0
Copy Row and Child Row(s) Data
: libomp.so 1279533000000 0
b Fame Graph libomp.so 1091775000000 0
i Collapse All Entries
i rier_type, kmp_info*, int, Int, i libomp.so 1091775000000 460694000000
| Call Graph Open Source View
i clisddale e e libomp.so 629196000000 629196000000
_kmp._yield libomp.so 1405000000 1405000000
_sched_yield libc.50.6 472000000 472000000
__kmp_hyper_barrier_release(barrier_type, kmp_info*, int, int, | libomp.so 460694000000 460694000000
v _kmp_invoke._task_func libomp.so 142398000000 0
~ _kmp_invoke_microtask libomp.so 142398000000 0
~ .omp_outlined. as 142398000000 0
~ CycleTrackingGuts(MonteCarlo*, int, ParticleVault*, ParticleVaul as 142398000000 5486000000
~ CycleTrackingFunction(MonteCarlo*, MC_Particleg, int, ParticleVa as 104191000000 5461000000
~ CollisionEvent(MonteCarlo*, MC_Particleg, unsigned int) as 79655000000 75095000000
macroscopicCrossSection(MonteCarlo*, int, int, int, int, int) qs 3709000000 3709000000
NuclearData::getEnergyGroup(double) as 273000000 273000000
ParticleVault:pushParticle(MC_Particle&) as 234000000 234000000
CollisionEvent(MonteCarlo*, MC_Particle&, unsigned int) as 75095000000 75095000000
~ MC_Segment_Outcome(MonteCarlo*, MC_Particle&, unsigned int&) as 13680000000 8136000000
- roscopicCrosssect arlo*, int, int, int, int) as 4752000000 4500000000
NurlearData oetTotalCrossSectionfunsioned int_unsioned int) as 252000000 252000000

Figure 18. Top-down Callstack

68 Getting Started with AMD uProf GUI Chapter 5

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

—

. Functions are displayed based on the parent to child entires depending on the inclusive samples
values sorted.

D

Inclusive sample values for a function and its descendants.

(O8]

Enabling Hide C++ std Library Calls option works only when C++ library calls are made. It will
exclude such calls from the list and display the other child entries.

4. Context menu of collapse entries will close all the expanded entries. Expand entries will expand
the child entries and the Open Source View option will display the corresponding source view.

5.5.7 Flame Graph

Flame graph is a visualization of sampled call-stack traces to quickly identify the hottest code
execution paths. Click ANALYZE > Flame Graph to view it as follows:

PROFILE SUMMARY ANALYZE X o

Function Hotspots Click on any block in Flame Graph to focus on it's children.

Grouped Metrics Select Metric CYCLES NOT_IN HALT = Process sdmarka [PID: 38222] | 100.00% I Threads sdmark2 | 100.00% ‘v- Search

Top-Down Callstack

Call Graph

| kemelmeasuwesOR | kemel measureMonteCarlo | '
—m_

_libe start_call_main
_libe start 1 maln@@GlIB(234

|
Figure 19. ANALYZE - Flame Graph

The Flame Graph screen comprises of the following:

1. The x-axis of the flame graph shows the call-stack profile and the y-axis shows the stack depth. It
is not plotted based on passage of time. Each cell represents a stack frame and if a frame were
present more often in the call-stack samples, the cell would be wider. This screen has the
following options:

* Module-wise coloring of the cells.

* Click on a cell to zoom only that cell and its children. Use the Reset Zoom button visualize
the entire graph.

* Right-click on a cell to view the following context options:

Chapter 5 Getting Started with AMD uProf GUI 69

AMDZ\
AMD uProf User Guide

57368 Rev.4.2 January 2024

— Copy Function Data to copy the function names and its metrics to clipboard.
— Open Source View to navigate to the source tab of that function.

* Hover the mouse over a cell to display the tool-tip showing the inclusive and exclusive
number of samples of that function.

2. Following options are available at the top of this screen:
* Click Zoom Graph button for a better zooming experience.

* When you type a function name in the search box, a list of all the relevant matches will be

displayed. Select the required function to highlight the cells corresponding to that function in
the flame graph.

* The Process drop-down lists all the processes for which call-stack samples are collected.
Changing the process will plot the flame graph for that particular process.

* For multi-threaded applications, the flame graph will be plotted for the cumulative data of all
the threads by default.

* The Threads drop-down lists all the threads for which call-stack samples are collected.
Changing the thread will plot the flame graph for that thread.

* The Select Metric drop-down lists all the metrics for which call-stack samples are collected.
Changing the metric will plot the flame graph for that particular metric.

5.5.8 Call Graph

Click ANALYZE > Call Graph to navigate to the call graph screen. This graph is constructed using
the call-stack samples and offers a butterfly view to analyze the hot call-paths as follows:

L PROFILE SUMMARY ANALYZE

X o
Function Hotspots Process samark2 [PID: 98222] | 100.00% = Threads simark2 | 100.00% - Select Metric CYCLES_NOT_IN_ HALT - Search
Ccped MEUes Function ‘ Inclusive Sample | Exclusive sample | Module Source File
0| scimark2 | /home/amd/apps/Scimarkstable/scimarka.c
Top-Down Callstack | _libc_start main@@GLIBC_2.34 17743 libc.s0.6
| _libc_start_call_main 17743 libc:s0.6
Flame Graph | Room 17743
cail Graph _start 17743 scimark2
o . kernel measureSOR 4498 scimark2 | /home/amd/apps/ScimarkStable/kernel.c
| SOR_execute 4498 4498 scimark2 | /home/amd/apps/ScimarkStable/SOR.c
|
kernel_measureMonteCarlo 3726 scimark2 | /home/amd/apps/Scimarkstable/kernel.c
MonteCarlo_Integrate 3726 2788, scimark2 it arlo.c
kernel_measureSparseMatMult 3518 scimark2 | /home/amd/apps/ScimarkStable/kernel.c
SparseCompRow_matmult 3518 3518 scmark2 | /home/amd/apps/ScimarkStable/SparseCompRow.c
kernel_measureLU 37N scimark2 | /home/amd/apps/ScimarkStable/kernel.c
Caller(s) of Function: main Callee(s) of Function: main
Parents sample | % Module Self + Children sample | % Module
| _tibc_start_call_main 17743 100.00%% libc.50.6 kernel_measureSOR 4498| 25.35%% scimark2
kernel_measureMonteCarlo 3726| 21.00%% scimark2
=z kernel_measureSparseMatMult 3518| 19.83%% scimark2
kernel_measureLU 3171| 17.87%% | scimark2
kernel_measureFFT 2830| 15.95%% scimark2

Figure 20. ANALYZE - Call Graph

1. The Function table lists all the functions with inclusive and exclusive samples.

Click on function to display its Caller and Callee functions in a butterfly view.

70 Getting Started with AMD uProf GUI Chapter 5

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

2. Lists all the parents of the function selected in the Function table.
Lists all the children of the function selected in the Function table.
4. Options:

* The Process drop-down lists all the processes for which call-stack samples are collected.
Changing the process will show the call graph for that particular process.

* For multi-threaded applications, the call-graph will be plotted for the the cumulative data of
all the threads by default.

* The Threads drop-down lists all the threads for which call-stack samples are collected.
Changing the thread will plot the call graph for that thread.

* The Select Metric drop-down lists the metrics for which call-stack samples are collected.
Changing the counter will show the call graph for that particular counter.

5.5.9 IMIX View

IMIX view shows the summary of instruction-wise samples collected. This view is shown only for
IBS profiling. Click ANALYZE > IMIX to navigate to the IMIX view:

AMDuProf - [C:\Users\amd\AppDat...-07-2022_12-32-15] - a X

£ 3 PROFILE SUMMARY ANALYZE

Function HotSpots Select Metric IBS_TAG_TO_RET i, Madule scimarkstable.exe ¥ Functions FFT_bitreverse o

‘ —J Instruction Sample Count Percentage ‘

P 30256 0.28
ov 25006 0.23

13266 012

Metrics

vups 8536 0.08
sub 8451 0.08

7608 0.07

5761 0.06
add 5758 0.06
movsxd 5298 0.06
nop 4829 0.04
jnle 150 0.00
cdq 10 0.00
retng 10 0.00

Figure 21. IMIX View

1. The IMIX table lists all the instructions with sample count and sample percentage for the selected
options.

Chapter 5 Getting Started with AMD uProf GUI 71

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

2. Options:

* The Select Metric drop-down lists all the metrics for which samples are collected. Changing
the metric will display the IMIX information for that metric.

* The Module drop-down lists all the binaries for which samples are collected. Changing the
module will display the IMIX information for that module.

* The Functions drop-down lists all the functions for which samples are collected. Changing
the function will display the IMIX information for that thread. By default, IMIX information
for All Functions is shown.

5.6 Importing Profile Database

To analyze a profile database generated using CLI, click HOME > Import Session to go to the
Import Profile Session. The following screen is displayed:

AMDuProf - u]

X

] PROFILE e

Welcome
Import Profile Session
Recent Session(s)

I s A Profile Data File ‘ Enter file path containing session.uprof file ‘ Browse

About Root Path to Sources Enter path to root of the sources (Note: This leads to recursive search from root for sources) Browse

Binary Path Enter path(s) to binary file(s)
Source Path
Force Database Regeneration (e]

Use cached Source/Binary/Symbol Files

Open Session

Figure 22. Import Session — Importing Profile Database

This can be used to import the processed profile data collected using the CLI or the processed profile
data saved in GUI’s profile session storage path. You must do the following:

* Specify the pathcontaining the session.uprof file in the Profile Data File box.

* Binary Path: If the profile run is performed in a system and the corresponding raw profile data is
imported in another system, you must specify the path(s) in which binary files can be located.

* Source Path: Specify the source path(s) from where the sources files can be located. No sub-
directories will be searched in this path to locate any source files.

* Root Path to Sources: Specify the path to the root of multiple source directories. The entire
directory and sub-directories present in that path will be searched to locate any source files.

Note: The search might take time as all the sub-directories will be searched recursively.

* Force Database Regeneration: To forcefully regenerate the database file while importing.

72 Getting Started with AMD uProf GUI Chapter 5

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

+ Use Cached Source/Binary/Symbol Files: Enable this option to reuse cached source, binary, and
symbol files.

5.7 Analyzing Saved Profile Session

Once you have created a new profile session or opened (imported) profile database, the history is
updated and the last 50 opened profile database records are stored (that is, where they are located).
Such a list will also appear in HOME > Recent Session(s) as follows:

AMDuProf — X
A PROFILE e
Welcome AMDuProf-ScimarkStable-Custom_May-22-2023_22-53-49 -

AMDuProf-ScimarkStable-Custom_May-22-2023_22-53-49

May 22 2023 | 10:53:50 PM
| Recent Session(s) Custom Profile Session path C:A\Users\AppD: DuProf-Custom-Sc

Remove Entr \AMDuProf-ScimarkStable-Custom_May-22-2023_22-53-49
Import Session Hide Details Remo try Edit Options

Profile Type Custom Profile

About AMDuProf-scimarkStable-Custom_May-22-2023_22-52-21 Profile Scope Launch-Application @
May 22 2023 | 10:52:25 PM Machine Name
Custom Profile Target Applicati C:\TestCodes\Sc bu;
See Details Remove Entry Edit Options Working Directory ~ C:\TestCodes\ScimarkStable\x64\Debug

Call stack collected No

AMDuProf-ScimarkStable-TBP_May-21-2023_00-13-30

May 21 2023 | 12:13:32 AM Event Name [Event Ip[sampling Interval | Event Mask| callstack Collected| cMask|
Time-based Sampling [0x76 : 0x0] CYCLES_NOT_IN_HALT 0x76 1000000 0x0 No 0x0 N
See Details Remove Entry Edit Options

[0xc0 : 0x0] RETIRED_INST 0xc0 1000000 0x0 No 00 N

AMDuProf-ScimarkStable-Custom_May-21-2023_16-49-00

May 212023 | 4:49:02 PM

Custom Profile < >

SeeDetails RemoveEntry Edit Options
AMDuProf-ScimarkStable-Custom_May-21-2023_16-47-22

May 21 2023 | 4:47:24 PM
Custom Profile

See Details Remove Entry Edit Options

AMDuProf-ScimarkStable-Custom_May-21-2023_16-42-08

May 21 2023 | 4:42:14 PM
Custom Profile

SeeDetails ~Remove Entry Edit Options

AMDuProf-ScimarkStable-TBP_May-21-2023_00-12-24

May 21 2023 | 12:12:25 AM
Time-based Sampling

See Details Remove Entry Edit Options

AMDuProf-ScimarkStable-TBP_May-21-2023_00-05-43

May 21 2023 | 12:05:45 AM
Time-based Sampling

Figure 23. PROFILE - Recent Session(s)

In the above figure:

1. History of profile sessions opened for analysis in the GUI. The following options are available:
* Click on an entry to load the corresponding profile database for analysis.

* See Details button displays details about this profile session such as profiled application,
monitored events list, and so on.

* Click Edit Options to automatically fill the Import Profile Session for the database and
update the required line-edits before opening the session.

* Remove Entry button deletes the current profile session from the history.

2. Displays the details of the selected profile session.

Chapter 5 Getting Started with AMD uProf GUI 73

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

5.8 Using Saved Profile Configuration

When a profile configuration is created (when you set the options and start profiling), if it generates at
least one valid profile session, the profile configuration details will be stored with the options set and
can be loaded again. Such a list is available in PROFILE > Saved Configurations as follows:

AMDUProf

f

PROFILE

Start Profilin -EBP-Sci .
8 AMDuProf-EBP-ScimarkStable CPU Profiling
: CPU Profiling
Created on : 20th Dec 2021 | 11:05:26 PM Target Type Application

C:\Work\SamplePrograms\QA\ScimarkStable\Debug

i Application Path \ScimarkStable.exe
AMDuProf-EBP-ScimarkStable(1) Working Directory C:\Work\SamplePrograms\QA\ScimarkStable\Debug
CPU Profiling Call Stack Collected Yes
Created on : 20th Dec 2021 | 4:55:52 PM Call Stack Depth 128
See Details Remove Entry CS5 Mode User Mode

FPO Enabled No
AMDuProf-TBP-ScimarkStable

CPU Profiling
Created on : 20th Dec 2021 | 1:29:53 PM

See Details Remove Entry

AMDuProf-TBP-ScimarkStable

CPU Profiling
Created on: 11th Dec 2021 | 1:16:49 AM

See Details Remove Entry

AMDuProf-EBP-ScimarkStable

CPU Profiling
Created on: 10th Dec 2021 | 3:51:17 PM

See Details

AMDuProf-TBP-SciMark

CPU Profiling
Created on : 10th Dec 2021 | 3:43:58 PM

See Details

AMDuProf-Custom-SciMark
CPU Profiling

Frastad an - NGth Nar 2N21 1 11-20-12 DM

Figure 24. PROFILE - Saved Configurations

In the above figure:

1. History of profile configurations used to collect profile data using GUI. The following options are
available:

* Click on an entry to display the corresponding profile configuration for data collection.

* See Details button displays the details about the current profile session such profiled
application, monitored events list, and so on.

* Remove Entry button deletes the current profile session from the history.
2. Displays the details of the selected profile session.

Note: By default, the profile configuration name is generated by the application. If you want to reuse
it, you should name it appropriately to locate it easily. To do so, provide a config name in the
bottom left corner (Config Name line-edit) in PROFILE > Start Profiling.

74 Getting Started with AMD uProf GUI Chapter 5

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

5.9 Settings

There are certain application-wide settings to customize the AMD uProf experience. The SETTINGS
page is in top-right corner and is divided into the following three sections:

Preferences: Use this section to set the global path and data reporting preferences.

X AMDuProf

* PROFILE

These settings Impact how you view the data i.e. the representation. Note that there are some common settings between this section and filters in profile view sections. If you apply any changes
here and if local filters are already set, they will not reflect the change

Profile Data
Symbols Process inline functions (o J
Source Data Initial View on Session Import Summary View -
Show Values By
Event Count -
include System Modules m Exclude
Floating point precision o 2 +

Use Cached Binary and Source paths @D

Sort function stacks in Flame Graph @D
sample threshold in Flame Graph [001 B o
Confidence Threshold Number - 10 +

On Drag'n'Drop session file RonorLDleah =

Reset

Figure 25. SETTINGS - Preferences

— Click the Apply Changes button to apply the updated/modified settings. There are settings
which are common to profile data filters and hence, any changes to them through the Apply
Changes button will only be applied to the views that do not have local filters set.

— You can click Reset button to reset the settings or Cancel to discard the changes that you don't
want to apply.

Symbols: Use this section to configure the Symbol Paths and Symbol Server locations. The
Symbol server is a Windows only option. The following figure represents the Symbols section:

AMDuProf - X
A PROFILE E o]
Preferences

Use these Symbol Configuration settings to configure symbol and server locations. Press enter to add multiple symbol file locations. Click Apply changes button to reflect the changes across the
Profile Data profile run.

Use Microsoft Symbol Server(s) CI

Symbols Download Path C:\Users\amd\Downloads\\AMDuProf X Browse

Source Data

Add Symbol File Location(s) Path in srv/local-directory/network-share format Browse

Download Timeout (ms) 60000 x

Apply Changes Reset Cancel

Figure 26. SETTINGS - Symbols

Chapter 5 Getting Started with AMD uProf GUI 75

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Source Data: Use this section to set the Source view preferences. The following figure represents
the Source Data section:

X AmDuProf - o X
L PROFILE o
Preferences

These settings impact how the source data is presented and processed based on debug symbols. These settings are only applied when you click the Apply button. Any existing source file tabs may
not reflect the latest settings and should be re-opened.

Profile Data
Symbols Show Disassembly in Source View @

Show Code Bytes in Source View (e]

Always prompt to locate source when missing? @D

Show source view for kernel functions @

Path to root of kernel sources Browse

Select assembly address type i lost adies <]

Reset

Figure 27. SETTINGS - Source Data
You can use Select Disassembly Syntax to select the syntax in which you wish to see the
disassembly. By default, it is set to Intel on windows and AT&T on Linux.

Profile Data: Use this section to control the location of data generation during profiling. The
following figure represents Profile Data section:

A PROFILE SUMMARY ANALYZE

Preferences
These settings control where session data generated during profiling is stored, along with amount of data generated, persistence of cache and log levels (which affect size of data generated).
Default path for Profile Session storage G \AppD MDUPt X Browse
Symbols
Keep Raw Files After Collection
Source Data B @
Cache Binary And Source paths @
Hotkey to stop profile (if running) AlteCerlss x
Hotkey to pause/resume profile AtsCureT x

Log information to collect Minimal >

This will only collect error logs.

Delete Recorded Session Files Older Than All -

Reset profile configuration options after starting profile? @D

ApplyChanges ~ Reset Cancel

Figure 28. Profile Data

76

Getting Started with AMD uProf GUI Chapter 5

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

— Keep Raw Files After Collection enables saving of the raw files after translation. It is disabled
by default.

— Youcan use the option Delete Record Session Files to delete the session files older than a given
time period. The time period is set to None by default.

— Reset Profile Configuration helps add preference to keep or clear the profile configuration
after each profile. It is set to True (clear after profiling) by default.

— Hotkey to stop profile (if running) helps halt the CPU and Power profiling.
— Hotkey to pause/resume profile helps pause or resume the CPU and Power profiling
Note: Hotkeys are supported only on Windows.

5.10 Shortcut Keys

Following table lists the AMD uProf shortcut keys:
Table 23. Shortcut Keys

Shortcut Key Description
Cul+0O Import a session.
Cul+P Start configuring a profile, that is, provide an application path to a profile.
Cul+S Jump to the first section of the settings page.
Ctrl + F Bring focus to the search bar in Function Hotspots. This is applicable for Function
Hotspots, Grouped Metrics, Flame Graph, Call Graph, Top-down, and Callstack.
Ctrl + K Highlight the source line with maximum samples in Source View.
Ctrl +/- Zoom in/out a timeline view.
Cul+7Z Zoom in to a particular region of a timeline view.

Chapter 5 Getting Started with AMD uProf GUI 77

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Chapter 6 Getting Started with AMD uProf CLI

6.1 Overview

AMD uProf’s command line interface AMDuProfCLI provides options to collect and generate report
for analyzing the profile data.

AMDUProfCLI [--version] [--help] COMMAND [<options>] [<PROGRAM>] [<ARGS>]
The following commands are supported:
Table 24. Supported Commands

Command Description
collect Runs the given program and collects the profile samples.
report Processes the raw profile datafile and generates profile report.
timechart Power Profiling — collects and reports system characteristics, such as power, thermal, and
frequency metrics.
info Displays the generic information about system and topology.
translate Processes the raw profile datafile and generates the profile DB.
profile Collects the performance profile data, analyzes it and generates the profile report.

compare,diff | Processes multiple profile-data and generates a comparison report.

For more information on the workflow, refer to the section “Workflow and Key Concepts”. To run the
command line interface AMDuProfCLI, run the following binaries as per the OS:

* Windows

C:\Program Files\AMD\AMDuProf\bin\AMDuProfCLI.exe
e Linux:

/opt/AMDuUProf_X.Y-ZZZ/bin/AMDuProfCLI

If installed using the .tar file:

./AMDUProf_Linux_x64 X.Y.ZZZ/bin/AMDuProfCLI
* FreeBSD:

sh ./AMDuProf_FreeBSD_x64_X.Y.ZZZ/bin/AMDuProfCLI

78 Getting Started with AMD uProf CLI Chapter 6

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

6.2 Starting a CPU Profile

To profile and analyze the performance of a native (C, C++, and Fortran) application, you must
complete the following steps:

1. Prepare the application. For more information on preparing an application for profiling, refer to
the section “Reference”.

2. Use AMDuProfCLI collect command to collect the samples for the application.
Note: Run AMD uProf on FreeBSD with sudo command or root privilege.
3. Using AMDuProfCLI report command to generate a report in readable format for analysis.

Preparing the application is to build the launch application with debug information as it is needed to
correlate the samples to functions and source lines.

The collect command launches the application (if given) and collects the profile data for the given
profile type and sampling configuration. It generates the raw data file (.prd on Windows,.pdata on
FreeBSD, and .caperf on Linux) and other miscellaneous files.

The report command translates the collected raw profile data to aggregate and attribute to the
respective processes, threads, load modules, functions, and instructions. Also, it writes them into a
database and then generates a report in the CSV file format.

The following figure shows how to run a time-based profile and generate a report for the application
AMDTClassicMatMul.exe:

fCLI.exe collect --config tbp -o c:\Temp\cpu-prof "c: ram Files) AMDuProf\Examples\A

atMul-TBP_Dec

eport file:|c:\Temp\cpu-pro v 2 021_16-32-21\report.csv

am Files)\,

Figure 29. Collect and Report Commands

Chapter 6 Getting Started with AMD uProf CLI 79

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

6.2.1 List of Predefined Sample Configurations

To get the list of supported predefined sampling configurations that can be used with collect
command’s --config option, run the following command:

AMDUProfCLI info --1list collect-configs

A sample output is as follows:

[amd@win-f7f2kcshg7k bin]$./AMDuProfCLI info --1ist collect-configs

List of predefined profiles that can be used with 'collect - option:

thp : Time-based Sampling
Use this configu ion to identify where programs are spending time.

: Threading Analysis
Use this configuration to get an overall threading analysis and to find
potential issues for further 1investigation.
[PMU Events: PM , PMCxB76, PMCxBCB, PMCxB43]

memory : Cache Analysis
Use this configuration to identify the false cache-line sharing issues.
The profile data will be col d using IBS OP.

inst_access estigate Instruction Acc
U nfiguration to d instruction fetches with poor L1 instruction
cache locality and poor ITLB behavior.
[PMU Events: PMCx0876, PMCxBCO, PMCx28F, PMCx18E, PMCx068, PMCx064, PMCx084, PMCx885,
PMCx094]

; Instruction-based Sampling
Use this configuration to collect profile data using Instruction Based
Sampling. Samples are attributed to instructions pr 1y with IBS.

data_access : Investigate Data Access
Use this configuration to find data access operations with poor L1 data
cache locality and poor DTLB
[PMU Events: PMCx876, PMCx0

: Investigate CPI

branch
nfiguration to fi : B
[PMU Events: PMCx076, PMCxBCO, x8C2, : c c X6 PMCxBC9,
PMCxBCA]

assess_ext Ht 5s Performance (Extended)
Use this configuration for an overall assessment of performance and to
find the potential issues for further investigation. This has additional
events to monitor than the Assess Performal onfiguration.

Figure 30. Supported Predefined Configurations on Linux

80 Getting Started with AMD uProf CLI Chapter 6

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

C:\Program Files\AMD\AMDuProf\bin>AMDuProfCLI.exe info --list collect-contfigs
List of predefined profiles that can be used with "collect --config' option:

tbhp : Time-based Sampling
Use this configuration to identify where programs are spending time.

memory : Cache Analysis
Use this configuration to identify the false cache-line sharing issues.
The profile data will be collected using IBS OP.

inst_access : Investigate Instruction Access
Use this configuration to find instruction fetches with poor L1 instruction
cache locality and poo) .
[PMU Events: PM 6, PV F, PMCx18E, PMC PMCx@64, PMCx084, PMCx@85,

: Instruction-based Sampling
Use this configuration to collect profile data using Instruction Based
Sampling. Samples are attributed to instructions precisely with IBS.

data_access : Investigate Data Access
Use this configuration to find data access operations with poor L1 data
cache locality and poor DTLB behav
[PMU Events: 76, PMCx

: Investigate CPI
Basic profile type to analyse the CPI
or the entire
[PMU Events: PM

: Investigate Branching
Use this configur
[PMU Events:

e
assessment of performance and to
investigation. This has additional
rmance configuration.
P76, PMCxOCO, C2, PMCx8C3, PMCx029, PMCX@60, PMC
024, PM

essment of performance and

Figure 31. Supported Predefined Configurations on Windows
6.2.2 Profile Report

The profile report (in CSV format) contains the following sections:
* EXECUTION — Information about the target launch application.

* PROFILE DETAILS — Details about the current session, such as profile type, scope, and
sampling events.

« MONITORED EVENTS — List of the profiled events and the corresponding sampling intervals.
* 10 HOTTEST FUNCTIONS — List of the top 10 hot functions and the metrics attributed to them.

Chapter 6 Getting Started with AMD uProf CLI 81

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

+ TAKEN BRANCH ANALYSIS SUMMARY — List of the top 10 hot branches

* 10 HOTTEST PROCESSES — List of the top 10 hot processes and the metrics attributed to them.
« 10 HOTTEST MODULES — List of the top 10 hot modules and the metrics attributed to them.

* 10 HOTTEST THREADS — List of the top 10 hot threads and the metrics attributed to them.

* PROFILE REPORT FOR PROCESS — The metrics attributed to the profiled process. This
section is shown when --detail option used for report generation. It contains other sub-sections,
such as:

— THREAD SUMMARY — List of threads with metrics attributed to them.

— MODULE SUMMARY — List of load modules which belong to the process with metrics
attributed to them.

— FUNCTION SUMMARY — List of functions that belong to this process for which samples
are collected, with metrics attributed to them.

— LAST BRANCH RECORD FOR PROCESS — List of collected branches for the process.

— Function Detail Data — Source level attribution for the top functions for which samples are
collected.

— CALLGRAPH — Call graph, if callstack samples are collected.

6.3 Starting a Power Profile

6.3.1 System-wide Power Profiling (Live)

To collect power profile counter values, complete the following steps:

1. Run the AMDuProfCLI timechart command with --list option to get the list of supported counter
categories.

2. Use the AMDuProfCLI timechart command for specifying the required counters with --event
option to collect and the report the required counters.

The timechart run to list the supported counter categories:

82 Getting Started with AMD uProf CLI Chapter 6

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

[amd@win-f7f2kcshg7k binl$./AMDUProfCLI timechart --1

Instance
Socket B - 1]
Core [B - 255]
Thread [8 - 511]

Supported Counter Categories:-

Category Supported Device Type
Power [Socket, Core]
Freguency [Thread]
Temperature [Socket]

P-State [Thread]

Figure 32. Output of timechart --list Command

The timechart to collect the profile samples and write into a file:

fCLI.exe timechart -e Power,Frequency -o c:\Temp\power-prof "c: ra ile MDuProf\

Invoke inefficient i emen i f matrix multiplication
Elapsed time: 1. sec (0 sec resolution)

Mul-Timechart_Dec
Mul-Timechart_Dec \timechart.csv

Figure 33. Execution of timechart

The above run collects the power and frequency counters on all the devices on which these counters
are supported and writes them in the output file specified with -o option. Before the profiling begins,
the given application is launched and the data is collected till the application terminates.

6.4 Collect Command

The collect command collects the performance profile data and writes into the raw data files in the
specified output directory. These files can then be analyzed using AMDuProfCLI report command or
AMDuProf GUI.

Synopsis:
AMDUProfCLI collect [--help] [<options>] [<PROGRAM>] [<ARGS>]
<PROGRAM> — Denotes the launch application to be profiled.

<ARGS> — Denotes the list of arguments for the launch application.

Chapter 6 Getting Started with AMD uProf CLI 83

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Common Usages:

$ AMDUProfCLI collect <PROGRAM> [<ARGS>]
$ AMDuUProfCLI collect [--config <config> | -e <event>] [-a] [-d <duration>] [<PROGRAM>]

6.4.1 Options

The following table lists the collect command options:
Table 25. AMDuProfCLI Collect Command Options

Option Description
-h | --help Displays the help information on the console/terminal.
-o | --output-dir Base directory path in which collected data files will be saved. A new sub-

<directory-path> directory will be created in this directory.

--config <config> Predefined sampling configuration to be used to collect samples.

Use the command info --1list collect-configs to get the list of supported
configs. Multiple occurrences of --config are allowed.

84 Getting Started with AMD uProf CLI Chapter 6

AMDA1

57368 Rev.4.2 January 2024

AMD uProf User Guide

Table 25. AMDuProfCLI Collect Command Options

Option

Description

-e | --event or
<predefined-event>

A predefined event can be directly be used with -e, --event which has
predefined arguments.

Alternatively, for providing more granular parameters, specify Timer, PMU,

IBS event, or a predefined event with arguments in the form of comma

separated key=value pairs. The supported keys are:

* event=<timer | ibs-fetch | ibs-op> or <PMU-event> or <predefined-event>

* umask=<unit-mask>

» user=<0 | 1>

* 0s=<0| 1>

» cmask=<count-mask> (value should be in the range 0x0 to 0x7f)

e inv=<0| 1>

* interval=<sampling-interval>

* frequency=<frequency (n)> (supported only for Core PMC events, the
frequency should be provided in Hz)

* ibsop-count-control=<0 | 1> (for ibs-op event)

* loadstore (for ibs-op event, only on Windows platform)

* ibsop-13miss (for IBS OP event, supported only on AMD “Zen4”
processors)

* ibsfetch-13miss (for IBS FETCH event, supported only on AMD “Zen4”
processors)

* call-graph

Notes:
1. It is not required to provide umask with predefined event.

2. Use the dedicated option --call-graph to specify the arguments related to the call
stack sample collection.

Argument details:

+ user — Enable(1) or disable(0) user space samples collection

* 0s - Enable(1) or disable(0) kernel space samples collection

* interval — Sample collection interval. For timer, it is the time interval in
milliseconds. For PMU and predefined events, it is the count of the event
occurrences. For IBS FETCH, it is the fetch count. For IBS OP, it is the
cycle count or the dispatch count.

* op-count-control — Choose IBS OP sampling by cycle(0) count or
dispatch(1) count.

* loadstore — Enable only the IBS OP load/store samples collection, other
IBS OP samples are not collected.

* ibsop-13miss — Enable IBS OP sample collection only when a 13 miss
occurs, for example, '-e event=ibs-op,interval=100000,ibsop-13miss'

Chapter 6

Getting Started with AMD uProf CLI

85

AMDA1

AMD uProf User Guide

57368 Rev.4.2 January 2024

Table 25. AMDuProfCLI Collect Command Options

Option

Description

* ibsfetch-13miss — Enable IBS FETCH sample collection only when a 13
miss occurs, for example, '-e event=ibs-fetch,interval=100000,ibsfetch-
13miss'

When these arguments are not passed, then the default values are:

* umask=0

* cmask=0x0

* user=1

* 0s=1

* inv=0

* ibsop-count-control=0 (for ibs-op event)

* interval=1.0 ms for timer event

* interval=250000 for ibs-fetch, ibs-op, pmu-event, or predefined-event

Use the following commands as required:

* info --1list predefined-events for the list of supported predefined events
* info --list pmu-events for the list of supported PMU-events

Multiple occurrences of --event (-e) are allowed.

-p | --pid <PID...>

Profile the existing processes by attaching to a running process. The process
IDs are separated by comma.

Note: A maximum of 512 processes can be attached at a time.

-a | --system-wide

System Wide Profile (SWP)

If this flag is not set, then the command line tool will profile only the
launched application or the Process IDs attached with -p option.

-c | --cpu <core...>

Comma separated list of CPUs to profile. The ranges of CPUs can be

specified with -’ for example, 0-3.

Note: On Windows, the selected cores should belong to only one processor group. For
example, 0-63, 64-127, and so on.

-d | --duration <n>

Profile only for the specified duration n in seconds.

--interval <num>

Sampling interval for PMC events.

Note: This interval will override the sampling interval specified with individual events.

--affinity <core...>

Set the core affinity of the launched application to be profiled. Comma
separated list of core-ids. The ranges of the core-ids must be specified, for
example, 0-3. The default affinity is all the available cores.

--no-inherit

Do not profile the children of the launched application (processes launched
by the profiled application).

-b | --terminate

Terminate the launched application after the profile data collection ends.
Only the launched application process will be killed. Its children (if any) may
continue to execute.

--start-delay <n>

Start delay n in seconds. Start profiling after the specified duration.
When n is 0, there is no impact.

86

Getting Started with AMD uProf CLI Chapter 6

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Table 25. AMDuProfCLI Collect Command Options

Option Description

--start-paused Profiling paused indefinitely. The target application resumes the profiling
using the profile control APIs. This option must be used only when the
launched application is instrumented to control the profile data collection
using the resume and pause APIs (defined in the “AMDProfileControl
APIs”).

-w | --working-dir <path> | Specify the working directory. The default is the current working directory.

--log-path <path-to-log- | Specify the path where the log file should be created. If this option is not

dir> provided, the log file will be created either in path set by
AMDUPROF_LOGDIR environment variable or STEMP path (Linux,
FreeBSD) or %TEMP% path (on Windows) by default.
The log file name will be of the format SUSER-AMDuProfCLI.log (on
Linux, FreeBSD) or %USERNAME%-AMDuProfCLI.log (on Windows).

--enable-log Enable additional logging with log file.

--enable-logts Capture the timestamp of the log records. It should be used with --enable-
log option.

--limit-size <n> Stop the profiling when the collected data file size (in MB) crosses the
specified limit.
Note: This option may be deprecated in future releases.

--frequency <n> | --freq | Enable data collection at the specified frequency 'n' (in Hz) for Core PMC

<n> | -F <n>

events.

Note: This frequency will override the sampling frequency specified with the individual
events.

6.4.2 Windows Specific Options

The following table lists Linux specific collect commands:
Table 26. AMDuProfCLI Collect Command — Windows Specific Options

Option Description

--call-graph <I:D:S:F> | Enables callstack Sampling. Specify the Unwind Interval (I) in milliseconds and

Unwind Depth (D) value. Specify the Scope (S) by choosing one of the

following:

» user: Collect only for the user space code.

* kernel: Collect only for the kernel space code.

+ all: Collect for the code executed in the user and kernel space code.

Specify to collect missing frames due to Frame Pointer Omission (F) by

compiler:

* fpo: If the frame pointers are not available, collect callstack information using
unwind information.

* fp: Use the frame pointers to collect callstack information.

-8 Same as passing --call-graph 1:128:user:fp.

Chapter 6 Getting Started with AMD uProf CLI 87

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Table 26. AMDuProfCLI Collect Command — Windows Specific Options

Option Description
--thread Collects the runtime thread details
<thread=concurrency>
-m | --data-buffer- Size (number of pages per core) of the buffer used for data collection by the
count <size> driver. The default size is 512 pages per core.
--trace os Trace the target domain OS. Support provided for "schedule event" only. Use

the command 'info --1list trace-events' for a list of OS trace events.

--limit-data <n> Stop the profiling when the collected data file size (in MB) crosses the specified
limit. When used with the option --overwrite, the limit is before the collection
is terminated. Size can be specified with the suffix Mega Bytes (M/m), Giga
Bytes (G/g), or Seconds (secs).

--overwrite Specify the profile data collection mode as a ring buffer. The collection limit can
be set using the option --1limit-data. The default --1imit-data is to restrict the
raw data file size to 512 pages per core.

6.4.3 Linux Specific Options

The following table lists Linux specific collect commands:
Table 27. AMDuProfCLI Collect Command — Linux Specific Options
Option Description

--call-graph <F:N> Enables callstack sampling. Specify (F) to collect/ignore missing frames due

to omission of frame pointers by compiler:

* fpo | dwarf: Collect the process callstack during sample collection and use
the DWARF information to reconstruct callstack.

* fp: Use the frame pointers to collect callstack information.

When F = fpo, (N) specifies the max stack-size in bytes to collect per sample

collection. Valid range of the stack size: 16 - 32768. If (N) is not multiple of

8, then it is aligned down to the nearest value multiple of 8. The default value

is 1024 bytes.

Note: Passing a large N value will generate a very large raw data file.

When F = fp, the value for N is ignored and hence, there is no need to pass it.

-8 Same as passing --call-graph fp

--tid <TID,..> Profile existing threads by attaching to a running thread. The thread IDs are
separated by comma.

88 Getting Started with AMD uProf CLI Chapter 6

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Table 27. AMDuProfCLI Collect Command — Linux Specific Options

Option Description

--trace <TARGET> To trace a target domain. TARGET can be one or more of the following:
» mpi[=<openmpi|mpich>,<lwt|full>]
Provide MPI implementation type:
'openmpi' for tracing OpenMPI library
'mpich' for tracing MPICH and its derivative libraries, for example, Intel
MPI
Provide tracing scope:
'lwt' for light-weight tracing
'full' for complete tracing
'--trace mpi' defaults to '--trace mpi=mpich,full'

 openmp — for tracing OpenMP application. This is same as the option - -

omp.

os[=<eventl,event2,...>] — provide event names and optional threshold

with comma separated list. syscall and memtrace events will take the

optional threshold value as <event:threshold>. Use the command info --
list trace-events for a list of OS trace events.

* user=<eventl,event2,...> — provide event names and threshold with
comma separated list. These events will be collected in the user mode. Use
the command info --list trace-events to get a list of trace events
supported in the user mode.

* gpu[=<hip,hsa>] — provide the domain for GPU Tracing. By default, the
domain is set to 'hip,hsa’.

--buffer-size <size> Number of pages to be allotted for OS trace buffer. Default value is 256
pages per core. Increase the pages to reduce the trace data loss. This option is
only applicable to OS tracing (--trace os).

--max-threads <thread- Maximum number of threads for OS tracing. The default value is 1024 for
count> launched application and 32768 for System Wide Tracing (-a option).
Increase this limit when the application thread count increases more than the
default limit. Otherwise, the behavior is undefined.

* Launch App - Valid range: 1 to 4096

 System wide - Valid range: 1 to 4194304

--func <module:function- | Specify functions to trace from the library, executable, or kernel:

pattern> * Function-pattern can be a function name or partial name ending with "*' or

only "*' to trace all the functions of a module.
* Module can be a library or executable. To trace the kernel functions,
replace the module with “kernel”.
Note: Itis recommended to provide the absolute/full path of a module. If not, the search
will be performed on the default library paths and not on the current working
directory.

Chapter 6 Getting Started with AMD uProf CLI 89

AMDA1

AMD uProf User Guide

Table 27.

57368 Rev.4.2 January 2024

AMDuProfCLI Collect Command — Linux Specific Options

Option

Description

--exclude-func
<module:function-pattern>

Specify functions to exclude from the library, executable, or kernel:

 Function-pattern can be a function name or partial name ending with "*' or
only "*' to trace all the functions of a module.

* Module can be a library or executable. To trace the kernel functions,
replace the module with “kernel”.

Note: Itis recommended to provide the absolute path of a module. If not, the search will be
performed on the default library paths and not on the current working directory.

-m | --mmap-pages <size>

Set the kernel memory mapped data buffer to size. The size can be specified
in pages or with a suffix Bytes (B/b), Kilo bytes (K/k), Megabytes (M/m),
and Gigabytes (G/g).

--mpi

Pass this option while collecting CPU Profiling data of a MPI application.
For MPI tracing, check the --trace option.

--kvm-guest <pid>

Specify the PID of gemu-kvm process to be profiled to collect guest-side
performance profile.

--guest-kallsyms <path>

Specify the path of guest /proc/kallsyms copied on the local host. AMD
uProf reads it to get the guest kernel symbols.

--guest-modules <path>

Specify the path of guest /proc/modules copied to the local host. AMD uProf
reads it to get the guest kernel module information.

--guest-search-path
<path>

Specify the path of guest vimlinux and kernel sources copied on the local
host. AMD uProf reads it to resolve the guest kernel module information.

--branch-filter

Capture LBR data.
You can also specify the branch filter type:

* u: user branches

* k: kernel branches

* any: any branch type

* any_call: any call branch

* any_ret: any return branch

* ind_call: indirect calls

* ind_jmp: indirect jumps

 cond: conditional branches

* call: direct calls

Notes:
When the above filters not set, the default filter type will be 'any'.
This option will work only with PMC events.

This is applicable to per process and attach process profiling. However, it is not
applicable to Java app profiling.

90

Getting Started with AMD uProf CLI

Chapter 6

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

6.4.4 Examples

Windows

Launch application AMDTClassicMatMul.exe and collect the samples for
CYCLES NOT IN HALT and RETIRED INST events:

C:\> AMDuProfCLI.exe collect -e cycles-not-in-halt -e retired-inst --interval 1000000
-0 c:\Temp\cpuprof-custom AMDTClassicMatMul.exe

$./AMDuProfCLI.exe collect -e event=cycles-not-in-halt,interval=250000

-e event=retired-inst,interval=500000 -o c:\Temp\cpuprof-custom AMDTClassicMatMul.exe

Launch the application AMDTClassicMatMul.exe and collect the Time-Based Profile (TBP)
samples:

C:\> AMDuProfCLI.exe collect -o c:\Temp\cpuprof-tbp AMDTClassicMatMul.exe
Launch AMDTClassicMatMul.exe and do Assess Performance profile for 10 seconds:

C:\> AMDuProfCLI.exe collect --config assess -o c:\Temp\cpuprof-assess -d 10
AMDTClassicMatMul.exe

Launch AMDTClassicMatMul.exe and collect the IBS samples in the SWP mode:

C:\> AMDuProfCLI.exe collect --config ibs -a -o c:\Temp\cpuprof-ibs-swp AMDTClassicMatMul.exe
Collect the TBP samples in SWP mode for 10 seconds:

C:\> AMDuProfCLI.exe collect -a -o c:\Temp\cpuprof-tbp-swp -d 10

Launch AMDTClassicMatMul.exe and collect TBP with callstack sampling:

C:\> AMDuProfCLI.exe collect --config tbp -g -o c:\Temp\cpuprof-tbp AMDTClassicMatMul.exe

Launch AMDTClassicMatMul.exe and collect TBP with callstack sampling (unwind FPO
optimized stack):

C:\> AMDuProfCLI.exe collect --config tbp --call-graph 1:64:user:fpo -o c:\Temp\cpuprof-tbp
AMDTClassicMatMul.exe

Launch AMDTClassicMatMul.exe and collect the samples for PMCx076 and PMCx0CO:

C:\> AMDuProfCLI.exe collect -e event=pmcx76,interval=250000 -e
event=pmcxc@,user=1,0s=0,interval=250000 -o c:\Temp\cpuprof-tbp AMDTClassicMatMul.exe

Launch AMDTClassicMatMul.exe and collect the samples for IBS OP with an interval of 50000:

C:\> AMDuProfCLI.exe collect -e event=ibs-op,interval=50000 -o c:\Temp\cpuprof-tbp
AMDTClassicMatMul.exe

Launch AMDTClassicMatMul.exe and do TBP samples profile for thread concurrency, name:

C:\> AMDuProfCLI.exe collect --config tbp --thread thread=concurrency,name -o c:\Temp\cpuprof-
tbp AMDTClassicMatMul.exe

Launch AMDTClassicMatMul.exe and collect the Power samples in SWP mode:

C:\> AMDuProfCLI.exe collect --config energy -a -o c:\Temp\pwrprof-swp AMDTClassicMatMul.exe

Chapter 6 Getting Started with AMD uProf CLI 91

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Collect samples for PMCx076 and PMCx0CO0, but collect the call graph info only for PMCx0CO:

C:\> AMDuUProfCLI.exe collect -e event=pmcx76,interval=250000 -e
event=pmcxc@,interval=250000,call-graph -o c:\Temp\cpuprof-pmc AMDTClassicMatMul-bin

Launch AMDTClassicMatMul.exe and collect the samples for predefined event RETIRED INST
and L1 DC REFILLS.ALL events:

C:\> AMDuProfCLI.exe collect -e event=RETIRED_INST,interval=250000 -e
event=L1_DC_REFILLS.ALL,user=1,0s=0,interval=250000 -o c:\Temp\cpuprof-pmc
AMDTClassicMatMul.exe

Launch AMDTClassicMatMul.exe, collect the TBP and Assess Performance samples:

C:\> AMDuProfCLI.exe collect --config tbp --config assess -o c:\Temp\cpuprof-tbp-assess
AMDTClassicMatMul.exe

Launch Mutithread Threadname.exe and collect schedule event:

C:\> AMDuProfCLI.exe collect --trace os -o c:\Temp\ost-output Multithread_Threadname.exe

Launch AMDTClassicMatMul.exe and collect the samples for PMCx076 and PMCx0CO0 events
with count-mask enabled:

C:\> AMDuProfCLI.exe collect -e event=pmcx@76,cmask=0x0, -e
event=pmcx0cO, cmask=0x7f,interval=250000 -o c:\Temp\cpuprof-pmc AMDTClassicMatMul-bin

Linux

Launch application AMDTClassicMatMul.bin and collect the samples for
CYCLES NOT IN HALT and RETIRED INST events:

$./AMDUProfCLI collect -e cycles-not-in-halt -e retired-inst
--interval 1000000 -o /tmp/cpuprof-custom AMDTClassicMatMul-bin

$./AMDuUProfCLI collect -e event=cycles-not-in-halt,interval=250000
-e event=retired-inst,interval=500000 -o /tmp/cpuprof-custom
AMDTClassicMatMul-bin

Launch the application AMDTClassicMatMul-bin and collect the TBP samples:

$./AMDUProfCLI collect -o /tmp/cpuprof-tbp AMDTClassicMatMul-bin

Launch AMDTClassicMatMul-bin and do Assess Performance profile for 10 seconds:

$./AMDuProfCLI collect --config assess -o /tmp/cpuprof-assess -d 10 AMDTClassicMatMul-bin
Launch AMDTClassicMatMul-bin and collect the IBS samples in the SWP mode:

$./AMDuUProfCLI collect --config ibs -a -o /tmp/cpuprof-ibs-swp AMDTClassicMatMul-bin
Collect the TBP samples in SWP mode for 10 seconds:

$./AMDuProfCLI collect -a -o /tmp/cpuprof-tbp-swp -d 10

Launch AMDTClassicMatMul-bin and collect TBP with callstack sampling:

$./AMDuProfCLI collect --config tbp -g -o /tmp/cpuprof-tbp AMDTClassicMatMul-bin

92

Getting Started with AMD uProf CLI Chapter 6

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Launch AMDTClassicMatMul-bin and collect TBP with callstack sampling (unwind FPO
optimized stack):

$./AMDUProfCLI collect --config tbp --call-graph fpo:512 -o /tmp/uprof-tbp AMDTClassicMatMul-
bin

Launch AMDTClassicMatMul-bin and collect the samples for PMCx076 and PMCx0CO:

$./AMDuUProfCLI collect -e event=pmcx76,interval=250000 -e
event=pmcxc@,user=1,0s=0,interval=250000 -o /tmp/cpuprof-tbp AMDTClassicMatMul-bin

Launch AMDTClassicMatMul-bin and collect the samples for IBS OP with interval 50000:

$./AMDuUProfCLI collect -e event=ibs-op,interval=50000 -o /tmp/cpuprof-tbp AMDTClassicMatMul-
bin

Attach to a thread and collect TBP samples for 10 seconds:

$ AMDuProfCLI collect --config tbp -o /tmp/cpuprof-tbp-attach -d 10 --tid <TID>

Collect OpenMP trace info of an OpenMP application, pass --omp:

$ AMDUProfCLI collect --omp --config tbp -o /tmp/openmp_trace <path-to-openmp-exe>
Launch AMDTClassicMatMul-bin and collect the memory accesses for false cache sharing:
$ AMDUProfCLI collect --config memory -o /tmp/cpuprof-mem AMDTClassicMatMul-bin

Launch AMDTClassicMatMul-bin and collect the threading configuration to analyze hotspots,
thread state, and wait object analysis among threads:

$ AMDUProfCLI collect --config threading -o /tmp/cpuprof-threading AMDTClassicMatMul-bin
Collect MPI profiling information:

$ mpirun -np 4 ./AMDuProfCLI collect --config assess --mpi --output-dir /tmp/cpuprof-mpi /tmp/
namd <parameters>

Collect the samples for PMCx076 and PMCx0CO0, but collect the call graph info only for
PMCx0CO:

$ AMDuProfCLI collect -e event=pmcx76,interval=250000 -e event=pmcxc@,interval=250000,call-
graph -o /tmp/cpuprof-pmc AMDTClassicMatMul-bin

Launch AMDTClassicMatMul-bin and collect the samples for predefined event RETIRED INST
and L1 DC REFILLS.ALL events:

$ AMDUProfCLI collect -e event=RETIRED_INST,interval=250000 -e
event=L1_DC_REFILLS.ALL,user=1,0s=0,interval=250000 -o /tmp/cpuprof-pmc AMDTClassicMatMul-bin

Launch AMDTClassicMatMul-bin and collect all the OS trace events:

$ AMDUProfCLI collect --trace os -o /tmp/cpuprof-os AMDTClassicMatMul-bin

Launch AMDTClassicMatMul-bin and collect all the user mode trace events:

$ AMDuProfCLI collect --trace user -o /tmp/cpuprof-umt AMDTClassicMatMul-bin

Launch AMDTClassicMatMul-bin and collect syscall taking more than or equal to 1ps:

$ AMDUProfCLI collect --trace os=syscall:1000 -o /tmp/cpuprof-os AMDTClassicMatMul-bin

Chapter 6 Getting Started with AMD uProf CLI 93

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Launch AMDTClassicMatMul-bin and collect the GPU Traces for hip domain:

$ AMDuProfCLI collect --trace gpu=hip -o /tmp/cpuprof-gpu AMDTClassicMatMul-bin

Launch AMDTClassicMatMul-bin and collect the GPU Traces for hip and hsa domain:

$ AMDUProfCLI collect --trace gpu -o /tmp/cpuprof-gpu AMDTClassicMatMul-bin

Launch AMDTClassicMatMul-bin, collect the TBP samples and GPU Traces for hip domain:

$ AMDUProfCLI collect --config tbp --trace gpu=hip -o /tmp/cpuprof-gpu AMDTClassicMatMul-bin
Launch AMDTClassicMatMul-bin and collect the GPU samples:

$ AMDuProfCLI collect --config gpu -o /tmp/cpuprof-gpu AMDTClassicMatMul-bin

Launch AMDTClassicMatMul-bin, collect the GPU samples and OS Traces:

$ AMDUProfCLI collect --config gpu --trace os -o /tmp/cpuprof-gpu-os AMDTClassicMatMul-bin
Launch AMDTClassicMatMul-bin, collect the TBP and GPU samples:

$ AMDUProfCLI collect --config gpu --config tbp -o /tmp/cpuprof-gpu-tbp AMDTClassicMatMul-bin
Launch AMDTClassicMatMul-bin and collect the function count of malloc() called:

$ AMDuProfCLI collect --trace os=funccount --func c:malloc -o /tmp/cpuprof-os
AMDTClassicMatMul-bin

Launch AMDTClassicMatMul-bin and collect the context switches, syscalls, pthread API tracing,
and function count of malloc() called:

$ AMDUProfCLI collect --trace os --func c:malloc -o /tmp/cpuprof-os AMDTClassicMatMul-bin

Collect the system wide function count of malloc(), calloc(), and kernel functions that match the
pattern 'vfs_read*":

$ AMDuProfCLI collect --trace os --func c:malloc,calloc,kernel:vfs_read* -o /tmp/cpuprof-os -
a -d 10

Launch AMDTClassMatMul-bin and perform branch analysis with the default filter type:
$ AMDUProfCLI collect --branch-filter -o /tmp/cpuprof-ebp-branch AMDTClassicMatMul-bin

Launch AMDTClassMatMul-bin and collect samples for the event PMCXCO:

$ AMDuUProfCLI collect -e event=pmcxcO,interval=250000 --branch-filter u,k,any -o /tmp/cpuprof-
ebp-branch AMDTClassicMatMul-bin

6.5 Report Command

The report command generates a report in readable format by processing the raw profile data files or
from the (processed) database files available in the specified directory.

Synopsis:

AMDUProfCLI report [--help] [<options>]

Common Usages:

$ AMDUProfCLI report -i <session-dir path>

94

Getting Started with AMD uProf CLI Chapter 6

AMDA1

57368 Rev.4.2 January 2024

AMD uProf User Guide

6.5.1 Options
Table 28. AMDuProfCLI Report Command Options
Option Description
-h | --help Displays this help information on the console/terminal.
-i | --input-dir Path to the directory containing collected data.
<directory-path>
--detail Generate detailed report.

--group-by <section>

Specify the report to be generated. The supported report options are:

* process: Report process details

* module: Report module details

* thread: Report thread details

This option is applicable only with --detail option. The default is group-by
process.

-p | --pid <PID,..> Generate report for the specified PIDs. The process IDs are separated by
comma.

Note: A maximum of 512 processes can be attached at a time.

-8 The print callgraph. Use with the option --detail or --pid(-p). With --pid
option, callgraph will be generated only if the callstack samples were
collected for specified PIDs.

--cutoff <n> Cutoff to limit the number of process, threads, modules, and functions to be

reported. n is the minimum number of entries to be reported in various
report sections. The default value is 10.

--view <view-config>

Report only the events present in the given view file. Use the command
info --1list view-configs to get the list of supported view-configs.

--inline

Show inline functions for C, C++ executables.

Notes:
1. This option is not supported on Windows.

2. Using this option will increase the time taken to generate the report.

--show-sys-src

Generate detailed function report of the system module functions (if debug
info is available) with the source statements.

--src-path <pathl;...>

Source file directories (semicolon separated paths). Multiple use of --src-
path is allowed.

--disasm

Generate a detailed function report with assembly instructions.

--disasm-style <att |
intel>

Choose the syntax of assembly instructions. The supported options are att
and intel. If this option is not used:

* intel is used by default on Windows.

* att is used by default on Linux.

--disasm-only

Generate the function report with only assembly instructions.

Chapter 6

Getting Started with AMD uProf CLI

95

AMDZ\
AMD uProf User Guide 57368 Rev.4.2 January 2024

Table 28. AMDuProfCLI Report Command Options

Option Description

-s | --sort-by <EVENT> | Specify the Timer, PMC, or IBS event on which the reported profile data

will be sorted with arguments in the form of comma separated key=value

pairs. The supported keys are:

* event=<timer | ibs-fetch | ibs-op | pmcxNNN>, where NNN is
hexadecimal Core PMC event ID.

e umask=<unit-mask>

e cmask=<count-mask>

e inv=<0 | 1>

e user=<e | 1>

e 0s=<0@ | 1>

Use the command info --1list pmu-events for the list of supported PMC

events.

Details about the arguments:

» umask — Unit mask in decimal or hexadecimal, applicable only to the
PMC events.

» cmask — Count mask in decimal or hexadecimal, applicable only to the
PMC events.

* user, os — User and OS mode. Applicable only to the PMC events.

* inv — Invert Count Mask, applicable only to the PMC events

Multiple occurrences of -sort-by (-s) are not allowed.

--agg-interval <low | Use this option to configure the sample aggregation interval which is useful
medium | high | when the session is imported to GUI.
INTERVAL>

low level of aggregation interval generates better timeline view in GUI but
increases the database size.

Aggregation INTERVAL can also be specified as a numeric value in
milliseconds.

--time-filter <T1:72> Restricts report generation to the time interval between T1 and T2. Where,
T1 and T2 are time in seconds from profile start time.

--imix Generate instruction MIX report. It is only supported for IBS config and IBS
events profiling. It is only supported for the native binaries.

--ignore-system-module | Ignore samples from system modules.

--show-percentage Show percentage of samples instead of actual samples.
--show-sample-count Show the number of samples. This option is enabled by default.
--show-event-count Show the number of events occurred.

--show-all-cachelines Show all the cachelines in the report sections for cache analysis. By default,

only the cachelines accessed by more than one process/thread are listed.
Supported only for memory config report on Windows and Linux platforms.

--bin-path <path> Binary file path, multiple usage of --bin-path is allowed.

--src-path <path> Source file path, multiple usage of --src-path is allowed.

96 Getting Started with AMD uProf CLI Chapter 6

AMDA1

57368 Rev.4.2 January 2024

AMD uProf User Guide

Table 28. AMDuProfCLI Report Command Options

Option

Description

--symbol-path
<pathl;...>

Debug Symbol paths (semicolon separated). Multiple use of --symbol-path
is allowed.

--report-output <path>

Write a report to a file. If the path has a .csv extension, it is assumed to be a
file path and used as it is. If the .csv extension is not used, then the path is
assumed to be a directory and the report file is generated in the directory
with the default name.

--stdout

Print the report to a console or terminal.

--retranslate

Perform the re-translation of collected data files with a different set of
translation options.

--remove-raw-files

Remove the raw data files to recover the disk space.

--export-session

Create a compressed archive of the required session files which can be used
in other system for analysis.

--log-path <path-to-
log-dir>

Specify the path where the log file should be created. If this option is not
provided, the log file will be created either in the path set by
AMDUPROF_LOGDIR environment variable or STEMP path (Linux,
FreeBSD) or % TEMP% path (on Windows) by default.

The log file name will be of the format SUSER-AMDuProfCLI.log (on
Linux, FreeBSD) or %USERNAME%-AMDuProfCLI.log (on Windows).

--enable-log

Enable additional logging with log file.

--enable-logts

Capture the timestamp of the log records. This option should be used with
--enable-log option

6.5.2 Windows Specific Options

Table 29. AMDuProfCLI Report Command - Windows Specific Options

Option

Description

--symbol-server <pathl;..

.> | Symbol Server directories (semicolon separated paths). For example,

Multiple use of - -symbol-server is allowed.

Microsoft Symbol Server (https.//msdl.microsoft.com/download/symbols).

--symbol-cache-dir <path>

The path to store the symbol files downloaded from the Symbol Servers.

--legacy-symbol-downloade

r | Download symbols using the Microsoft Symsrv. By default, AMD symbol

downloader will be used.

Chapter 6

Getting Started with AMD uProf CLI

97

https://msdl.microsoft.com/download/symbols
https://msdl.microsoft.com/download/symbols

AMDA1

AMD uProf User Guide

57368 Rev.4.2 January 2024

6.5.3 Linux Specific Options

Table 30. AMDuProfCLI Report Command - Linux Specific Options

Option

Description

--host <hostname>

This option is used along with the --input-dir option. Generates report
belonging to a specific host. The supported options are:

* <hostname>: Report process belonging to a specific host.

» all: Report all the processes.

Note: If --host is not used, only the processes belonging to the system from which report is
generated is reported. In case, the system is a master node in a cluster, the report will be
generated for the lexicographically first host in that cluster.

--category <PROFILE>

Generate report only for specific profiling category. Comma separated multiple
categories can be specified. If this option is not used, then report for all
categories gets generated. Multiple instance of --category is allowed.
Supported categories are:

* cpu — Generate report specific to CPU Profiling.

» mpi — Generate report specific to MPI Tracing.

» openmp — Generate report specific to OpenMP Tracing.
* trace — Generate report specific to trace events.

* gputrace — Generate report specific to GPU Tracing.

* gpuprof — Generate report specific to GPU Profiling.

Example:

--category cpu,mpi,trace,gputrace,gpuprof

--category mpi --category cpu --category trace --category gputrace --
category gpuprof

--funccount-interval
<funccount-interval>

Specify the time interval in seconds to list the function count detail report. If this
option is not specified, the function count will be generated for the entire profile
duration.

6.5.4 Examples

Windows

* Generate report from the raw datafile:

C:\> AMDuProfCLI.exe report -i c:\Temp\cpuprof-tbp\<SESSION-DIR>

* Generate IMIX report from the raw datafile:

C:\> AMDuUProfCLI.exe report --imix -i c:\Temp\cpuprof-imix\<SESSION-DIR>

* Generate report from the raw datafile sorted on pmc event:

C:\> AMDuUProfCLI.exe report -s event=pmcxc@,user=1,0s=0 -i c:\Temp\cpuprof-ebp\<SESSION-DIR>

* Generate report from the raw datafile sorted on ibs-op event:

C:\> AMDuProfCLI.exe report -s event=ibs-op -i c:\Temp\cpuprof-ibs\<SESSION-DIR>

98

Getting Started with AMD uProf CLI Chapter 6

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

* Generate report from the raw datafile for power samples:
C:\> AMDuProfCLI.exe report -i c:\Temp\pwrprof-swp\<SESSION-DIR>
* Generate report with Symbol Server paths:

C:\> AMDuProfCLI.exe report --symbol-path C:\AppSymbols;C:\DriverSymbols --symbol-server
http://msdl.microsoft.com/download/symbols --symbol-cache-dir C:\symbols -i c:\Temp\cpuprof-
tbp\<SESSION-DIR>

* Generate report from the raw datafile on one of the predefined views:
C:\> AMDuProfCLI.exe report --view ipc_assess -i c:\Temp\pwrprof-swp\<SESSION-DIR>
* Generate report from the raw datafile providing the source and binary paths:

C:\> AMDuUProfCLI.exe report --bin-path Examples\AMDTClassicMatMul\bin\ --src-path
Examples\AMDTClassicMatMul\ -i c:\Temp\cpuprof-tbp\<SESSION-DIR>

Linux

* Generate report from the raw datafile:
$ AMDUProfCLI report -i /tmp/cpuprof-tbp/<SESSION-DIR>
* Generate IMIX report from the raw datafile:
$ AMDUProfCLI report --imix -i /tmp/cpuprof-imix/<SESSION-DIR>
* Generate report from the raw datafile sorted on pmc event:
$ AMDUProfCLI report -s event=pmcxc@,user=1,0s=0 -i /tmp/cpuprof-ebp/<SESSION-DIR>
* Generate report from the raw datafile sorted on ibs-op event:
$ AMDUProfCLI report -s event=ibs-op -i /tmp/cpuprof-ibs/<SESSION-DIR>
* Generate Trace report from the raw datafile:
$ AMDUProfCLI report -i /tmp/cpuprof-os/<SESSION-DIR> --category trace
* Generate GPU Trace report from the raw datafile:
$ AMDUProfCLI report -i /tmp/cpuprof-gpu/<SESSION-DIR> --category gputrace
* Generate GPU Profile report from the raw datafile:

$ AMDuProfCLI report -i /tmp/cpuprof-gpu/<SESSION-DIR> --category gpuprof

6.6 Translate Command

The translate command processes the raw profile data and generates the samples info database files.
These databases can be imported to GUI or CLI and used for generating the report.

Synopsis:
AMDuUProfCLI translate [<options>]
Common Usages:

$ AMDUProfCLI translate -i <session-dir path>

Chapter 6 Getting Started with AMD uProf CLI 99

AMDA1

AMD uProf User Guide

6.6.1 Options

57368 Rev.4.2 January 2024

Following table lists the AMDuProfCLI translate command options:

Table 31. AMDuProfCLI Translate Command Options
Option Description
-h | --help Displays the help information.
-i | --input-dir Path to the directory containing collected data.

<directory-path>

--time-filter <T1:T2>

Restricts the processing to the time interval between T1 and T2, where T1, T2
are time in seconds from profile start time.

--agg-interval <low |
medium | high |
INTERVAL>

Use this option to configure the sample aggregation interval which is useful
when the session is imported to GUI.

low level of aggregation interval generates better timeline view in GUI but
increases the database size.

Aggregation INTERVAL can also be specified as a numeric value in
milliseconds.

--bin-path <path>

Binary file path. Multiple use of --bin-path is allowed.

--symbol-path <path>

Debug symbol path. Multiple instances of --symbol-path are allowed.

--inline Inline function extraction for C and C++ executables.
Notes:
1. This option is not supported on Windows.
2. Using this option will increase the time taken to generate the report.
--retranslate Re-translate the collected data files with a different set of translation options.

--log-path <path-to-
log-dir>

Specify the path where the log file should be created. If this option is not
provided, the log file will be created either in the path set by
AMDUPROF LOGDIR environment variable or % TEMP% path by default.

The log file name will be of the format SUSER-AMDuProfCLI.log (on Linux,
FreeBSD) or %USERNAME%-AMDuProfCLI.log (on Windows).

--enable-log

Enable additional logging with log file.

--enable-logts

Capture the timestamp of the log records. This option should be used with the
--enable-log option.

--remove-raw-files

Remove the raw data files to recover the disk space.

--export-session

Create a compressed archive of required session files which can be used in
other system for analysis.

100

Getting Started with AMD uProf CLI

Chapter 6

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

6.6.2 Windows Specific Options

Following table lists the Windows specific options of the translate command:

Table 32. Translate Command - Windows Specific Options

Option Description

--symbol-server <pathl;..> Links to Symbol Server, for example, Microsoft Symbol Server (https://
msdl.microsoft.com/download/symbols). Multiple instances of --symbol-
server are allowed.

--symbol-cache-dir <path> Path to save the symbols downloaded from the Symbol Servers.

--legacy-symbol-downloader | Download symbols using the Microsoft Symsrv. By default, AMD symbol
downloader will be used.

6.6.3 Linux Specific Options

Following table lists the Linux specific options of the translate command:
Table 33. Translate Command - Linux Specific Options

Option Description

--category <PROFILE> | Process only a specific profiling category. Comma separated multiple categories
can be specified. If this option not used, then all categories raw data files are
processed. Multiple instances of --category are allowed. The supported
categories are:

* c¢pu - CPU Profiling

* mpi - MPI Tracing

» openmp — Generate report specific to OpenMP Tracing.

* trace - User mode tracing

* gputrace - GPU Tracing

* gpuprof - GPU Profiling

Example:

--category cpu,mpi,trace,gputrace,gpuprof

--category mpi --category cpu --category trace --category gputrace --
category gpuprof

--host <hostname> This option is used with the --input-dir option. It processes samples belonging
to a specific host. The supported options are:

<hostname>: Translate only the processes belonging to a specific host.
all: Translate all processes

Note: If --host is not used, then only the processes belonging to the current system is
translated. In case the system is a master node in a cluster, then processing will be done
for the lexicographically first host in that cluster.

--kallsyms-path <path> | Path to the file containing kallsyms info. If no path is provided, it defaults to /
proc/kallsyms.

--vmlinux-path <path> | Path to the Linux kernel debug info file. If no path provided, it searches for the
debug info file in the default download path.

Chapter 6 Getting Started with AMD uProf CLI 101

https://msdl.microsoft.com/download/symbols

AMDZ\
AMD uProf User Guide 57368 Rev.4.2 January 2024

6.6.4 Examples

Windows
* Process all the raw data files:

> AMDuProfCLI.exe translate -i c:\Temp\cpuprof-tbp\<SESSION-DIR>
* Process the raw data files with Symbol Server paths:

> AMDuProfCLI.exe translate --symbol-path C:\AppSymbols;C:\DriverSymbols --symbol-server
http://msdl.microsoft.com/download/symbols --symbol-cache-dir C:\symbols -i c:\Temp\cpuprof-
tbp\<SESSION-DIR>

* Process the raw data files with the source and binary path:

> AMDuProfCLI.exe translate --bin-path Examples\AMDTClassicMatMul\bin\ --src-path
Examples\AMDTClassicMatMul\ -i c:\Temp\cpuprof-tbp\<SESSION-DIR>

Linux
* Process all the raw data files:
$ AMDuProfCLI translate -i /tmp/cpuprof-tbp/<SESSION-DIR>
* Process the trace raw data file:
$ AMDUProfCLI translate -i /tmp/cpuprof-os/<SESSION-DIR> --category trace
* Process the GPU Trace raw data file:

$ AMDUProfCLI translate -i /tmp/cpuprof-gpu/<SESSION-DIR> --category gputrace

6.7 Timechart Command

This timechart command collects and reports the system characteristics, such as power, thermal and
frequency metrics, and generates a text or CSV report.

Note: The timechart command is supported only on Windows and Linux.

Synopsis:

AMDUProfCLI timechart [--help] [--1list] [<options>] [<PROGRAM>] [<ARGS>]

<PROGRAM> — Denotes the application to be launched before starting the power metrics collection.
<ARGS> — Denotes the list of arguments for the launch application.

Common Usages:

$ AMDUProfCLI timechart --list
$ AMDUProfCLI timechart -e <event> -d <duration> [<PROGRAM>] [<ARGS>]

102 Getting Started with AMD uProf CLI Chapter 6

AMDA1

57368 Rev.4.2 January 2024

AMD uProf User Guide

6.7.1 Options
Table 34. AMDuProfCLI Timechart Command Options
Option Description
-h | --help Displays this help information.
--list Displays all the supported devices and categories.
-e | --event <type...> Collect counters for specified combination of device type and/or category
type.
Use command timechart --1ist for the list of supported devices and
categories.
Note: Multiple occurrences of -e is allowed.
-t | --interval <n> Sampling interval n in milliseconds. The minimum value is 10ms.
-d | --duration <n> Profile duration n in seconds.

--affinity <core...>

The core affinity. Comma separated list of core-ids. Ranges of core-ids is
also be specified, for example, 0-3. The default affinity is all the available
cores. The affinity is set for the launched application.

-w | --working-dir <dir> | Set the working directory for the launched target application.
-f | --format <fmt> Output file format. Supported formats are:
* txt: Text (.txt) format.
* csv: Comma Separated Value (.csv) format.
Default file format is CSV.
-0 | --output-dir <dir> | Qutput directory path.
6.7.2 Examples
Windows

* Collect all the power counter values for a duration of 10 seconds with sampling interval of 100

milliseconds:

C:\> AMDuProfCLI.exe timechart --event power --interval 100 --duration 10

* Collect all the frequency counter values for 10 seconds, sampling them every 500 milliseconds

and dumping the results into a csv file:

C:\> AMDuProfCLI.exe timechart --event frequency -o C:\Temp\output --interval 500 --duration

10

* Collect all the frequency counter values at core 0 to 3 for 10 seconds, sampling them every 500

milliseconds and dumping the results into a text file:

C:\> AMDuProfCLI.exe timechart --event core=0-3,frequency -o C:\Temp\PowerOutput --interval

500 -duration 10 --format txt

Chapter 6

Getting Started with AMD uProf CLI

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Linux

* Collect all the power counter values for a duration of 10 seconds with sampling interval of 100
milliseconds:

$./AMDuUProfCLI timechart --event power --interval 100 --duration 10

* Collect all the frequency counter values for 10 seconds, sampling them every 500 milliseconds
and dumping the results into a csv file:

$./AMDuProfCLI timechart --event frequency -o /tmp/PowerOutput --interval 500 --duration 10

* Collect all the frequency counter values at core 0 to 3 for 10 seconds, sampling them every 500
milliseconds and dumping the results into a text file:

$./AMDuProfCLI timechart --event core=0-3,frequency -o /tmp/PowerOutput --interval 500 --
duration 10 --format txt

6.8 Diff Command

The diff command streamlines the process of comparing multiple profile reports by automating the
manual comparison of events. It processes the raw profile data, processed files, or database files to
generate a markdown comparison report for the collected profiles. The generated markdown file
includes detailed function data providing comprehensive insights into the compared profiles.

Furthermore, the diff command can also be used to generate a single profile report by specifying only
the base profile path. This simplifies the generation of individual reports, making it more convenient
and efficient.

During profile comparison, there is always a single base profile and multiple non-base profiles. Valid
comparison results are obtained only for the functions that exist in both the base profile and non-base
profiles.

By default, the comparison results are displayed in the source view. In the source view table,
information, such as File, Line, Source Code, Address, Instruction, Code Byte, and Events are
provided for each function. This comprehensive view enables a detailed analysis of the compared
profiles.

Note: To obtain meaningful and accurate comparison results, it is important to ensure that the base
profile and non-base profiles have matching functions available for comparison.

Synopsis:

AMDUProfCLI diff [--help] [<options>]
AMDuUProfCLI compare [--help] [<options>]

Common Usages:

AMDUProfCLI diff --baseline <base session-dir path> --with <non-base session-dir path> -o
<output-dir>

104 Getting Started with AMD uProf CLI Chapter 6

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

6.8.1 Profile Comparison Eligibility Criteria

To ensure accurate and meaningful profile comparisons, the following conditions must be met:

Same Events: The profiles being compared should have collected the same events. This ensures
that the comparison is performed on relevant and comparable data.

Same Profile Duration (if specified): If the duration (-d) option is specified, the profiles being
compared should have the same duration. This ensures consistency in the time span covered by
the profiles.

Not a System Wide Profile: System-wide profiles cannot be compared directly. Therefore, only
individual process or thread-level profiles are eligible for comparison.

Same Profile Data Limit (if used): If the --1imit-size or --1limit-data option is used during
profiling, the profiles being compared should have the same data limit set. This ensures
consistency in the size of profile data collected.

Same Inline Function Profiling (--inline): If the --inline option is used to profile inline functions,
the profiles being compared should have used the same inline function profiling setting. This
ensures consistent handling of inline functions during the comparison.

6.8.2 Options

Following table lists the diff commands:
Table 35. AMDuProfCLI diff Command Options

Option Description
-h | --help Displays this help information on the console/terminal.
--baseline <directory- Path to the directory containing collected data. The profile data in this directory
path> will be treated as the base profile against which all other profiles will be
compared.

--with <directory-path> | Path to the directory containing collected data. Each profile specified with --
with will be considered as a non-base profile and compared against the base
profile. You can use multiple instances of --with to specify multiple non-base
profiles for comparison.

-i, --input-dir Path to the directory containing collected data. Multiple occurrences of -i is
<directory-path> allowed. First occurrence of -i is considered as the base session, while all the
subsequent occurrences of -i are treated as non-base sessions.

Note: When using -i, --input-dir, you should not use the --baseline or --with options in
conjunction. If you use --baseline and -i together, the --baseline option will take
precedence and be considered as the base session. If the --baseline option is not present,
the first occurrence of -i will automatically be considered as the base session.

--output-dir | -o Path where the markdown comparison report will be generated.
<directory-path>

Chapter 6 Getting Started with AMD uProf CLI 105

AMDA1

AMD uProf User Guide

Table 35.

57368 Rev.4.2 January 2024

AMDuProfCLI diff Command Options

Option

Description

--type <comparison-
type>

Specify the type of comparison to be performed. The supported comparison

types are:

* name: With this type, only the top ‘n’ functions from the base profile will be
compared with the corresponding functions available in the non-base
profiles. The comparison will focus on the similar functions between the
profiles.

* order: With this type, the top ‘n’ functions from all the profiles will be
displayed in the order of profiles. The order will be: base profile first,

followed by the 1% non-base profile, 2" hon-base profile, and so on. The
comparison will still be performed with the functions present in the base
profile and only for the similar functions across the profiles.

The default comparison type is name.

--alias <base-fun,non-
base-fun,..|base-fun-
1,non-base-fun-1,..|.. >

In the cases where the function names have changed in the non-base profile,
specify the function names in the non-base profile that should be compared
with the corresponding function names in the base profile.

Specify different functions using the pipe symbol ¢|* as a separator. For each set
of functions, you can use a comma to separate the function names between the
base profile and the non-base profile.

--show-percentage

Comparison results will be displayed in terms of percentages.

--cutoff <n>

Cut-off to limit the number of functions to be reported. ‘n’ is the maximum
number of entries to be reported in various report sections. The default value is
10.

--sort-by | -s <EVENT>

Specify the Timer, PMC, or IBS event on which the reported profile data will

be sorted with arguments in the form of comma separated key=value pairs. The

supported keys are:

* event=<timer | ibs-fetch | ibs-op | pmcxNNN>, where NNN is hexadecimal
Core PMC event ID.

¢ umask=<unit-mask>

e user=<0 | 1>

* 0s=<0| 1>

Use the command info --list pmu-events for the list of supported PMC

events. The arguments details:

» umask — Unit mask in decimal or hexadecimal. Applicable only to the PMC
events.
* user, os — User and OS mode. Applicable only to the PMC events.

Multiple occurrences of -sort-by (-s) are not allowed.

--view <view-config>

Compare only the events present in the given view file. Use the command info
--list view-configs to get the list of supported view-configs.

--stdout Comparison report will also be displayed in the terminal or command line
interface apart from saving to a file.
106 Getting Started with AMD uProf CLI Chapter 6

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Table 35. AMDuProfCLI diff Command Options

Option Description

--src-path <pathl;...> Source file directories (semicolon separated paths) for base profile. This will be
considered for the non-base profiles if the corresponding file directories are not
specified separately.

Multiple use of --src-path is allowed.

--bin-path <pathl;...> | Binary file path for the base profile. This will be considered for the non-base
profiles if the corresponding bin path is not specified separately.

Multiple usage of --bin-path is allowed.

--src-pathl <pathl;...> | goyree file directories (semicolon separated paths) for the 1% non-base profile.

Multiple use of --src-pathi is allowed.

--bin-pathl <pathl;...> 15t

Binary file path for the 1 non-base profile.

Multiple usage of --bin-path1 is allowed.

--src-path2 <pathl;...> 2nd

Source file directories (semicolon separated paths) for the 2" non-base profile.

Multiple use of --src-path2 is allowed.

--bin-path2 <pathl;...> | Binary file path for the 2" non-base profile.

Multiple usage of --bin-path2 is allowed.

--src-path3 <pathl;...> | goyrce file directories (semicolon separated paths) for the 3" non-base profile.

Multiple use of --src-path3 is allowed.

--bin-path3 <pathl;...> 3rd

Binary file path for the 3'® non-base profile.
Multiple usage of --bin-path3 is allowed.

6.8.3 Examples

Windows
Use the following commands to:
* Generate a comparison report of base profile data with subsequent profile data:

C:\> AMDuUProfCLI.exe diff --baseline c:\Temp\cpuprof-tbp\<BASE-DIR> --with c:\Temp\cpuprof-
tbp\<NON-BASE-DIR> -0 c:\Temp\cpuprof-tbp

* Generate a comparison report using the -i option:

C:\> AMDuProfCLI.exe diff -i c:\Temp\cpuprof-tbp\<BASE-DIR> -i c:\Temp\cpuprof-tbp\< NON-
BASE-DIR> -o c:\Temp\cpuprof-tbp

* Generate a comparison report without ignoring the unique entries across sessions:

C:\> AMDuProfCLI.exe diff --baseline c:\Temp\cpuprof-tbp\<BASE-DIR> --with c:\Temp\cpuprof-
tbp\<NON-BASE-DIR> --type order -o c:\Temp\cpuprof-tbp

Chapter 6 Getting Started with AMD uProf CLI 107

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Generate a comparison report of base profile data with subsequent profile data sorted on ibs-op
event:

C:\> AMDuProfCLI.exe diff --baseline c:\Temp\cpuprof-tbp\<BASE-DIR> --with c:\Temp\cpuprof-
tbp\<NON-BASE-DIR> --type name -s ibs-op -o c:\Temp\cpuprof-tbp

Generate a comparison report with delta shown in percentage:

C:\> AMDuProfCLI.exe compare --baseline c:\Temp\cpuprof-tbp\<BASE-DIR> --with
c:\Temp\cpuprof-tbp\<NON-BASE-DIR> --type name --show-percentage -o c:\Temp\cpuprof-tbp

Generate a comparison report of base profile data with successor profile data with changed
function names across sessions:

C:\> AMDuUProfCLI.exe compare --baseline c:\Temp\cpuprof-tbp\<BASE-DIR> --with
c:\Temp\cpuprof-tbp\<NON-BASE-DIR> --alias
CalculateSum,CalculateUpdatedSum|enhanceOutput,optimizeOutput -o c:\Temp\cpuprof-tbp

Generate a comparison report of base profile data with multiple successor profile data:

C:\> AMDuUProfCLI.exe diff -i c:\Temp\cpuprof-tbp\<BASE-DIR> -i c:\Temp\cpuprof-tbp\<NON-BASE-
DIR1> -i c:\Temp\cpuprof-tbp\<NON-BASE-DIR2> --with c:\Temp\cpuprof-tbp\<NON-BASE-DIR3> -0
c:\Temp\cpuprof-tbp

Generate a comparison report on one of the predefined views:

C:\> AMDuUProfCLI.exe diff -i c:\Temp\cpuprof-tbp\<BASE-DIR> -i c:\Temp\cpuprof-tbp\<NON-BASE-
DIR> --view ipc_assess -o c:\Temp\cpuprof-tbp

Generate a comparison report providing the source and binary paths:

C:\> AMDuProfCLI.exe diff -i c:\Temp\cpuprof-tbp\<BASE-DIR> -i c:\Temp\cpuprof-tbp\<NON-BASE-
DIR> --bin-path Examples\AMDTClassicMatMul\bin\ --src-path Examples\AMDTClassicMatMul\ --bin-
pathl Examples\AMDTClassicMatMulMod\bin\ --src-pathl Examples\AMDTClassicMatMulMod\ -o
c:\Temp\cpuprof-tbp

Linux

Generate a comparison report of base profile data with subsequent profile data:

$ AMDUProfCLI diff --baseline /tmp/cpuprof-tbp/<BASE-DIR> --with /tmp/cpuprof-tbp/<NON-BASE-
DIR> -o /tmp/cpuprof-tbp

Generate a comparison report of base profile data with subsequent profile data sorted on PMC
event:

$ AMDUProfCLI diff --baseline /tmp/cpuprof-tbp/<BASE-DIR> --with /tmp/cpuprof-tbp/<NON-BASE-
DIR> -s event=pmcxc@,user=1,0s=0 -0 /tmp/cpuprof-tbp

108

Getting Started with AMD uProf CLI Chapter 6

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

6.9 Profile Command

The profile command collects the performance profile data, processes it, and generates a profile
report in a readable format. It is an alternative to the combination of collect and report command.

Synopsis:

AMDUProfCLI profile [--help] [<options>] [<PROGRAM>] [<ARGS>]
<PROGRAM> — Denotes the launch application to be profiled.

<ARGS> — Denotes the list of arguments for the launch application.

Common Usages:

$ AMDUProfCLI profile <PROGRAM> [<ARGS>]
$ AMDUProfCLI profile [--config <config> | -e <event>] [-a] [-d <duration>] [<PROGRAM>]

6.9.1 Options

Following table lists the profile commands:
Table 36. AMDuProfCLI profile Command Options

Option Description
-h | --help Displays the help information on the console/terminal.
-o | --output-dir Base directory path in which the collected data files will be saved. A new sub-
<directory-path> directory will be created in this directory.
--config <config> Predefined sampling configuration to be used to collect samples.
Use the command info --1ist collect-configs to get the list of supported
configs. Multiple occurrences of --config are allowed.

Chapter 6 Getting Started with AMD uProf CLI 109

AMDA1

AMD uProf User Guide

57368 Rev.4.2 January 2024

Table 36. AMDuProfCLI profile Command Options

Option

Description

-e | --event or
<predefined-event>

A predefined event can directly be used with -e, --event which has predefined
arguments.

Alternatively, for providing more granular parameters, specify Timer, PMU,
IBS event, or a predefined event with arguments in the form of comma
separated key=value pairs. The supported keys are:
* event=<timer | ibs-fetch | ibs-op> or <PMU-event> or <predefined-event>
* mask=<unit-mask>
* user=<0 | 1>
* 05=<0| 1>
» cmask=<count-mask> (Value should be in the range 0x0 to 0x7f)
e inv=<0| 1>
* interval=<sampling-interval>
* frequency=<frequency (n)> (Supported only for Core PMC events.
Frequency should be provided in Hz)
* ibsop-count-control=<0 | 1> (for ibs-op event)
* loadstore (for ibs-op event, only on Windows platform)
* ibsop-13miss (for ibs-op event, supported only on AMD “Zen4” processors)
* ibsfetch-13miss (for ibs-fetch event, supported only on AMD “Zen4”
processors)
* call-graph
Notes:
1. Providing umask with predefined event is not required
2. Use the dedicated option --call-graph to specify the arguments related to the call stack
sample collection.

Argument details:

* user — Enable(1) or disable(0) user space samples collection

* os - Enable(1) or disable(0) kernel space samples collection

* interval — Sample collection interval. For timer, it is the time interval in
milliseconds. For PMU and predefined events, it is the count of the event
occurrences. For IBS FETCH, it is the fetch count. For IBS OP, it is the cycle
count or the dispatch count.

* op-count-control — Choose IBS OP sampling by cycle(0) count or

* dispatch(1) count.

* loadstore — Enable only the IBS OP load/store samples collection, other IBS
OP samples are not collected.

* ibsop-13miss — Enable IBS OP sample collection only when a 13 miss occurs,

« for example, '-e event=ibs-op,interval=100000,ibsop-13miss'

* ibsfetch-13miss — Enable IBS FETCH sample collection only when a 13 miss

* occurs, for example, '-e event=ibs-fetch,interval=100000,ibsfetch-13miss'

110

Getting Started with AMD uProf CLI Chapter 6

AMDA1

57368 Rev.4.2 January 2024

Table 36.

AMD uProf User Guide

AMDuProfCLI profile Command Options

Option

Description

When these arguments are not passed, then the default values are:

* umask=0

» cmask=0x0

* user=1

* 0s=1

* inv=0

* ibsop-count-control=0 (for ibs-op event)

Use the following commands as required:

* info --list predefined-events for the list of supported predefined events
* info --list pmu-events for the list of supported PMU-events

Multiple occurrences of --event (-e) are allowed.

-p | --pid <PID...>

Profile the existing processes by attaching to a running process. The process
IDs are separated by comma.
Note: A maximum of 512 processes can be attached at a time.

-a | --system-wide

System Wide Profile (SWP)

If this flag is not set, the command line tool will profile only the launched
application or the Process IDs attached with -p option.

-c | --cpu <core...>

Comma separated list of CPUs to profile. The ranges of CPUs can be specified

with ‘-, for example, 0-3.

Note: On Windows, the selected cores should belong to only one processor group. For
example, 0-63, 64-127, and so on.

-d | --duration <n>

Profile only for the specified duration ‘n’ in seconds.

--interval <num>

Sampling interval for the PMC events.

Note: This interval will override the sampling interval specified with individual events.

--affinity <core-id...

Set the core affinity of the launched application to be profiled. Comma
separated list of core-ids. The ranges of the core-ids must be specified, for
example, 0-3. The default affinity is all the available cores.

--no-inherit

Do not profile the children of the launched application (processes launched
by the profiled application).

<thread=concurrency>

-b | --terminate Terminate the launched application after the profile data collection ends.
Only the launched application process will be killed. Its children (if any) may
continue to execute.

--thread Thread concurrency

--start-delay <n>

Start delay n in seconds. Start profiling after the specified duration.

When ‘n’ is 0, there is no impact.

Chapter 6

Getting Started with AMD uProf CLI 111

AMDA1

AMD uProf User Guide

Table 36.

57368 Rev.4.2 January 2024

AMDuProfCLI profile Command Options

Option

Description

--start-paused

Profiling paused indefinitely. The target application resumes the profiling using
the profile control APIs. This option must be used only when the launched
application is instrumented to control the profile data collection using the
resume and pause APIs (defined in the “AMDProfileControl APIs” section).

-w | --working-dir <path>

Specify the working directory. The default is the current working directory.

--log-path <path-to-
logdir>

Specify the path where the log file should be created. If this option is not
provided, the log file will be created either in path set by

AMDUPROF LOGDIR environment variable or TEMP path (Linux,
FreeBSD) or % TEMP% path (on Windows) by default.

The log file name will be of the format SUSER-AMDuProfCLI.log (on
Linux, FreeBSD) or %USERNAME%-AMDuProfCLI.log (on Windows).

--enable-log

Enable additional logging with log file.

--enable-logts

Capture the timestamp of the log records. It should be used with --enable-log
option.

--limit-size <n>

Use this option to stop the profiling once the collected data file size (in MBs)
crosses the limit. This option will be deprecated in future releases.

--frequency <n> | --freq |Enable data collection at the specified frequency 'n' (in Hz) for Core PMC
<n> | -F <n> events.

Note: This frequency will override the sampling frequency specified with individual events.
--detail Generate detailed report.

--group-by <section>

Specify the report to be generated. The supported report options are:

* process: Report process details

* module: Report module details

* thread: Report thread details

This option is applicable only with the --detail option. The default is group-
by process.

--cutoff <n>

Cut-off to limit the number of process, threads, modules, and functions to be
reported. ‘n’ is the minimum number of entries to be reported in various report
sections. The default value is 10.

--view <view-config>

Report only the events present in the given view file. Use the command info -
-list view-configs to get the list of supported view-configs.

--inline

Show inline functions for C, C++ executables.

Notes:
1. This option is not supported on Windows.

2. Using this option will increase the time taken to generate the report.

--show-sys-src

Generate detailed function report of the system module functions (if debug

info is available) with the source statements.

112

Getting Started with AMD uProf CLI Chapter 6

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Table 36. AMDuProfCLI profile Command Options

Option Description
--src-path <pathi;...> Source file directories (semicolon separated paths). Multiple use of --src-path
is allowed.
--disasm Generate a detailed function report with assembly instructions.
--disasm-only Generate the function report with only assembly instructions.
--disasm-style <att | Choose the syntax of assembly instructions. Supported options are 'att' or
intel> 'intel'. If this option is not used, the default style used is 'intel".
-s | --sort-by <EVENT> Specify the Timer, PMC, or IBS event on which the reported profile data

will be sorted with arguments in the form of comma separated key=value
pairs. The supported keys are:

e event=<timer | ibs-fetch | ibs-op | pmcxNNN>, where NNN is

* hexadecimal Core PMC event id.

* umask=<unit-mask>

» cmask=<count-mask>

e inv=<0| 1>

* user=<0 | 1>

* 0s=<0| 1>
Use the command info --1ist pmu-events for the list of supported PMC
events.

Argument details are:
» umask — Unit mask in decimal or hexadecimal, applicable only to the PMC

events.
* cmask — Count mask in decimal or hexadecimal, applicable only to the
PMC events.

* user, os — User and OS mode. Applicable only to the PMC events.
 inv — Invert Count Mask, applicable only to the PMC events
» Multiple occurrences of -sort-by (-s) are not allowed.

--agg-interval <low | Use this option to configure the sample aggregation interval which is useful
medium | high | INTERVAL> | \hen the session gets imported to GUL.

'low' level of aggregation interval generates better timeline view in GUI, but
increases the database size.

Aggregation INTERVAL can also be specified as numeric value in
milliseconds.

--time-filter <T1:72> Restricts report generation to the time interval between T1 and T2. Where,
T1 and T2 are time in seconds from profile start time.

--imix Generate the instruction MIX report. It is only supported for IBS config, IBS
events profiling, and the native binaries.

--ignore-system-module Ignore samples from system modules.

--show-percentage Show percentage of samples instead of actual samples.

Chapter 6 Getting Started with AMD uProf CLI 113

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Table 36. AMDuProfCLI profile Command Options

Option Description
--show-sample-count Show the number of samples. This option is enabled by default.
--show-event-count Show the number of events occurred.
--show-all-cachelines Show all the cachelines in the report sections for cache analysis. By default,

only the cachelines accessed by more than one process/thread are listed.
Supported only for memory config report on Windows and Linux platforms.

--bin-path <path> Binary file path, multiple usage of --bin-path is allowed.

--src-path <path> Source file path, multiple usage of --src-path is allowed.

--symbol-path Debug Symbol paths (semicolon separated). Multiple use of --symbol-path is
<pathl;...> allowed.

--report-output <path> Write a report to a file. If the path has a .csv extension, it is assumed to be a file

path and used as it is. If the .csv extension is not used, the path is assumed to be
a directory and the report file is generated in the directory with the default

name.
--stdout Print the report to a console or terminal.
--retranslate Perform the re-translation of collected data files with a different set of

translation options.

--ascii event-dump Use this option to generate ASCII dump of IBS OP profile samples.
Note: This option might delay the translation.
--no-report Use this option to perform only collection and translation.
--remove-raw-files Removes the raw data files to reclaim the disk space.
--export-session Use this option to create a compressed archive of required session files which

can be used in other system for analysis.

114 Getting Started with AMD uProf CLI Chapter 6

AMDA1

57368 Rev.4.2 January 2024

6.9.2

AMD uProf User Guide

Windows Specific Options

Following table lists Windows specific profile commands:

Table 37.

AMDuProfCLI Windows profile Command Options

Option

Description

--call-graph <I:D:S:F>

Enables Callstack Sampling. Specify the Unwind Interval (I) in
milliseconds and Unwind Depth (D) value. Specify the Scope (S) by
choosing one of the following:

» user: Collect only for the user space code.

* kernel: Collect only for the kernel space code.

« all: Collect for the code executed in the user and kernel space code.

Specify to collect missing frames due to Frame Pointer Omission (F) by

compiler:

« fpo: If frame pointers are not available, collect callstack information
using unwind information.

« fp: Use frame pointers to collect callstack information.

-8

Same as passing --call-graph 1:128:user:fp.

--thread
<thread=concurrency>

Collects the runtime thread details.

-m | --data-buffer-count Size (number of pages per core) of the buffer used for data collection by the
<size> driver. The default size is 512 pages per core.
--trace os Trace the target domain OS. Support provided for "schedule event" only.

Use the command 'info --1list ostrace-events' for a list of OS trace

events.

--symbol-server
<pathl;...>

Symbol Server directories (semicolon separated paths). For example,
Microsoft Symbol Server (https.//msdl.microsoft.com/download/symbols).
Multiple use of --symbol-server is allowed.

--symbol-cache-dir <path>

The path to store the symbol files downloaded from the Symbol Servers.

--legacy-symbol-downloader

Use this option to download symbols using the Microsoft Symsrv. By
default AMD symbol downloader will be used to download symbols

--limit-data <n>

Use this option to stop the profiling once the collected data file size (in
MBs) crosses the limit. When used with (--overwrite) option, the limit is
before the collection is terminated. Size can be specified with a suffix Mega
bytes (M/m), Giga Bytes (G/g), and Seconds (secs).

--overwrite

Specify the profile-data collection mode as a ring buffer. Collection limit
can be set using --limit-data option. Default --1imit-data is to restrict the
raw data file size to 512 pages per core.

Chapter 6

Getting Started with AMD uProf CLI 115

AMDA1

AMD uProf User Guide

57368 Rev.4.2 January 2024

6.9.3 Linux Specific Options

Following table lists the Linux specific commands:
Table 38. AMDuProfCLI Linux profile Command Options

Option

Description

--call-graph <F:N>

Enables callstack sampling. Specify (F) to collect/ignore missing frames

due to omission of frame pointers by compiler:
* fpo | dwarf: Collect process call stack during sample collection and use

DWARF information to reconstruct the call stack.
* fp: Use Frame pointers to collect call stack information.
When F = fpo, (N) specifies the max stack-size in bytes to collect per
sample collection. Valid range of the stack size: 16 - 32768. If (N) is not a
multiple of 8, then it is aligned down to the nearest value multiple of 8. The
default value is 1024 bytes.

Note: Passing a large N value will generate a very large raw data file.

When F = fp, the value for N is ignored and hence, there is no need to pass
it.

-8

Same as passing --call-graph fp

--tid <TID,..»>

Profile existing threads by attaching to a running thread. The thread IDs are
separated by comma.

--trace <TARGET>

To trace a target domain. TARGET can be one or more of the following:

mpi[=<openmpi|mpich>,<Iwt|full>]

Provide MPI implementation type:

'openmpi' for tracing OpenMPI library

'mpich’ for tracing MPICH and its derivative libraries, for example, Intel

MPI

Provide tracing scope:

"Iwt' for light-weight tracing

'full' for complete tracing

'--trace mpi' defaults to '--trace mpi=mpich,full'

» openmp — for tracing OpenMP application. This is same as the option --
omp.

» os[=<eventl,event2,...>] — provide the event names and optional
threshold with a comma separated list. syscall and memtrace events will
take the optional threshold value as <event:threshold>. Use the command
info --list ostrace-events for a list of the OS trace events.

» user=<eventl,event2,...> — provide the event name and threshold with a
comma separated list. These events will be collected in the user mode.
Use the command info --1ist trace-events to get a list of the trace
events supported in user mode.

* gpu[=<hip,hsa>] — provide the domain for GPU Tracing. By default, the
domain is set to 'hip,hsa’.

116

Getting Started with AMD uProf CLI Chapter 6

AMDA1

57368 Rev.4.2 January 2024

Table 38.

AMD uProf User Guide

AMDuProfCLI Linux profile Command Options

Option

Description

--buffer-size <size>

Number of pages to be allotted for OS trace buffer. The default value is 256
pages per core. Increase the pages to reduce the trace data loss. This option
is only applicable to OS tracing (--trace os).

--max-threads <thread-
count>

Maximum number of threads for OS tracing. The default value is 1024 for
launched application and 32768 for System Wide Tracing (-a option).
Increase this limit when the application thread count increases more than

the default limit. Otherwise, the behavior is undefined.
* Launch App - Valid range: 1 to 4096
» System wide - Valid range: 1 to 4194304

--func <module:function-
pattern>

Specify functions to trace from the library, executable, or kernel:
function-pattern can be a function name or partial name ending with '*' or
only "*' to trace all the functions of a module.

Module can be a library or executable. To trace the kernel functions,

replace the module with ‘kernel’.

Note: It is recommended to provide the absolute/full path of a module. If not, the search
will be performed on the default library paths and not on the current working

directory.

--exclude-func
<module:function-pattern>

Specify functions to exclude from the library, executable, or kernel:

» function-pattern can be a function name or partial name ending with "*' or
only '*' to trace all the functions of a module.

* Module can be a library or executable. To trace the kernel functions,
replace the module with ‘kernel’.

Note: It is recommended to provide the absolute path of a module. If not, the search will be
performed on the default library paths and not on the current working directory.

-m --mmap-pages <size>

Set the kernel memory mapped data buffer to size. The size can be
specified in pages or with a suffix Bytes (B/b), Kilo bytes (K/k), Megabytes
(M/m), and Gigabytes (G/g).

--mpi

Pass this option while collecting CPU Profiling data of a MPI application.
For MPI tracing, check the --trace option.

--kvm-guest <pid>

Specify the PID of gemu-kvm process to be profiled to collect guest-side
performance profile.

--guest-kallsyms <path>

Specify the path of guest /proc/kallsyms copied on the local host. AMD
uProf reads it to get the guest kernel symbols.

--guest-modules <path>

Specify the path of guest/proc/modules copied to the local host. AMD
uProf reads it to get the guest kernel module information.

--guest-search-path
<path>

Specify the path of guest vimlinux and kernel sources copied on the local
host. AMD uProf reads it to resolve the guest kernel module information.

Chapter 6

Getting Started with AMD uProf CLI 117

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Table 38. AMDuProfCLI Linux profile Command Options

Option Description

--host <hostname> This option is used along with the --input-dir option. Generates report
belonging to a specific host. The supported options are:

» <hostname>: Report process belonging to a specific host.

« all: Report all the processes.

Note: If --host is not used, only the processes belonging to the system from which report is
generated is reported. In case, the system is a master node in a cluster, the report will be
generated for the lexicographically first host in that cluster.

--category <PROFILE> Generate report only for specific profiling category. Comma separated
multiple categories can be specified. If this option is not used, the report for
all categories is generated. Multiple instances of --category is allowed.
Supported categories are:

* cpu: Generate a report specific to CPU Profiling.

* mpi: Generate a report specific to MPI Tracing.

» openmp: Generate a report specific to OpenMP Tracing.

* trace: Generate a report specific to trace events. [os] deprecated

* gputrace: Generate a report specific to GPU Tracing.

* gpuprof: Generate a report specific to GPU Profiling.

Example:

--category cpu,mpi,trace,gputrace,gpuprof

--category mpi --category cpu --category trace --category gputrace
--category gpuprof

--funccount-interval Specify the time interval in seconds to list the function count detail report.
<funccount-interval> If this option is not specified, function count will be generated for the entire
profile duration.

--branch-filter Use this option to capture LBR data. Specify the branch filter type:
* u: user branches

* k: kernel branches

* any: any branch type

* any_call: any call branch

 any_ret: any return branch

* ind_call: indirect calls

* ind_jmp: indirect jumps

* cond: conditional branches

+ call: direct calls

When the above filters are not set, the default filter type will be 'any'.

Notes:
When the above filters not set, the default filter type will be 'any’.

This option will work only with the PMC events.

3. This is applicable to per process and attach process profiling. However, it is not
applicable to Java app profiling.

118 Getting Started with AMD uProf CLI Chapter 6

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Table 38. AMDuProfCLI Linux profile Command Options

Option Description

--vmlinux-path <path> Path to the Linux kernel debug info file. If no path provided, it searches for

the debug info file in the default download path.

6.9.4 Examples

Windows

Launch application AMDTClassicMatMul.exe and collect the samples for
CYCLES _NOT IN HALT and RETIRED INST events and generate report:

C:\> AMDuProfCLI.exe profile -e cycles-not-in-halt -e retired-inst --interval 1000000
-0 c:\Temp\cpuprof-custom AMDTClassicMatMul.exe

$./AMDuProfCLI.exe profile -e event=cycles-not-in-halt,interval=250000

-e event=retired-inst,interval=500000 -o c:\Temp\cpuprof-custom AMDTClassicMatMul.exe

Launch the application AMDTClassicMatMul.exe and collect the IBS Samples and generate IMIX
report:

AMDuProfCLI.exe profile --config ibs --imix -o c:\Temp\cpuprof-tbp AMDTClassicMatMul.exe

Launch AMDTClassicMatMul.exe and perform Assess Performance profile for 10 seconds and
generate report:

C:\> AMDuProfCLI.exe profile --config assess -o c:\Temp\cpuprof-assess -d 10
AMDTClassicMatMul.exe

Launch AMDTClassicMatMul.exe and collect the IBS samples in the SWP mode and generate
report sorted on ibs-op event:

C:\> AMDuProfCLI.exe profile --config ibs -a -s event=ibs-op -o c:\Temp\cpuprof-ibs-swp
AMDTClassicMatMul.exe

Collect the TBP samples in SWP mode for 10 seconds and generate report:

C:\> AMDuProfCLI.exe profile -a -o c:\Temp\cpuprof-tbp-swp -d 10

Launch AMDTClassicMatMul.exe, collect TBP with callstack sampling and generate report:
C:\> AMDuUProfCLI.exe profile --config tbp -g -o c:\Temp\cpuprof-tbp AMDTClassicMatMul.exe

Launch AMDTClassicMatMul.exe, collect TBP with callstack sampling (unwind FPO optimized
stack) and generate report:

C:\> AMDuProfCLI.exe profile --config tbp --call-graph 1:64:user:fpo -o c:\Temp\cpuprof-tbp
AMDTClassicMatMul.exe

Launch AMDTClassicMatMul.exe and collect the samples for PMCx076 and PMCx0CO0 and
generate report sorted on pmexc0 event:
C:\> AMDuProfCLI.exe profile -e event=pmcx76,interval=250000 -e

event=pmcxc@,user=1,0s=0, interval=250000 -s event=pmcxc® -o c:\Temp\cpuprof-tbp
AMDTClassicMatMul.exe

Chapter 6 Getting Started with AMD uProf CLI 119

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Lin

Launch AMDTClassicMatMul.exe and collect the samples for IBS OP with an interval of 50000
and generate report sorted on ibs-op event:

C:\> AMDuProfCLI.exe profile -e event=ibs-op,interval=50000 -s event=ibs-op -0
c:\Temp\cpuprof-tbp AMDTClassicMatMul.exe

Launch AMDTClassicMatMul.exe and do TBP samples profile for thread concurrency, name, and
generate report:

C:\> AMDuProfCLI.exe profile --config tbp --thread thread=concurrency,name -o
c:\Temp\cpuproftbp AMDTClassicMatMul.exe

Launch AMDTClassicMatMul.exe, collect the Power samples in SWP mode and generate report:

C:\> AMDuUProfCLI.exe profile --config energy -a -o c:\Temp\pwrprof-swp AMDTClassicMatMul.exe

Collect samples for PMCx076 and PMCx0CO0, but collect the call graph info only for PMCx0CO0
and generate report:

C:\> AMDuProfCLI.exe profile -e event=pmcx76,interval=250000 -e

event=pmcxc@, interval=250000,call-graph -o c:\Temp\cpuprof-pmc AMDTClassicMatMul-bin

Launch AMDTClassicMatMul.exe and collect the samples for predefined event RETIRED INST
and L1 DC REFILLS.ALL events and generate report:

C:\> AMDuProfCLI.exe profile -e event=RETIRED_INST,interval=250000 -e

event=L1 DC_REFILLS.ALL,user=1,0s=0,interval=250000 -o c:\Temp\cpuprof-pmc
AMDTClassicMatMul.exe

Launch AMDTClassicMatMul.exe. Collect the TBP, Assess Performance samples, and generate
report:

C:\> AMDuProfCLI.exe profile --config tbp --config assess -o c:\Temp\cpuprof-tbp-assess
AMDTClassicMatMul.exe

ux

Launch the application AMDTClassicMatMul.bin. Collect the samples for
CYCLES_NOT _IN_HALT and RETIRED INST events and generate report:
$./AMDuUProfCLI profile -e cycles-not-in-halt -e retired-inst

--interval 1000000 -o /tmp/cpuprof-custom AMDTClassicMatMul-bin

$./AMDuUProfCLI profile -e event=cycles-not-in-halt,interval=250000

-e event=retired-inst,interval=500000 -o /tmp/cpuprof-custom
AMDTClassicMatMul-bin

Launch the application AMDTClassicMatMul-bin. Collect the IBS samples and generate IMIX
report from the raw data file:

$./AMDuUProfCLI profile --config ibs --IMIX -o /tmp/cpuprof-tbp AMDTClassicMatMul-bin

Launch AMDTClassicMatMul-bin. Perform Assess Performance profile for 10 seconds and
generate report:

$./AMDuUProfCLI profile --config assess -o /tmp/cpuprof-assess -d 1@ AMDTClassicMatMul-bin

120

Getting Started with AMD uProf CLI Chapter 6

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Launch AMDTClassicMatMul-bin. Collect the IBS samples in the SWP mode and generate report
sorted based on ibs_op event:

$./AMDuUProfCLI profile --config ibs -a -s event=ibs_op -o /tmp/cpuprof-ibs-swp
AMDTClassicMatMul-bin

Collect the TBP samples in SWP mode for 10 seconds and generate report:

$./AMDuUProfCLI profile -a -o /tmp/cpuprof-tbp-swp -d 10

Launch AMDTClassicMatMul-bin. Collect TBP with callstack sampling and generate report:
$./AMDuProfCLI profile --config tbp -g -o /tmp/cpuprof-tbp AMDTClassicMatMul-bin

Launch AMDTClassicMatMul-bin and collect TBP with callstack sampling (unwind FPO
optimized stack) and generate report:

$./AMDuUProfCLI profile --config tbp --call-graph fpo:512 -o /tmp/uprof-tbp
AMDTClassicMatMulbin

Launch AMDTClassicMatMul-bin. Collect the samples for PMCx076 and PMCx0CO0 and
generate report:

$./AMDuUProfCLI profile -e event=pmcx76,interval=250000 -e
event=pmcxc@,user=1,0s=0,interval=250000 -o /tmp/cpuprof-tbp AMDTClassicMatMul-bin

Launch AMDTClassicMatMul-bin. Collect the samples for IBS OP with interval 50000 and
generate report sorted on ibs-op event:

$./AMDuUProfCLI profile -e event=ibs-op,interval=50000 -s event=ibs-op -o /tmp/cpuprof-tbp
AMDTClassicMatMulbin

Attach to a thread, collect TBP samples for 10 seconds, and generate report:

$ AMDUProfCLI profile --config tbp -o /tmp/cpuprof-tbp-attach -d 1@ --tid <TID>
Collect OpenMP trace info of an OpenMP application, pass -omp, and generate report:
$ AMDuProfCLI profile --omp --config tbp -o /tmp/openmp_trace <path-to-openmp-exe>
Collect MPI profiling information and generate report:

$ mpirun -np 4 ./AMDuUProfCLI profile --config assess --mpi --output-dir /tmp/cpuprof-mpi /tmp/
namd <parameters>

Collect the samples for PMCx076 and PMCx0CO, but collect the call graph info only for
PMCx0CO0 and generate report:

$ AMDUProfCLI profile -e event=pmcx76,interval=250000 -e
event=pmcxc@,interval=250000,callgraph -o /tmp/cpuprof-pmc AMDTClassicMatMul-bin

Launch AMDTClassicMatMul-bin. Collect all the OS trace events and generate report:
$ AMDuProfCLI profile --trace os -o /tmp/cpuprof-os AMDTClassicMatMul-bin

Launch AMDTClassicMatMul-bin. Collect the GPU Traces for Host Identity Protocol (HIP)
domain and generate report:

$ AMDUProfCLI profile --trace gpu=hip -o /tmp/cpuprof-gpu AMDTClassicMatMul-bin

Chapter 6 Getting Started with AMD uProf CLI 121

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

* Launch AMDTClassicMatMul-bin. Collect the TBP samples, GPU Traces for the HIP domain,
and generate report:

$ AMDuProfCLI profile --config tbp --trace gpu=hip -o /tmp/cpuprof-gpu AMDTClassicMatMul-bin
* Launch AMDTClassicMatMul-bin. Collect the GPU samples, OS Traces, and generate report:

$ AMDUProfCLI profile --config gpu --trace os -o /tmp/cpuprof-gpu-os AMDTClassicMatMul-bin

6.10 Info Command

This command fetches the generic information about the system, PMC event details, predefined event
details, and so on.

Synopsis:
AMDUProfCLI info [--help] [<options>]

Common Usages:

$ AMDuProfCLI info --system

6.10.1 Options

Following table lists the info command:
Table 39. AMDuProfCLI Info Command Options

Option Description
-h | --help Displays the help information.
--list <type> Lists the supported items for the following types:

» collect-configs: Predefined profile configurations that can be used with

collect--config option.

predefined-events: List of the supported predefined events that can be used

with collect --event option.

» pmu-events: Raw PMC events that can be used with collect --event option.
Alternatively, info --pmu-event all can be used to print information of all the
supported events.

* cacheline-events: List of event aliases to be used with report --sort-by

option for cache analysis. It is supported only on Windows and Linux

platforms.

view-configs: List the supported data view configurations that can be used

with report --view option.

--collect-config <name> | Displays the details of the given profile configuration used with collect --
config <name> option.

Use info --1list collect-configs command for the details on the supported
profile configurations.

122 Getting Started with AMD uProf CLI Chapter 6

AMDA1

57368 Rev.4.2 January 2024

AMD uProf User Guide

Table 39. AMDuProfCLI Info Command Options

Option

Description

--view-config <name>

Displays the details of the given view configuration used in the report
generation option report --view <name>.

Use info --list view-configs command for the details on the supported data
view configurations.

--pmu-event <event>

Displays the details of the given pmu event. Use command info --1list pmu-
events for the list of supported pmc events.

--system

Displays the processor information of this system.

Following table lists the Linux specific info command options:
Table 40. AMDuProfCLI Info Command - Linux Specific Options

Option

Description

--list <type>

Lists the supported items for the following types:

* trace-events: List of trace events that can be used with collect --trace os or
collect --trace user option.

* gpu-events: List of GPU events can be used in gpu profile configuration.

--bpf

Displays details of the BPF support and BCC Installation.

6.10.2 Examples

Use the following commands to:

* Print the system details:

C:\> AMDuProfCLI.exe info --system

* Print the list of predefined profiles:

C:\> AMDuProfCLI.exe info --list collect-configs
* Print the list of PMU events:

C:\> AMDuProfCLI.exe info --list pmu-events

* Print the list of predefined report views:

C:\> AMDuProfCLI.exe info --list view-configs

* Print details of predefined profile such as “assess_ext”:

C:\> AMDuProfCLI.exe info --collect-config assess_ext

* Print the details of the pmu-event such as PMCx076:

C:\> AMDuProfCLI.exe info --pmu-event pmcx76

* Print details of view configuration such as ibs_op overall:

C:\> AMDuProfCLI.exe info --view-config ibs_op_overall

Chapter 6

Getting Started with AMD uProf CLI 123

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

* Print the list of trace events:

C:\> AMDuProfCLI.exe info --list trace-events

124 Getting Started with AMD uProf CLI Chapter 6

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Chapter 7 Performance Analysis

7.1 CPU Profiling

AMD uProf CPU profiler follows a statistical sampling-based approach to collect profile data to
identify the performance bottlenecks in the application. A few high-level features to understand the
CPU profiler capabilities are listed in this section:

Profile data is collected using one of the following approaches:

— Time Based Profiling (TBP) — to identify the hotspots in the profiled applications.

— Event Based Profiling (EBP) — sampling based on Core PMC events to identify micro-
architecture related performance issues in the profiled applications.

— Instruction based Sampling (IBS) — precise instruction-based sampling.
Call-stack Sampling

Secondary Profile Data

— Thread concurrency (Windows only, requires admin privilege)
— Thread names (Windows and Linux only)
Profile Scope

— Launch App— launch an application and profile that process and its children.

— System-wide — profile all the running processes and/or kernel.

— Attach Process — Attach to an existing application (Native applications only)

Profile mode

— User/Kernel — profile data is collected when the application is running in User and/or Kernel
mode.

Supported Languages:

- C,C++

— Java

NET (5.0, 6.0, and Framework)

— FORTRAN

— Assembly applications

Supported Software Components

— User-space applications

— Dynamically linked/loaded modules
— Drivers

— OS kernel modules

Chapter 7 Performance Analysis 125

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

» Profile data is attributed at various granularities:

— Process, Thread, Load Module, Function, Source line, or Disassembly
— C++ and Java in-lined functions
Note: uProfrequires debug information from the compiler for correlating the profile data to
functions and source lines.
* Data and Report Files:

— Collected profile data initially stored to raw data files.

— Processed profile data is stored to database files used for generating the CLI report or GUI
visualization.

— Profile report is saved to a comma-separated-value (CSV) format file that can be viewed using
any spreadsheet viewer.

* AMDuProfCLI, the command-line-interface can be used to configure a profile run, collect the
profile data, and generate the profile report.
— Collect command to configure and collect the profile data.
— Report command to process the profile data and to generate the profile report.

— Profile command to collect the performance profile data, analyze it, and generate the profile
report.

e AMDuProf GUI can be used to:

— Configure a profile run.
— Start the profile run to collect the performance data.
— Analyze the performance data to identify potential bottlenecks.
* AMDuProf GUI has various Ul elements to analyze and view the profile data at various
granularities:
— Hot spots summary
— Session Information
— Thread concurrency graph (Windows only and requires admin privileges)
— Process and function analysis
— Source and disassembly analysis

— Top-down and bottom-up call path — visualizations to explore the function call flow of an
application for analyzing the time spent on functions and its callees.

— Flame Graph — callstack visualizer as a flame graph

— Call Graph — call stack and caller/callee visualizer in table format

— HPC — to analyze OpenMP and MPI profile data

— Timeline Visualizer — timeline views for MPI API trace and OS event trace information
— Cache Analysis — to analyze the hot cache lines that are false shared

126 Performance Analysis Chapter 7

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

* Profile Control API
— Selectively enable and disable profiling from the target application by instrumenting it, to limit

the scope of the profiling.

7.2 Analysis with Time-based Profiling

In this analysis, the profile data is periodically collected based on the specified OS timer interval. It is
used to identify the hotspots of the profiled applications that are consuming the most time. These
hotspots are good candidates for further investigation and optimization.

7.2.1 Configuring and Starting Profile

Complete the following steps to configure and start a profile:
1. Click PROFILE > Start Profiling to navigate to the Select Profile Target screen.
2. Select the required profile target, click the Next button.
The Select Profiling screen is displayed.
3. From the Select Profiling screen, select the Predefined Configs tab.

The following screen is displayed:

Live Power Profile Custom Configs

Predefined Configs

Use this configuration to identify where programs are spending time.

Timer Interval

Advanced Options

Figure 34. Time-based Profile — Configure

4. Select Time-based Sampling in the left vertical pane.

Chapter 7 Performance Analysis 127

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

5. Click Advanced Options to enable call-stack, set symbol paths (if the debug files are in different
locations) and other options. Refer the section “Advanced Options” section for more information
on this screen.

6. Once all the options are set, the Start Profile button at the bottom will be enabled and you can
click on it to start the profile.

After the profile initialization the profile data collection screen is displayed.

7.2.2 Analyzing Profile Data

Complete the following steps to analyze the profile data:

1. When the profiling stops, the collected raw profile data will be processed automatically and the
Hot Spots screen of the Summary page is displayed. The hotspots are shown for the Timer
samples. Refer the section “Overview of Performance Hotspots” for more information on this
screen.

2. Click ANALYZE on the top horizontal navigation bar to go to the Function HotSpots screen.
Refer the section “Function HotSpots” for more information on this screen.

3. Click ANALYZE > Metrics to display the profile data table at various granularities - Process,
Load Modules, Threads, and Functions. Refer the section ‘“Process and Functions” for more
information on this screen.

4. Double-click any entry on the Functions table in Metrics screen to load the source tab for that
function in SOURCES page. Refer the section “Source and Assembly” for more information on
this screen.

7.3 Analysis with Event-based Profiling

In this profile, AMD uProf uses the PMCs to monitor the various micro-architectural events
supported by the AMD x86-based processor. It helps to identify the CPU and memory related
performance issues in profiled applications.

7.3.1 Configuring and Starting Profile

Complete the following steps to configure and start a profile:

1. Click PROFILE > Start Profiling to navigate to the Select Profile Target screen.

128 Performance Analysis Chapter 7

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Select the required profile target, click the Next button.
The Start Profiling screen is displayed as follows:

X AMDuProf < o X
L PROFILE <
H Predefined Configs Live Power Profile Custom Configs
Saved Configurations g)))
g SR T Use this configuration to get an overall assessment of performance and to find potential issues for further
Remote Profile Investigate Data Access Investigation.
Event Mask = Sampling Period | User Mode | Kernel Mode ‘ Callstack | Count Mask | Inv
Investigate CPI 1
[0X76 : 0x0] CYCLES_NOT_IN_HALT 00 | 1000000 Yes Yes No 0x0 No
Ll [0xc0 : 0x0] RETIRED_INST 0x0 | 1000000 Yes Yes No 0x0 No
| Assess Performance [0xc2 : 0x0] RETIRED_BR_INST 00 500000 Yes Yes No 0x0 No
[0xC3 : 0x0] RETIRED_BR_INST_MISP 0x0 | 500000 Yes Yes No 00 No
Assess Performance (Extended) 1 I
[0x29 : 0x7] L1_DC_ACCESSES_ALL 0x7 | 1000000 Yes Yes No 00 No
Ttk Nale [0X60 : Oxe8] L2_CACHE_ACCESS_FROM_L1_DC_MISS | Oxe8 | 100000 Yes Yes No 0x0 No
investigate Branching {0x43 : Oxf] L1_DEMAND_DC_REFILLS_LOCAL oxf | 100000 ves Yes No 00 No
[0x43 : 0x50] L1_DEMAND_DC_REFILLS_REMOTE 0x50 100000 Yes Yes No 0x0 No
Investigate Instruction Access - -
[0x47 : 0x3] MISALIGNED_LOADS ox3 100000 Yes Yes No 0x0 No
Cache Analysis
The number of cpu cycles when the thread is not in halt state. CSonise Evens

Advanced Options

JAMDUPrOfCLI collect ~config assess -w. 0 Iroot]. 7 DTC]

CLI Command Copy.

Config Name ~ AMDUProf-EBP-AMDTClassicMatMul-bin t Nar Previous

Figure 35. Event-based Profile — Configure

From the Select Profiling screen, select the Predefined Configs tab.

Select Assess Performance in the left vertical pane. Refer the section “Predefined Sampling
Configuration” for EBP based predefined sampling configurations.

Click Advanced Options to enable call-stack, set symbol paths (if the debug files are in different
locations) and other options. Refer the section “Advanced Options” for more information on this
screen.

Once all the options are set, the Start Profile button at the bottom will be enabled. Click it to start
the profile.

After the profile initialization the profile data collection screen is displayed.

7.3.2 Analyzing Profile Data

Complete the following steps to analyze the profile data:

1.

When the profiling stops, the collected raw profile data will be processed automatically and the
Hot Spots screen of the Summary page is displayed. Refer the section “Overview of
Performance Hotspots” for more information on this screen.

Click ANALYZE on the top horizontal navigation bar to go to the Function HotSpots screen.
Refer the section “Function HotSpots™ for more information on this screen.

Chapter 7 Performance Analysis 129

AMDZ\
AMD uProf User Guide 57368 Rev.4.2 January 2024

3. Click ANALYZE > Metrics to display the profile data table at various granularities - Process,
Load Modules, Threads, and Functions. Refer to the section “Process and Functions” for more
information on this screen.

4. Double-click any entry on the Functions table in the Grouped Metrics screen to load the source
tab for that function in SOURCES page. Refer the section “Source and Assembly” for more
information on this screen.

7.4 Analysis with Instruction-based Sampling

In this profile, AMD uProf uses the IBS supported by the AMD x64-based processor to diagnose the
performance issues in hot spots. It collects data on how instructions behave on the processor and in
the memory sub-system.

7.4.1 Configuring and Starting Profile

Complete the following steps to configure and start a profile:

1. Click PROFILE > Start Profiling to navigate to the Select Profile Target screen.
2. Select the required profile target, click the Next button.

3. From the Select Profiling screen, select the Predefined Configs tab.

4

Select Instruction-based Sampling in the left vertical pane. Refer the section “Predefined
Sampling Configuration” for IBS based predefined sampling configurations.

X AMDuProf - o X
f PROFILE
filing Pred i Configs Live Power Profile Custom Configs
saved Configurations Thuebased Sotpiing Use this configuration to collect profile data using Instruction Based Sampling. Samples are attributed to instructions precisely W|thA
Remote Profile Investigate Data Access IBS:
Wiestigate CPi Event sampling Period = Description Callstack
Instruction-based Sampling 1BS.FETCH | 250000 The number of all 185 fetch samples. This derived event counts the number of all BS fetch N

samples that were collected including IBS-killed fetch samples.

Assess Performance
The number of all 185 op samples that were collected. These op samples may be branch ops,
s Perfoemance (Extencied) resync ops, ops that perform load/store operations, or undifferentiated ops (e.g, those ops that
185, ALL 0PS | 1000000 perform arithmetic operations, logical operations, etc.). IBS collects data for retired ops. No data
A for ops that are aborted due to pipeline flushes, etc. Thus, all sampled ops are
architecturally significant and contribute to the successful forward progress of executing
programs

No

Threading Analysis

Investigate Branching

Customise Events
Investigate Instruction Access

Cache Analysis
Advanced Options
JAMDUProfCLI collect --config ibs -w. T o Iroou!. DuProf
CLI Command Copy
ConfigName ~ AMDUProf-IBS-AMDTClassicMatMul-bin Previous | _ Start Profile

Figure 36. IBS Configuration

130 Performance Analysis Chapter 7

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

5. Click Advanced Options to enable call-stack, set symbol paths (if the debug files are in different
locations) and other options. Refer the section “Advanced Options” for more information on this
screen.

6. Once all the options are set, the Start Profile button at the bottom will be enabled. Click it to start
the profile.

After the profile initialization the profile data collection screen is displayed.

7.4.2 Analyzing Profile Data

Complete the following steps to analyze the profile data:

1. When the profiling stops, the collected raw profile data will be processed automatically and you
the Hot Spots screen of the Summary page is displayed. Refer the section “Overview of
Performance Hotspots” for more information on this screen.

2. Click ANALYZE on the top horizontal navigation bar to go to the Function HotSpots screen.
Refer the section “Process and Functions” for more information on this screen.

3. Click ANALYZE > Metrics to display the profile data table at various granularities - Process,
Load Modules, Threads, and Functions. Refer the section “Process and Functions” for more
information on this screen.

4. Double-click any entry on the Functions table in the Grouped Metrics screen to load the source
tab for that function in SOURCES page. Refer to the section “Source and Assembly” for more
information on this screen.

7.5 Analysis with Call Stack Samples

The call stack samples can be collected for C, C++, and Java applications with all the CPU profile
types. These samples will be used to provide Flame Graph and Call Graph window.

Note: Java call stack profiling is supported only on Linux platforms.
To enable call stack sampling, complete the following steps:

1. Select profile target and profile type.

Chapter 7 Performance Analysis 131

AMDZ\
AMD uProf User Guide

57368 Rev. 4.2 January 2024

2. Click on Advanced Options button to turn on the Enable CSS option in Call Stack Options
pane as follows:

X AMDuProf = o X
PROFILE e
Advanced Options
Saved Configurations
Remote Profile

You can enable the openMP tracing option to collect openMP metrics data.

Enable OpenMP Tracing

Specify call stack settings which will collect data regarding function call stack. FPO is related to Frame Pointer Omission which when enabled leads to better call stack reconstruction and better call graph
views.Note that for call stack size, setting a large value will lead to generation of large profile sessions and considerable time in processing the same.
Enable FPO .

Call Stack Size

Enable start Paused switch to launch the application (if specified) but not collect the profile data o if you are using Profile API instrumentation then you can specify that or specify a start delay which is launch the application

(if specified) but start the profiling only after the delay period. Optionally you can specify the profile duration (in seconds) after which the profiling will be stopped.(StartPaused, Delay and Instrumentation not supported for
Power Profiling)

Limit Data Collection by First n(MB) i

0

Enable start paused (e]

Are you using Profile Instrumentation API? (o]

Start Profiling After E 0 =
Profile Duration E 0 B

Reset Name Previous Next --
Figure 37. Start Profiling - Advanced Options

Config Name ~ AMDUProf-IBS-AMDTClassicMatMul-bin

Refer the section “Advanced Options” for more information on this screen.

Note: If the application is compiled with higher optimization levels and frame pointers are not

displayed, Enable FPO option can be turned on. On Linux, this will increase the size of the
raw profile file size.

7.5.1 Flame Graph

Flame Graph provides a stack visualizer based on call stack samples. The Flame Graph is available
in the ANALYZE page to analyze the call stack samples to identify hot call-paths. To access it,
navigate to ANALYZE > Flame Graph in the left vertical pane.

Refer the section “Flame Graph” for more information on this screen.

132 Performance Analysis Chapter 7

AMDZ1
57368 Rev.4.2 January 2024 AMD uProf User Guide

The following figure shows a sample flame graph:

PROFILE SUMMARY ANALYZE X o
Function Hm Click on any block in Flame Graph to focus on it's children.
Grouped Metrics Select Metric CYCLES NOIN_HALT E‘ Process scmarka [PID: 98222] | 100.00% E]] Threads simari2 | 100.00% i- carch S

Top-Down Callstack

Call Graph

kerel measureSOR 2

_libc_start_call main
_libe_start main@@GLIBC 2.34

kernel measureLU

[ROOT]

Figure 38. ANALYZE - Flame Graph

The flame graph can be displayed based on the Process and Select Metric drop-downs. Also, it has
the function search box to search and highlight the given function name.

7.5.2 Call Graph

Call Graph provides a butterfly view of call graph based on call-stack samples. The Call Graph
screen will be available in ANALYZE page to analyze the call-stack samples to identify hot call-
paths. To access it, click ANALYZE > Call Graph in the left vertical pane.

Refer to the section “Call Graph” for more information on this screen.

The following figure shows a sample call graph:

Chapter 7 Performance Analysis 133

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024
L PROFILE SUMMARY ANALYZE X -]
Function Hotspots Process scimark2 (PID: 98222] | 100.00% ™ Threads scimark2 | 100.00% v Select Metric CYCLES_NOT_IN_HALT ¥ Search
Grotped Metrics ‘ Function | Incusive sample | Exclusive sample | Module Source File [*

17743 0| scimark2 | /home/amd/apps/ScimarkStable/scimark2.c

Top-Down Callstack __libc_start_main@@GLIBC_2.34 17743 libc.s0.6
_libe_start_call_main 17743 libc.50.6
Flame Graph [ROOT) 17783
_start 17743 scimark2
S Kernel_measureSOR 4498 scimark2 | /home/amd/apps/ScimarkStable/kernel.c
SOR_execute 4498 4498 scimark2 | /home/amd/apps/ScimarkStable/SOR.c
| kernel_measureMonteCarlo 3726 scimark2 | fhome/amd/apps/ScimarkStable/kernel.c
| MonteCarlo_integrate 3726 2788, scimark2 | /home/amd/apps/ScimarkStable/MonteCarlo.c
| kernel_measuresparseMatMult 3518 scimark2 | /home/amd/apps/ScimarkStablerkernel.c
| sparsecompRow_matmult 3518 3518| scimark2 | /home/amd/apps/ScimarkStable/SparseCompRow.c
| kernel_measureLU nn scimark2 | /home/amd/apps/ScimarkStable/kernel.c
Caller(s) of Function: main Callee(s) of Function: main
‘ Parents Sample % Module ” Self + Children sample | % Module
‘_hb(_stan_(a_mam 17743 100.00%% libc.50.6 |kernel_measureSOR 4498 25.35%% scimark2
| kernel_measureMonteCarlo 3726/ 21.00%% | scimark2
| kernel_measuresparseMatMult 3518| 19.83%% | scimark2
|
| kernel_measureLu 3171| 17.87%% | scimark2
| kernel_measurefFT 2830, 15.95%% | scimark2

Figure 39. ANALYZE - Call Graph

You can browse the data based on Process and Select Metric drop-downs. The top central table
displays call-stack samples for each function. Click on any function to update the bottom two
Caller(s) and Callee(s) tables. These tables display the callers and callees respectively of the selected
function.

7.6 Profiling a Java Application

AMD uProf supports Java application profiling running on JVM. To support this, it uses JVM Tool
Interface (JVMTI).

AMD uProf provides JVMTI Agent libraries: AMDJvmtiAgent.dll on Windows and
libAMDJvmtiAgent.so on Linux. This JvmtiAgent library must be loaded during start up of the target
JVM process.

7.6.1 Launching a Java Application

If the Java application is launched by AMD uProf, the tool would pass the AMDJvmtiAgent library to
JVM using Java -agentpath option. AMD uProf would be able to collect the profile data and attribute
the samples to interpreted Java functions.

To profile a Java application, use the following sample command:

$./AMDuUProfCLI collect --config tbp -w <java-app-dir> <path-to-java.exe> <java-app-main>

To generate report, pass the following source file path:

$./AMDuUProfCLI report --src-path <path-to-java-app-source-dir> -i <raw-data-file-path>

134 Performance Analysis Chapter 7

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

7.6.2 Attaching a Java Process to Profile

AMD uProf cannot attach JvmtiAgent dynamically to an already running JVM. Hence, for any JVM
process profiled by attach-process mechanism, AMD uProf cannot capture any class information,
unless the JvmtiAgent library is loaded during JVM process start up.

To profile an already running Java process, pass -agentpath <path to agent lib> option while
launching Java application. So that, AMD uProf can attach to the Java PID to collect profile data later
on.

For a 64-bit JVM on Linux:

$ java -agentpath:<AMDuProf-install-dir/bin/ProfileAgents/x64/1ibAMDIvmtiAgent.so> <java-app-

launch-options>

For a 64-bit JVM on Windows:

C:\> java -agentpath:<C:\ProgramFiles\AMD\AMDuProf\bin\ProfileAgents\x64\AMDIvmtiAgent.d11l>
<java-app-launch-options>

Keep a note of the process id (PID) of the above JVM instance. Then, launch AMD uProf GUI or
AMD uProf CLI to attach to this process and profile.

7.6.3 Java Source View

AMD uProf will attribute the profile samples to Java methods and the source tab will show and the
Java source lines with the corresponding samples attributed to them.

Refer to the section “Source and Assembly” for more information on source screen.

Chapter 7 Performance Analysis 135

AMDA1

AMD uProf User Guide 57368 Rev.4.2

The following figure shows the source view of the Java method:

f PROFILE SUMMARY ANALYZE SOURCES X e

jnt.scimark2.SparseC

[1.double[],int[],int[]. double[],int) X

Select View Overall assessment 5 veletyee sample Count & Process javacxe(PID25196) [100.00% ¥ Threads Thread44088 | 100.00% [¥F| Show Assembly @D
A Line Source RETIRED_INST | CYCLES NOT_IN_HALT } ACCESS_FROM_L1_(MISALIGNED_LOAD{RETIRED_BRINSTM jpc 1~
a0 sum += x[colfi]] * val[i];
P [r] = sum; 251 168 47 149 ¢
~-Non-contiguous source linefs)..
38 ‘ int rowRpl = row[r+1]; ‘ 5525| 2014‘ %0| ‘ ‘2.74 ‘(
.Non-contiguous source linefs)...
37 ‘ int rowR = row[r]; ‘ 319| 257‘ 64| ‘ ‘1.24 ‘(
38 int rowRpl = row[r+1];
for (int i=rowR; i<rowRpl; i++)
40 sum += x[col[i]] * val[il; 58421 20649 10041 27283 |c
Y yIr] = sum;
42 7
a3 3
4 y @
< >
Address Line ssembly RETIRED_INST | CYCLES NOT_IN_HALT JE_ACCESS_ FROM_L1_MISALIGNED | BRONSTMIS PC L~
ex13f 40 vaddsd xmme, xnme, xmn1 5606 2117 972 265 ¢
ex143 40 inc riod 7073 2517 1239 281 |c
ox146 39 cmp 110d, ebp 14 10 TaoR
ox149 39 31 0000000000000124h 17 3
ex14b 39 mov ebp, ecx
ox14d 39 add ebp, fdh 83 30 12 S i
ox150 29 cmp ecx,ebp 15 13 TisE
ox152 39 cmov ebp, r14d 928 284 165 27
Elaxlsﬁ 39 cmp r10d, ebp 28 37 0.76
ox159 39 jnl 0@0000000000@1e5h 2714 1042 496 5608t
ox15f 29 nop
0x160 40 mov eax, [rdi+r16*4+10h] 43 38 113
ex165 40 cmp eax,rod a8 s2 092 o
Y € >

Figure 40. Java Method - Source View
7.6.4 Java Call Stack and Flame Graph

Note: Java call stack profiling is supported only on Linux platforms.

To collect call stack for profiling Java application, use the following command:

January 2024

$./AMDuUProfCLI collect --config tbp -g -w <java-app-dir> <path-to-java-exe> <java-app-main>

136 Performance Analysis

Chapter 7

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

The following figure shows the flame graph of a Java application:

X AMDuProf - [/timp/AMDUProf-EBP-j..c-21-2021_11-09-42] = a X

PROFILE SUMMARY ANALYZE

Function HotSpots Click on any block in Flame Graph to focus on it's children.

Metrics Process Main Profiler T = Threads 194321 & Select Metric CYCLES_NOT_IN_HALT -

Call Graph

jn...

jnt... jn... jnt.... j...
jnt.scimark2.MonteCarlo::integrate(... jnt.scimark2.SparseCompRow::m... jnt.scimark2.LU::factor(doubl... jnt.scimark2.SOR::e... jnt.scim...jnt.s... j...

Native Code::Interpreter

Native Code::call stub
JavaCalls::call_helper(JavaValue*, methodHandle*, JavaCallArguments*, Thread*)
jni_invoke static(JNIEnv_*, JavaValue*, jobject*, JNiCallType, jmethodID*, NI ArgumentPusher*, Thread*)
jni_CallstaticVoidMethod
JavaMain
call_continuation
start_thread

T

Figure 41. Java Application - Flame Graph

7.7 Cache Analysis

The Cache Analysis uses IBS OP samples to detect the hot false sharing cache lines in multi-
threaded and multi-process with shared memory applications.

At a high-level, this feature will report:

* The cache lines where there is a potential false sharing

* Offsets where those accesses occur, readers and writers to those offsets

* PID, TID, Function Name, Source File, and Line Number for those reader and writers

* Load latency for the loads to those cache lines

Chapter 7 Performance Analysis 137

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024
7.7.1 Supported Metrics
The following IBS OP derived metrics are used to generate false cache sharing report:
Table 41. IBS OP Derived Metrics
Metric Description

IBS LOAD_STORE Total Loads and stores sampled

IBS_ LOAD Total Loads

IBS_STORE Total Stores

IBS_ DC_MISS_LAT

Accumulated load latencies for the loads to cache lines

IBS_LOAD DC_L2 HIT

Load operations hit in data cache or L2 cache

IBS NB LOCAL CACHE MODIFIED

Loads that were serviced from the local cache (L3) and the
cache hit state was Modified

IBS NB_ LOCAL_CACHE _OWNED

Loads that were serviced from the local cache (L3) and the
cache hit state was Owned

IBS NB_LOCAL CACHE MISS

Loads that were missed in local cache (L3) and serviced by
remote cache, local, or remote DRAM

IBS NB REMOTE_CACHE_MODIFED

Loads that were serviced from the remote cache (L3) and the
cache hit state was Modified

IBS NB_REMOTE_CACHE OWNED

Loads that were serviced from the remote cache (L3) and the
cache hit state was Owned

IBS NB_LOCAL DRAM

Loads that hit in local memory (Memory channels attached to
local socket or local CCD)

IBS_ NB_REMOTE_DRAM

Loads that hit in remote memory (Memory channels attached to
remote socket or other CCDs in the local socket)

IBS_STORE_DC_MISS

Store operations missed in data cache

7.7.2

Configuring and Starting Profile

Cache Analysis Using GUI

To perform cache analysis, complete the following steps:

1. Selecting profile target.

2. Select Cache Analysis profile type in Predefined Configs tab.

3. Start the profile.

138

Performance Analysis

Chapter 7

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Analyzing the Report

After the profile completion, navigate to Cache Analysis page in MEMORY tab to analyze the
profile data. This page shows the cache-lines and it offsets with the associated metric values:

PROFILE SUMMARY ANALYZE MEMORY

GroupBy Cache Line Offset - Value Type EventCount | Show only shared cachelines @D

Cache Line Address/Offset/Thread/Function 185_NB CACHE MODIFIED 'Y | 1BS.DC_MISS LAT | IBS LOAD STORE | 185 NB_RE 185 NB_LOC| IBS.10AD | IBSSTORE | 18S.NBLOCALY
+ ex3d161f60c0 | 279| 32176 41549 ‘ 6720 34829
+ Offset 0x8 279| 32176 6720 [o720 |
+ [Process: false_sharing.e] | [Thread: reader_thread [TID:52975]] 279 32176 6720 6720
read_func(:187 279 32176 6720 [o720
v Offset0x10 | 34829 | 34829
~ [Process: false_sharing.e] | [Thread: writer_thread [TID:52976]) | 34829 | 34829
write_func():263 | 34829 | 34829
w 0xa32878feco [12‘ 1706‘ 1715‘ I 143‘ 1557‘
v Offsetoxs 12 1706 18| | 148 |
~ [Process: false_sharing.e] | [Thread: reader_thread [TID:52975]] 12| 1706 148| I 148
read_func:187 12| 1706 128 | 128
* Offset0x10 1567 1567
~ [Process: false_sharing.e] | [Thread: writer_thread [TID:52976]] 1567 1567
write_func(:263 1567 1567

Figure 42. Cache Analysis

The Cache Analysis screen has the following options:

* Group By drop-down decides how the cache-line samples are grouped in the detailed table. It has
the option Cache Line Offset.

* ValueType drop-down allows you to show the value in sample count.

7.7.3 Cache Analysis Using CLI

The CLI has a config type called “memory” to cache the analysis data. Run the following command
to collect the profile data:

$ AMDUProfCLI collect --config memory -o /tmp/cache_analysis <target app>

This command will launch the program and collect the profile data required to generate the cache
analysis report. The raw profile data file is created in /tmp/cache analysis/AMDuProf-
IBS <timestamp>/ directory.

Report Generation and Analysis

Use the following CLI command to generate the cache analysis report:
$ AMDUProfCLI report -i /tmp/cache_analysis/AMDuProf-IBS_<timestamp>/

This will generate a CSV report in /tmp/cache _analysis/AMDuProf- IBS <timestamp>/report.csv
and it will have the following sections:

* SHARED DATA CACHELINE SUMMARY: Lists the summary values of all the metrics.

* SHARED DATA CACHELINE REPORT: Lists the cache lines and the associated summary
values of the metrics.

Chapter 7 Performance Analysis 139

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

* SHARED DATA CACHELINE DETAIL REPORT: Lists the following:

— The cache lines having a potential false sharing

— Offsets where those accesses occur, readers and writers to those offsets

— PID, TID, Function Name, Source File, and Line Number for those reader and writers
— Load latency for the loads to those cache lines

— Supported metrics

Following figure shows the Cache Analysis summary sections:

SHARED DATA CACHELINE SUMMARY

1BS_LOAD_STORE: 143681
1BS_LOAD: 89683
1BS_STORE: 108142
1BS_DC_MISS_LAT: 40008
1BS_LOAD_DC_L2_HIT: 89329
1BS_STORE_DC_MISS: 38371
1BS_NB_LOCAL_DRAM: 0
1BS_NB_REMOTE_DRAM: 0
1BS_NB_CACHE_MODIFIED: 354
1BS_NB_LOCAL_CACHE_MODIFIED: 354
1BS_NB_REMOTE_CACHE_MODIFIED: 0
1BS_NB_LOCAL_CACHE_OWNED: 0
1BS_NB_REMOTE_CACHE_OWNED: 0
1BS_NB_LOCAL_CACHE_MISS: 0

SHARED DATA CACHELINE REPORT

Cacheline Address IBS_LOAD_STORE IBS_LOAD IBS_STORE IBS_DC_MISS_LAT IBS_LOAD_DC_L2_HIT IBS_STORE_DC_MISS IBS_PIBS_NIIBS_NEIBS_NEIBS_NB IBS_NB_IBS_NB IBS_NB,
0x3ecd4220c0 43639 6882 36757 38615 6540 36655 0 0 342 342 0 0 0 0
0xb617fa40c0 1902 182 1720 1393 170 1716 0 0 12 12 0 0 0 0
0xb617fa4000 7 7 0 0 7 0 0 0 0 0 0 0 0 [}
Figure 43. Cache Analysis - Summary Sections
Following figure shows the Cache Analysis detailed report:
SHARED DATA CACHELINE DETAILED REPORT
Cacheline Address Offset Thread Id IBS_LOAD_IBS_LOAD IBS_STORE IBS_DC_MI IBS_LO.IBS_ST IBS_NEIBS_NE IBS_NB IBS_NB_IBS_NB IBS_NB. IBS_NB_IBS_NB Function Nar Source File Source Line
0x3ecd4220c0
0x8 55896 6882 6882 0 38615 6540 0 0 0 342 342 0 0 0 0 read_func false_sharing_example.c 187
0x10 55897 36757 0 36757 0 0 36655 0 0 0 0 0 0 0 0 write_func false_sharing_example.c 263
0xb617fa40c0
0x8 55896 182 182 0 1393 170 0 0 0 12 12 0 0 0 0 read_func false_sharing_example.c 187
0x10 55897 1720 0 1720 0 0 1716 0 0 0 0 0 0 0 0 write_func false_sharing_example.c 263
0xb617fa4000
ox18 55896 4 4 0 0 4 0 0 0 0 0 0 0 0 0 read_func false_sharing_example.c 179
0x18 55897 3 3 0 0 3 0 0 0 0 0 0 0 0 0 write_func false_sharing_example.c 247

Figure 44. Cache Analysis - Detailed Report

Use any of the following metric with the --sort-by event=<METRIC> (for example, --sort-by
event=1ldst-count) option to change the sorting by order during the report generation:

Table 42. Sort-by Metric

Sort-by Metric Description
ldst-count Total Loads and stores sampled
ld-count Total Loads
st-count Total Stores
cache-hitm Loads that were serviced either from the local or remote cache (L3) and
the cache hit state was Modified.

140 Performance Analysis Chapter 7

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Table 42. Sort-by Metric

Sort-by Metric Description

Icl-cache-hitm Loads that were serviced from the local cache (L3) and the cache hit
state was Modified

rmt-cache-hitm Loads that were serviced from the remote cache (LL3) and the cache hit
state was Modified.

Icl-dram-hit Loads that hit in local memory (Memory channels attached to local
socket or local CCD)

rmt-dram-hit Loads that hit in remote memory (Memory channels attached to remote
socket or other CCDs in the local socket)

13-miss Loads that are missed in local cache (L3) and serviced by remote cache,
local or remote DRAM.

st-dc-miss Store operations missed in data cache

Note: You can also use the command info --1ist cacheline-events for a list of supported
metrics for sort-by option.

7.8 Custom Profile

Apart from the predefine configurations, you can choose the required events to profile. To perform
the custom profile, complete the following steps:

7.8.1 Configuring and Starting Profile

1. Click PROFILE > Start Profiling to navigate to the Select Profile Target screen.
2. Selecting the required profile target and click the Next button.

The Select Profile Configuration screen is displayed.
3. From the Select Profile Type drop-down, select one of the following:

— The CPU Tracing Mode drop-down consists of the options OS Trace and User Mode Trace.
On Linux, OS Trace is enabled (with supported events) only in root/ADMIN mode and on

Chapter 7 Performance Analysis 141

AMDZ\
AMD uProf User Guide

57368 Rev.4.2 January 2024

Windows, it’s enabled with the supported event Schedule. User Mode Trace is enabled only
for Application Analysis on Linux.

CPU Trace looks as follows:

X AvDuPret

Predefined Configs Live Power Profile Custom Configs
Saved Confiy it

EE B GGl Select events to trace
Remote Profile

CPU Tracing Mode 05 Tracing

Description

Collect Threshold Parameters

diskio Disk /O tracing

syscall System Calls for a process/thread 10000 x

pthread Pthread Library tracing o x

funccount t Function Count 100000 x | Eg f

Added Categories: CPU Profile .

Advanced Options

JAMDuProfcl os= os=1
AMDTClassicMathul-bin

CLI Command

Config Name AMDUProf-Custom-AMDTClassicMathul-bin « |

Previous Next -
Figure 45. CPU Trace

142

Performance Analysis Chapter 7

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

— GPU Trace looks as follows:

L

PROFILE

Predefined Configs Live Power Profile Custom Configs

Saved Configurations CPU Profile Select events to Trace

Remote Profile CPU Tracing. HIP (Heterogeneous System Architecture) @

| GPU Tracing HSA (Heterogeneous Interface for Portability) (Il

Added Categories: ~ GPU Tracing .

Advanced Options

JAMDProfcl

CLI Command

Config Name ~ AMDuProf-Custom-hipVectorAdd(2) X | ResetName Previous Next -

Figure 46. GPU Trace

Multiple categories from the custom configs can be added together, for example, CPU Profile +
CPU Trace.

When multiple categories are selected, it will be mentioned below as breadcrumbs under Added
Categories and you can deselect the unwanted categories. The corresponding CLI command will
be generated below.

Chapter 7 Performance Analysis 143

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

The custom configs screen will look similar to the following:

Predefined Configs Live Power Profile Custom Configs

Saved Configurations
8 l CPUpeotiie’ Select the relevant events to profile.

Remote Profile CPU Tracing Monitored Events
GPU Tracing Filter sampling Mode ~ Period
~ AllEvents - Event [MaskiUserKernel| Interval CMask_inverted|

¥ nstrcionBsedsamping r— MEE e

[0xc3) ExRetBmMisp o0 v v B 1000000 [oo

oo BCEE - B - N

e retired. This includes al types of architectural control flow

[mm ———— e T |]

Advanced Options

JAMDUProfcl . 5 ser-1.0s:1 051 -¢ ever ose1 o Mmome/

CLI Command copy

ConfigName AMDUProf-Custom-hipVectoradd Reset Name Previous
Figure 47. Custom Config - Added Categories

Select the Custom Configs tab and select CPU Profile from the left vertical pane.

Click Advanced Options to enable call-stack, set symbol paths (if the debug files are in different
locations) and other options. Refer the section “Advanced Options” for more information on this
screen.

Once all the options are set, the Start Profile button at the bottom will be enabled. Click it to start
the profile.

After the profile initialization the profile data collection screen is displayed.

7.8.2 Analyzing Profile Data

Complete the following steps to analyze the profile data:

1.

When the profiling stops, the collected raw profile data will be processed automatically and the
Hot Spots screen of the Summary page is displayed. Refer the section “Overview of
Performance Hotspots” for more information on this screen.

Click ANALYZE on the top horizontal navigation bar to go to the Function HotSpots screen.
Refer the section “Function HotSpots” for more information on this screen.

Click ANALYZE > Metrics to display the profile data table at various granularities - Process,
Load Modules, Threads, and Functions. Refer the section “Process and Functions” for more
information on this screen.

144 Performance Analysis Chapter 7

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

4. Double-click any entry on the Functions table in Metrics screen to load the source tab for that
function in SOURCES page. Refer the section “Source and Assembly” for more information on
this screen.

7.9 Advisory

7.9.1 Confidence Threshold

The metric with low number of samples collected for a program unit either due to multiplexing or
statical sampling will be grayed out. A few points to remember are:

» This is applicable to SW Timer and Core PMC based metrics.

* This confidence threshold value can be set through Preferences section in SETTINGS page.

7.9.2 Issue Threshold

Highlight the CPI metric cells exceeding the specific threshold value (>1.0). Those cells will be
highlighted in pink to show them as potential performance problem as follows:

A PROFILE SUMMARY ANALYZE i ©
Function Hotspots SelectView IPC - GroupBy Process | ValueType EventCount [System Modules m Exclude
Process CCUESNOTINHATY | RETREDINST | pc | Pl
| ~ Java (PID 99124) 47981000000(212803000000[4.44 023 |
Top-Down Callstack » Load Modules
~ Threads

Flame Graph Thread-99128 47685000000|212229000000,4.45

C2 ComplilerThre 241000000 518000000/2.15 047
Call Graph C1 CompilerThre 34000000 430000001.26 |0.79

Service Thread 114 0.88

VM Periodic Tas

C1 CompilerThre 060 167

Java 200 050
G1 Young RemSet

C1 CompilerThre

Search
Functions Modules CCLESNOTINHALTY | RETIREDINST | IPC | CPI
k2.MonteCarlozintegrate(int) jnt.scimark2.cor

jnt:scimark2 SOR::execute(double,double()f}int) jnt.scimark2.cor 9709000000| 7574000000/ 0.78 | [#28Y |
jnt.scimark2.SparseCompRow::matmult(doublef],doublef,i jnt.scimark2.cot 9147000000| 56985000000(6.23 10.16
jnt.scimark2.LU:factor(double(,int[)) Jnt.scimark2.cor 7776000000 23581000000(3.03 (033
jnt.scimark2 FFT:transform_internal(doublef)int) jnt.scimark2.cot 7381000000| 46863000000(6.35 0.16
jnt.scimark2 kernel::CopyMatrix(double(J, doublef](]) jnt.scimark2.cor 184000000] 638000000/3.47 0.29
Native Codezinterpreter jnt.scimark2.cor 141000000] 185000000 1.31 |0.76
Native Code:libmsin jnt.scimark2.cor 128000000] 896000000 7.00 0.14
jnt.scimark2.FFTinverse(double()) jnt.scimark2.cor 53000000, 91000000172 058
jnt.scimark2.LU: factor(double(l{}intf]) jnt.scimark2.cor 35000000, 165000000 4.71 0.21
jnt.scimark2 SOR::execute(double,doubleq)f}int) Jnt.scimark2.cor 22000000, 33000000|1.50 |0.67
jnt.scimark2.SparseCompRow:matmult(doublef],double]i jnt.scimark2.cor 20000000/ 113000000565 0.18
int.scimark2 Random::nextDouble(Int.scimark2.cor 19000000 8500000014.47 10.22

Figure 48. CPI Metric - Threshold-based Performance

Chapter 7 Performance Analysis 145

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

7.10 ASCII Dump of IBS Samples

For some scenarios, it would be useful to analyze the ASCII dump of IBS OP profile samples. To do
so, complete the following steps:

1. To collect the IBS OP samples, run:

C:\> AMDuProfCLI.exe collect -e event=ibs-op,interval=100000,loadstore,ibsop-count-control=1
-a --data-buffer-count 20480 -d 250 -o C:\temp\

2. Once the raw file is generated, run the following command to translate and get the ASCII dump of
IBS OP samples:

C:\> AMDuProfCLI.exe translate --ascii event-dump -i C:\temp\AMDuProf-IBS_ <timestamp>\

The CSV file that containing ASCII dump of the IBS OP samples is generated:
C:\temp\AMDuUProf-IBS_<timestamp>\IbsOpDump.csv

3. During collection the following control knobs are available:

-e event=ibs-op,interval=100000, loadstore,ibsop-count-control=1

Where:

interval denotes sampling interval
— loadstore denotes collect only the load & store ops (Windows only option)
— 1ibsop-count-control=1 represents count dispatched micro-ops (0 for “count clock cycles™)

— --data-buffer-count 1024 represents the number of per-core data buffers to allocate (Windows only
option)

In case, there are too many missing records, try the following:
* Increase the sampling interval

* Increase the data buffer count

* Reduce the number of cores profiled

7.11 Branch Analysis

AMD “Zen4” processors support Last Branch Record (LBR) CPU feature that is useful for branch
analysis. Use uProf CLI to collect and generate the branch analysis report.

Branch analysis is supported only on Linux platform.

Notes:

1. PMC event must be enabled for LBR sample collection. If no PMC event is passed,
PMCXO0CO0 event is enabled during LBR sample collection.

2. Branch analysis is not supported for Java apps.

146 Performance Analysis Chapter 7

AMDZ1
57368 Rev.4.2 January 2024 AMD uProf User Guide

Example
Collect the LBR info:
$ AMDUProfCLI collect --branch-filter -o /tmp/ ./ScimarkStable/scimark2_64static

Generate branch analysis report:
$ AMDUProfCLI report --detail -i /tmp/AMDuProf-scimark2_64static-Custom_May-15-2023 21-05-56

Sample Report

The report generated contains a section for branch analysis. A sample screenshot for branch analysis
summary is as follows:

TAKEN BRANCH ANALYSIS SUMMARY
MISPREDICT TARGET
OVERHEAD(%) |SAMPLES |[MISPREDICT(%) [COUNT SOURCE FUNCTION TARGET FUNCTION SOURCE LINE | TARGET LINE |[SOURCE MODULE|MODULE |PROCESS

32.45| 2498527 0.02 434|LU_factor LU_factor /home/deesin{/home/deesiscimark2_64static|scimark2_{scimark2_64stat (PID:468487)
18.02| 1387483 0.01 77|SOR_execute SOR_execute /home/deesin|{/home/deesiscimark2_64static|scimark2_{scimark2_64stat (PID:468487)
14.46| 1113561 0| 21|SparseCompRow_matmult |SparseCompRow_matmult|/home/deesin|/home/d i k2_64 k2_gscimark2_64stat (PID:468487)
5.35] 411872 0.01 52|FFT_transform_internal |FFT_transform_internal |/home/deesin|/home/deesiiscimark2_64static|scimark2_fscimark2_64stat (PID:468487)

4.4| 338909 0 0|Random_nextDouble Random_nextDouble /home/deesin{/home/deesifscimark2_6: ic|scimark2_€scimark2_64stat (PID:468487)
3.54| 272318 0| 0|SparseCompRow_matmult |SparseCompRow_matmult|/home/deesin{/home/deesifscimark2_64static|scimark2_¢scimark2_64stat (PID:468487)
2.45| 188579 0.01 25|Random_nextDouble MonteCarlo_integrate /home/deesin|{/home/deesiiscimark2_64static|scimark2_{scimark2_64stat (PID:468487)
2.38| 183204 0| 8|FFT_transform_internal FFT_transform_internal |/home/deesin|/home/deesifscimark2_64static|scimark2_fscimark2_64stat (PID:468487)
2.34] 180103 0.01 25|Random_nextDouble MonteCarlo_integrate |/home/deesin|/home/deesifscimark2_64static|scimark2_scimark2_64stat (PID:468487)
2.33| 179614 0| 0|MonteCarlo_integrate Random_nextDouble /home/deesin{/home/deesirsci k2_6 ic|scil k2_gscimark2_64stat (PID:468487)
2.02 155651 0 0 MonteCarlo_integrate Random_nextDouble /home/deesin;/home/deesir scimark2_64static scimark2_€scimark2_64stat (PID:468487)

Figure 49. Branch Analysis Summary

The branch analysis summary table comprises of the following columns:

* OVERHEAD (%): Indicates which branching was mostly taken. Calculated as: (SAMPLES *
100)/(Total SAMPLES).

* SAMPLES: Shows the number of samples collected for the branch. This does not indicate the
actual branches taken.

* MISPREDICT (%): Indicates ratio of mispredicts occurred for the branch. Calculated as:
((MISPREDICT COUNT) * 100/SAMPLES)

+ MISPREDICT COUNT: Shows the number of branch mis-predicted samples collected for the
branch.

* SOURCE FUNCTION: Shows the function from where the branch was taken.
* TARGET FUNCTION: Shows the function into which the branch was taken.

* SOURCE LINE: Shows the file path and line number (from where the branch was taken) of the
SOURCE FUNCTION.

*+ TARGET LINE: Shows the file path and line number (into which the branch was taken) of the
TARGET FUNCTION.

*+ SOURCE MODULE: Shows the module name of the SOURCE FUNCTION.
* TARGET MODULE: Shows the module name of the TARGET FUNCTION.
* PROCESS: Shows the name and PID of the process.

Chapter 7 Performance Analysis 147

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

7.12 Export Session

The CLI option --export-session helps to generate a compressed archive containing essential session
files. The compressed archive can be easily transported to other system and the GUI can be used for
analyzing the performance data.

This feature streamlines the process of transferring and utilizing session files across multiple systems,
enhancing accessibility and enabling smooth workflow continuity.

Steps

Complete the following steps to export a session:

1. Generate compressed archive with translate, report, or profile command.
A .zip file is generated.

2. Copy the .zip file to another system and decompress it.

The decompressed session directory can be imported to GUI for data visualization and analysis. To
import the decompressed session and to analyze the performance data, refer to the section “/mporting
Profile Database ™.

Common Usage
* Generate compressed archive with 'translate' command:
/AMDUProfCLI translate <options> --export-session <options> -i <session_dir>
* Generate compressed archive with 'report' command:
./AMDUProfCLI report <options> --export-session <options> -i <session_dir>
* Generate compressed archive with 'profile' command:
./AMDUProfCLI profile <options> --export-session <options>
Example

Launch the application AMDTClassicMatMul.exe and collect the Time-Based Profile (TBP) samples
and generate a report with the export session option enabled:

AMDUProfCLI.exe profile --config tbp --export-session -o c:\Temp\cpuprof-tbp
AMDTClassicMatMul.exe

7.13 Limitations

CPU profiling in AMD uProf has the following limitations:

* CPU profiling expects the profiled application executable binaries must not be compressed or
obfuscated by any software protector tools, for example, VMProtect.

+ Incase of AMD EPYC™ 18t generation B1 parts, only one PMC register is used at a time for
Core PMC event-based profiling (EBP).

148 Performance Analysis Chapter 7

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

IMIX has the following limitations:
* The IMIX view or report is supported only for IBS profile type.

* Ifany module/binary has less than 10 samples, it is not shown in the IMIX report. Extremely less
number of samples are not useful for IMIX analysis.

* Linux kernel module .ko files are not shown in the IMIX view or report.

Chapter 7 Performance Analysis 149

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Chapter 8 Performance Analysis (Linux)

This chapter explains the Linux specific performance analysis models.

8.1 Threading Analysis

You can use threading analysis to identify how efficiently an application uses:

* Processor cores

* Contention among the threads due to synchronization

* CPU utilization of threads

* Runtime and wait time analysis of application threads

Limitations

+ It is not supported when an application is statically linked with libc and libpthread.

* The behavior is undefined when an application uses the clone system call for thread or process
creation instead of pthead create() or fork().

+ It is not supported with system-wide profiling and attach process.

» Supported only on AMD “Zen3” and AMD “Zen4” platforms. On other platforms, use the custom
configuration to collect the data.

8.1.1 Threading Analyis Using CLI

AMDuProfCLI can be used to collect the required profile and trace data to generate the report in .csv
format for further analysis. The processed profile and trace data can also be imported in GUI.

Collect Threading Data
CLI command to collect the threading data:

$ AMDuProfCLI collect --config threading -o /tmp/threading-analysis/ /home/app/classic_lock

Generated data files path: /tmp/threading-analysis/AMDuProf-classic_lock-Threading_Jun-13-
2023 _06-00-23

This command will launch the program to collect the profile and trace data. When the launched
application is executed, AMDuProfCLI will display the session directory path in which the raw
profile and trace data are saved.

In the above example, the session directory path is:

/tmp/threading-analysis/AMDuProf-classic_lock-Threading Jun-13-2023 06-00-23

150 Performance Analysis (Linux) Chapter 8

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Collect Threading and System Calls

Enable the system call collection along with threading to get the IO, syscall, and block time of each
thread. CLI command to collect threading and system calls tracing:

$ AMDUProfCLI collect --config threading --trace user=syscall -o /tmp/threading-analysis/ /

home/app/classic_lock

Generated data files path: /tmp/threading-analysis/AMDuProf-classic_lock-Threading_ Jun-13-
2023 _06-00-23

Collect Threading and Context Switch

Enable the context switch collection (root access is required) for accurate wait time analysis:
$ sudo AMDuProfCLI collect --config threading --trace os=schedule -o /tmp/threading-analysis/ /
home/app/classic_lock

Generated data files path: /tmp/threading-analysis/AMDuProf-classic_lock-Threading_ Jun-13-
2023_06-00-23

Collect with Custom Config

Example command to collect the CPU cycles event in frequency mode (with frequency set as 100Hz),
pthread synchronizing APIs trace data and system calls:

$ sudo AMDuProfCLI collect -e event=pmcx76,umask=0,frequency=100 --trace user=pthread,syscall -

o /tmp/threading-analysis/ /home/app/classic_lock

Generated data files path: /tmp/threading-analysis/AMDuProf-classic_lock-Threading_Jun-13-
2023 _06-00-23

Generate Profile Report

Use the following CLI report command to generate the profile report in .csv format by passing the
session directory path as an argument to the option -i:

$ sudo AMDuProfCLI report -i /tmp/threading-analysis/AMDuProf-classic_lock-Threading_Jun-13-
2023_06-00-23

Generated report file: /tmp/threading-analysis/AMDuProf-classic_lock-Threading Jun-13-2023 06-
00-23/report.csv

Chapter 8 Performance Analysis (Linux) 151

AMDZ\
AMD uProf User Guide

57368 Rev.4.2 January 2024

After processing the data and generating the report, the report file path is displayed on the terminal.
An example of the trace report sections in the .csv report file is as follows:

APPLICATION PERFORMAMNCE SNAPSHOT
Number Of Threads 43

14.0079 seconds
0.053427 seconds
11.3603 seconds

Elapsed Time
Serial Execution Time
Parallel Execution Time

Total Time 545.413 seconds
Run Time 179.76 seconds
Wait Time 364.969 seconds
Sleep Time 0.683631 seconds
10 Time 20.2477 seconds
Block Time 0.00639536 seconds

CPUTRACING REPORT
Mote: Time represents the total runtime & wait time of all the threads

SYSTEM CALL SUMMARY

System Call Count Total Time(seconds) Min Time(seconds) Max Time(seconds) Avg Time(seconds)
_libc_paoll 14341 182.618 1.00E-05 11.1591 0.0127339
epoll_wait 2028 181.541 1.05E-05 10.8013 0.0895172
_ Gl___readv 1097288 12.9824 1.00E-05 0.000757105 1.18E-05
openat 180455 4.41378 1.00E-05 0.00127476 2.45E-05
writev 123107 2.48682 1.00E-05 0.00052576 2.02E-05
THREAD SUMMARY

Process Thread Time(seconds) Wait Time(seconds) Wait Time(% From Thread Elapsed Time)

simpleFoam(42680) simpleFoam(42740) 11.455 11.454 99.99
simpleFoam(42680) simpleFoam(42741) 11.4454 11.4462 99.97
simpleFoam(42654) simpleFoam(42779) 11.397 11.396 99.99
simpleFoam{42686) simpleFoam{42730) 11.3965 11.3956 99.99
simpleFoam(42684) simpleFoam(42783) 11.3909 11.3901 99.99

WAIT OBJECT SUMMARY

Wait Object Thread Wait Count Total Wait Time(sec Wait Time (% From CFile
CV@0x7ffd770aa548 "simpleFoam(42694)" 1 0.0426698 100
CV@0x7ffeba918bc8 "simpleFoam(42707)" 1 0.0426543 100
CV@0x7ffdeB2cfoss "simpleFoam(42718)" 1 0.0425546 100
CV@0x7ffded10c518 "simpleFoam(42717)" 1 0.0424495 100
CV@0x7ffecaldl7ad "simpleFoam(42684)" 1 0.0423476 100

Figure 50. Trace Report

From the report, the application performance snapshot provides the following details:

* Number of threads/Thread count: Total number of threads created by the application.

» FElapsed time: Total elapsed time of the application.

+ Serial time: Total time of the application when only one thread is running.

+ Parallel time: Total time of the application when two or more threads are running.

e Run time: Total run time of all threads. If context switch records are collected, the total run time
will be total time of all the threads executing in CPU. Otherwise, total run time = total time - (total

wait time + total sleep time)

152

Performance Analysis (Linux)

Chapter 8

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Wait time: Total wait time of all the threads. Wait time is calculated as follows:

— Threading config (--config threading): Total time spent by a thread in pthread
synchronization APIs and wait system calls. Refer section 8.1.2 and 8.1.3 for traced
synchronization APIs and wait system calls.

— Custom config (--trace user=syscall): Total time spent by a thread in wait system calls.

— Custom config (--trace user=pthread): Total time spent by a thread in pthread
synchronization APIs.

— Custom config (--trace os/--trace os=schedule): Total time of all the threads when a
thread is not in CPU. It uses the context switch records to identify whether thread is in CPU or not.

Sleep time: Total time spent by all the threads in sleep system calls. Refer to section 8.1.3 for
sleep system calls that are traced.

IO time: Total time spent by all the threads in IO system calls. Refer to section 8.1.3 for IO system
calls that are traced.

Block time: Total time spent by all the threads in blocking the system calls. When application
makes this type of system call, there is no guarantee that the application will be blocked. So, this
block time will be added to the total run time too. Refer to section 8.1.3 for block system calls that
are traced.

Summary Report Sections

System call summary: Provides the system call count, total time spent by the application on a
system call. Helps identify the system calls consuming most of the time and that can be optimized
if the system calls blocking in nature.

Thread summary: Provides the total run time, wait time of each thread, and wait time percentage
with respect to the total time of thread. Helps identify if a thread is using the core effectively or
not. Wait time of threads should be low for an optimized application.

Wait object summary: pthread synchronization object wait count and total wait time due to this
synchronization object. Helps identify the object responsible for most of the wait time.

Import the profiled session in GUI and navigate to Analyze > Thread Timeline for better
visualization, thread timeline analysis, pthread synchronization object analysis, and call stack
analysis.

Chapter 8 Performance Analysis (Linux) 153

AMDA1

AMD uProf User Guide

8.1.2

pthread Synchronization APIs

57368 Rev.4.2 January 2024

List of thread synchronization APIs traced when pthread trace event is enabled:

8.1.3

pthread mutex lock

pthread mutex_trylock

» pthread rwlock tryrdlock

* pthread rwlock timedrdlock

pthread mutex timedlock < pthread rwlock wrlock

pthread cond wait

pthread cond timedwait <+ pthread rwlock timedwrlock

pthread cond signal

» pthread rwlock trywrlock

» pthread spin lock

pthread cond broadcast ¢ pthread spin_trylock

pthread rwlock rdlock

» pthread barrier wait

libc System Call Wrapper APIs

List of libc functions traced when syscall event is enabled:

sem_wait
sem_trywait
sem_timedwait
pthread create
pthread join
pthread cancel
pthread_yield
pthread_exit

Sleep APIs

* sleep * nanosleep clock nanosleep ¢ usleep

* pause + sigsuspend sigwait + sigwaitinfo

* sigtimedwait

Wait APIs

* poll * pselect wait * wait3

* ppoll + epoll wait waitpid * wait4

+ select * epoll pwait waitid

10 APIs

* create * readv writev * copy_file range
s open * preadv pwritev * truncate

* openat * preadv2 pwritev2 » ftruncate

* read e write Iseek * readahead

* pread s pwrite sendfile * close

154 Performance Analysis (Linux) Chapter 8

AMDA1

57368 Rev.4.2 January 2024

Blocking APIs

« flock .
+ fsync .
* sync .
* syncfs .
» fdatasync .

* sync_file range .

* accept .
* acceptd .
* recv .
Other APIs

* socket .
* bind .
» listen .
* connect .
* socketpair .
* mq_notify .
* mgq_getattr .
e mgq_setattr .
* mq close .
* mq unlink .
* msgget .
* msgctl .
« pipe .
s pipe2 .
+ shmat

recvfrom
recvmsg
recvmmsg
send
sendto
sendmsg
sendmmsg
mq_send

mq_timedsend

shmctl
shmget
shmdt
fork
vfork
alarm
system
kill
killpg
brk
sbrk
mlock

munlock

mlock?2

mq_receive
mgq_timedreceive
msgsnd

msgrev

semget

semop
semtimedop

semctl

mlockall
munlockall

mmap

munmap
move_pages
mprotect

mremap
process_vm_readv
process_vm_writev
acct

chroot

dup

dup2

dup3

AMD uProf User Guide

splice
vmsplice
msync

fentl

ioctl
epoll_create
epoll createl

epoll ctl

fallocate
ioperm
iopl
mount
pretl
ptrace
sigaction
swapon
swapoff
tee
umount
umount?2
unshare

vhangup

Chapter 8

Performance Analysis (Linux)

155

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

8.14 Timeline Analysis GUI in Linux

To configure threading analysis from the GUI:

1. Navigate to the Select Profile Configuration screen.
2. Select Predefined Configs from the tab.

3. Select Threading Analysis from the left vertical pane.

Profile data collected from CLI or GUI can be visualized in GUI by importing the session. On
importing, the following section (Thread Timeline) is displayed on the ANALYZE page.

Time-series data is plotted in timelines per entity (thread, rank, device, and so on). Trace data (if
collected) will only be plotted when you zoom into the timeline to address data size related scalability
issues (trace data can have millions of records which will not be visually legible if plotted together).
The entire view is broadly separated in three vertical parts, top data selectors, middle timelines, and
bottom filters. You can use the timeline as follows:

* Hover the cursor over a timeline to view a vertical line containing the tool-tip for a specific entity,
showing relevant details, and the current timestamp.

» If callstack data is collected, click at any point in the timeline to bring up the callstack of the
corresponding entity in the bottom pane.

Note: There can be multiple callstacks at a given timestamp as sampling data is coarse-
grained.

» If CPU profile data is collected, click and drag the mouse over the timeline to select a region
across all timelines and brings up the Function Hotspot within the selected time range.

156 Performance Analysis (Linux) Chapter 8

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

AMDuPraf - [/ Warky/Sessions,74..r-26-2023_10-55-16]

Zoom-in/out horizontally into the timelines using one of the following:

— The mouse wheel.

— Pressing CTRL and +/- keys on the keyboard to Zoom-in/out respectively.
When the timeline is zoomed in, trace data (if present) is displayed.

SUMMERY ANALYZE

Ha

_2 Selert Opes Source Theead Trace & 3 Select Trace Qwerlsy Theasd Trace
13

bench_gamm_bis

Trace Dvertay Cumtrins) [50 | =)

00: 20,30 00:35.000

000:05 000 00 L0000 001500 _| 00:30.000
L

Eanch_gamm_bls

banch gamen bis |
e

Eanch_gamm_bls

bench_pemm_bls
ez

banch_gamm_bls

Fibr
Fiter Threads |Sedect Thread Parert Process. Running Time | Wait Time | Sleep Tume | Blocked Time | Syscall Time | W0 Time| ~
B meam bench gamm i g [ME-020050] kerch_garmem ks HEL0AIme WE4Oms L000ms 0000 0000 00H3m
2 [L TR — [ME-92030] bench_pamm ki NN DI 3160ma Lims 100 Qidm 0d0dm
[me-azszs) bench g ta [AE-4030] berch_parmm Eby B1ER0SIm 0EZma 000ma 1000 0000m 0000m
A me-aisis) bench gamm ki LI T p———— 414300Ems 125100ma OD00ms Q0m QB 000m
[Mozl bench garrem kb [C-A3030] kerch_garmem kb WA 4E0SEms L000ms 0000 0000 0000
A me-az2es) bench gamm ki LI pe———— 1005 4my 1T403ma 0D00ms Q0m QB 000m
[ME-a2474] bench garrem kb [C-23030] kerch_garmem kb MIEESEm LIEIma 0000ms 0000 0000 0000
| [0 measssa) bench, gammm s [C-23030] karch_garmem kb MATEOTIma 107T4Ems O000ms 0000m 0000 0000 ¥
10 - Daseloct Al Sakctad e]]
Data Scurce Lagerd: 12 B Forrisg e B Wai fire B Sorp Trea B Prorepied Sheep i B Bock Tirw B 10 Time B Syucad Tova 8 vk 464 fire
Trace Geerlay Legend - Urbrwsws. B Mt Rapwive. B Condition Vortable B Neoder-Winer Wones opire 8 Spiieid Borrier 10 ThvewdJin 8 Shep Drdnihed 8 Seruphvire B Rossing

Figure 51. Timeline Analysis GUI in Linux

The timeline section consists of:

1.
2.

Name of each thread in timeline with Thread ID.

Click to Load More button which loads more threads. By default, only a small number of thread
timelines are loaded to limit the resource consumption. This button enables loading the next set of
thread timelines. The next set is determined by the entries in the table below the timeline.

Chapter 8 Performance Analysis (Linux) 157

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

3. Select the Data Source drop-down to enable selection of data to display on the timeline. Different
types of data source are as follows:

CPU Utilization: Plots the timeline for the CPU utilization (in %) per thread at a per second
interval. To collect sufficient such data points, the total profile duration should be greater than
or equal to 10 seconds. This is enabled only for the Threading Analysis configuration.

Memory Consumption: Plots the timeline for the memory consumption (in MB) categorized
as physical and virtual memory consumed. This is enabled only for the Threading Analysis
configuration.

Context Switches: Plots the timeline for both voluntary context switches count (sleep, yield,
and so on) or involuntary context switches count (OS scheduler triggered context switch). This
is enabled only for the Threading Analysis configuration.

CPU Profile Samples: Plots the timeline for the CPU sample collected for the CPU events.
The following events are supported:

Table 43. Supported CPU Events

Events Availability
Retired Instructions PMC event RETIRED INSTRUCTIONS is collected.
Cycles not in Halt PMC event CYCLES NOT IN HALT is collected.
Op Cycles IBS op event is collected with ‘count cycles’ unit mask.
CPU Time Time-based profiling is performed.

Thread Trace: Plots the timeline based on OS trace data which can either originate from eBPF
Tracing or User-mode Tracing. The trace data is categorized and aggregated at certain intervals
to generate time-series plotted in timelines. The following categories are created:

Table 44. CPU Trace Categories

Category Description

Wait Time Total time spent in synchronization objects, that is, mutex, condition variable,
semaphore, locks, barriers, latches, and so on

Sleep Time Total time spent in sleep syscalls.

Running Time | If only user-mode tracing is enabled:

Running Time = Total Time — (Wait Time + Sleep Time).

If eBPF tracing is enabled, then Running Time is total active time in CPU:
Running Time = Total Time — Sleep Time (from context switch records)

Block Time Total Time spent in blocking syscalls, that is, select, epoll, poll, wait, accept, and so
on.

1/0 Time Total Time spent in I/O syscalls, that is, read, write, pread, pwrite, and so on.

Syscall Time | Total time spent on all traced syscalls — (Block Time + [/O Time)

158

Performance Analysis (Linux) Chapter 8

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

10.

11.

12.

13.

14.

The Select Trace Overlay drop-down enables selection of the type of trace data to display.

— Don't Show Trace: Trace data will not be loaded in the timeline.

— Thread State: Shows the current state of thread from eePBF or User-mode tracing. In the former,
thread state 1s inferred from BPF data. In the later, thread state is treated as Running if Running
Time > 0, otherwise, Sleeping.

— Thread Trace: Displays traces for the traced libpthread functions, such as pthread mutex lock,
pthread mutex_trylock, and so on.

— Syscalls: Displays traces for traced syscall in the specific region of the timeline.

Trace Cutoff can be used to specify a duration in nanoseconds, which acts as a cutoff to load the
trace data, that is, any traced function which takes less than the specified nanoseconds will not be
displayed.

Click the Reset Zoom button to reset any zoom performed earlier.

Hover over any timeline to view the tool-tip containing the relevant data along with timestamp. If
trace data is also present, the relevant traced functions with start time and duration.

Filter Threads/Ranks enables you to filter which thread's (or rank's) timelines must be
displayed. By default, the timelines are sorted internally and the first 6 are loaded. However, from
the table, you can select the required threads and clicking Apply Filter to apply the changes. If
CPU profile data is collected, highlighting functions or modules is also possible. Each function is
assigned a random color, which can be modified and highlighted in the timeline (implies there are
samples from the function/module).

Each entry in the filter table has the necessary data, that is, name, parent object, and samples/trace
times aggregated across the profile.

Click the Apply Filter button to apply a custom selection of entities or highlight entities in
timeline.

Click Deselect selected Items to deselect all the entries in the filtering table except the first one.
This is useful when a custom selection is required but all timelines are already loaded.

At the bottom of the filtering pane, timeline legend is displayed, which helps in identifying how
each type of ‘data source’ or ‘trace’ is mapped to which color.

The Show Core Transition button is disabled by default and works only when the CPU profiling
data is collected. When enabled, a red line is displayed in each timeline to signify when a thread
changes the core.

If any configuration is profiled with CSS enabled, select Threading Analysis > Select Data
Source > CPU Profile Samples. The callstack section will be enabled only if you select a valid
samples region.

Note: Time-series data (from Select Data Source) will be plotted as a line graph, where the x-axis is

time and y-axis the height implies how close to the maximum value it reached. For trace
records, the height is always total height of the timeline. However, the width varies based on
the duration of the traced function.

Chapter 8 Performance Analysis (Linux) 159

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

8.2 OpenMP Analysis

The OpenMP API uses the fork-join model of parallel execution. The program starts with a single
master thread to run the serial code. When a parallel region is encountered, multiple threads perform
the implicit or explicit tasks defined by the OpenMP directives. At the end of that parallel region, the
threads join at the barrier and only the master thread continues to execute.

When the threads execute the parallel region code, they should utilize all the available CPU cores and
the CPU utilization should be maximized. But the threads wait without doing anything useful due to
several reasons:

» Idle: A thread finishes its task within the parallel region and waits at the barrier for the other
threads to complete.

* Sync: If locks are used inside the parallel region, threads can wait on synchronization locks to
acquire the shared resource.

* Overhead: The thread management overhead.

The OpenMP analysis helps to trace the activities performed by OpenMP threads, their states, and
provides the thread state timeline for parallel regions to analyze the performance issues.

Support Matrix

The following table shows the support matrix:
Table 45. Support Matrix

Component Supported Versions Languages

OpenMP Spec OpenMP v5.0
LLVM 8,9, 10, 11, 12, 13, and 14 C and C++

Compiler AOCC2.1,2.2,2.3,3.0,3.1,3.2,and 4.0 |C, C++, and Fortran
ICC 19.1 and 2021.1.1 C, C++, and Fortran
Ubuntu 18.04 LTS, 20.04 LTS, and 22.04

oS LTS
RHEL 8.6 and 9
CentOS 8.4

Prerequisite

Compile the OpenMP application using a supported compiler (on a supported platform) with the
required compiler options to enable OpenMP.

160 Performance Analysis (Linux) Chapter 8

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

8.2.1 Profiling OpenMP Application using GUI

Configuring and Starting a Profile

Complete the following steps to enable the OpenMP profiling:

1.
2.
3.

Select the profile target and profile type.
Click the Advanced Options button.

In Enable OpenMP Tracing pane, turn on the Enable OpenMP Tracing option in, as shown in
the following image:

L PROFILE

Advanced Options

saved Configurations

Remote Profile

Figure 52. Enable OpenMP Tracing

Analyzing the OpenMP Report

After the profile completion, navigate to the HPC page to analyze the OpenMP tracing data. You can
use the left side vertical pane on this page to navigate through the following views:

Overview shows the quick details about the runtime. The following image shows the Overview
page:

PROFILE

ANALYZE

SUMMARY

Parallel Regions
.+ OpenMP Summary

Total Time : 0.94s
Total Parallel Time : 091s
Total Serial Time : 0025
Parallel Time % : 97.53
Max Cores Utilized : 32

Total Threads Created : 32

Figure 53. HPC - Overview

Chapter 8 Performance Analysis (Linux) 161

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

» Parallel Regions shows the summary of all the parallel regions. This tab is useful to quickly
understand which parallel region might be load imbalanced. Double-click on the region names to
open the Regions Detailed Analysis page.

L PROFILE SUMMARY ANALYZE HPC

Parallel Regions HostName milan-GN.Jocaldomain | Processid 130067 |

Loop
Chunk size

Parallel Region | Imbalance Time Imbalance Time Threads Avg idle Time (s Avg Sync Time (| Avg Overhead T Avg Work Time

— Schedule Type | Elapsed Time (s|
verview

0.000000

0.000000 0.000000 0.000008 0.000461 0.000679

Pc|0.000000 0.000000 256 0.000000 0.000000 0.000009 0.000660 1 Static 0.001082

SlicedCellPairTr|0.000000 0.000000 256 0.000000 0.000000 0000023 0.001294 1 Static 000359
LinkedCells:get|0.000000 0.000000 256 0.000000 0000297 0.000022 0.000854 1 static 0001310
LinkedCells:get| 0.000000 0.000000 256 0.000000 0000235 0000013 0000667 1 Static 0001025
VelocityScalingT 0.000000 0.000000 256 0.000000 0.000000 0.000003 0.000339 1 Static 0.000553
Leapfrog::transi| 0.000000 0.000000 256 0.000000 0.000000 0.000001 0.001006 1 Static 0.001571
LinkedCells:del|0.000000 0.000000 256 0.000000 0000000 0000173 0.000379 1 Static 0000552
Simulation::upd|0.000000 0.000000 256 0.000000 0.000000 0.004387 0.006565 1 Static 0010952
LinkedCells:get| 0.000000 0.000000 256 0.000000 0000323 0000165 0000951 1 static 0001440
VectorizedCellP | 0.000000 0.000000 256 0.000000 0000524 0.000308 0.000985 1 static 0001817
Co8CellPairTrav| 0.000000 0.000000 256 0.000000 0.003310 0.000248 3.119357 1 Static 3.122916
LinkedCells::und 0.000000 0.000000 256. 0.000000 0.000000. 0.005464 0.021891 1 Static. 0.027355
Threadno | Thread 1d Idle Time (secs) ¥ Sync Time (secs) Overhead Time (secs) Work Time (secs)

0 130067 0.000000 0.000000 0000028 0.000458

1 130073 0.000000 0.000000 0.000003 0.000556

2 130074 0.000000 0.000000 0.000002 0.000298

3 130075 0.000000 0.000000 0.000001 0.000199

4 130076 0.000000 0.000000 0.000004 0.000267

5 130077 0.000000 0.000000 0000003 0.000599

6 130078 0.000000 0.000000 0000001 0.000482

7 130079 0.000000 0.000000 0000001 0000288

8 130080 0.000000 0.000000 0000001 0.000384

9 130081 0.000000 0.000000 0.000002 0.000669

10 130082 0000000 0.000000 0.000002 0.000209

Figure 54. HPC - Parallel Regions

8.2.2 Profiling OpenMP Application Using CLI

Collect Profile Data
Use the following command to profile an OpenMP application using AMD uProf CLI:

$./AMDuUProfCLI collect --trace openmp --config tbp -o /tmp/myapp_perf <openmp-app>

While performing the regular profiling, add option --trace openmp or --omp to enable OpenMP
profiling. This command will launch the program and collect the profile data required to generate the
OpenMP analysis report.

Modes of tracing OpenMP events are:

» Full Tracing: All the OpenMP events are traced in full tracing. Use the following command to
perform full OpenMP tracing:
./AMDUProfCLI collect --trace openmp=full -o /tmp/myapp_perf <openmp-app>

» Basic Tracing: Only the events which are required for the high level report generation are traced.
The size of trace data collected is less as compared to the full tracing mode. This is the default
mode. Use the following command to perform basic OpenMP tracing:

./AMDUProfCLI collect --trace openmp=basic -o /tmp/myapp_perf <openmp-app>
Generate Profile Report
You can generate a CSV report using the AMDuProfcLI report command. Any additional option is not

required for the OpenMP report generation. AMD uProf checks for the availability of any OpenMP
profiling data and includes it in the report if available.

162 Performance Analysis (Linux) Chapter 8

AMDA1

57368 Rev.4.2 January 2024

AMD uProf User Guide

The following command will generate a CSV report in /tmp/myapp_perf/<SESSION-DIR>/

report.csv:

$./AMDuUProfCLI report -i /tmp/myapp_perf/<SESSION-DIR>

An example of the OpenMP report section in the CSV file is as follows:

OpenMP TRACING REPORT
(Time/durations are in seconds.)

OpenMP OVERVIEW {PID-27842)

Total Time 2.37
Parallel Time 2.36
Serial Time 0.01
Parallel Time % 99.78
Max cores utilized 6
Total threads created 4

OpenMP PARALLEL-REGION METRIC (PID-27842)

OpenMP THREAD METRIC (collatz_sequence_computeSompSparallel_for:a@collatz-sequence-omp-10pr.c:34)

Region Imbalance Time Imbalance Time(%)

collatz_sequence_compute$ompsparallel_for:4@callatz-sequence-omp-10pr.c:34 0.000007 0.001417
collatz_sequence_computeSompSparallel_for:d@callatz-sequence-omp-10pr.c:34 0.000005 0.001008
collatz_sequence_computeSompSparallel_for:d@callatz-sequence-omp-10pr.c:34 0.000006 0.001224
collatz_sequence_computeSompSparallel_for:4@collatz-sequence-omp-10pr.c:34 0.000009 0.001862
collatz_sequence_computeSompSparallel_for:d@collatz-sequence-omp-10pr.c:34 0.000239 0.050082

Threads

ERE S

Idle Time Sync Time Overhead Work Timi Loop Chur Schedule Elapsed Time

0.000007
0.000005
0.000006
0.000009
0.000239

=]

0
4]
0
0

0.025989
0.023332
0.023204

0.0233
0.021354

0.450394
0.447506
0.446558

0.44654
0.456124

1 Static
1 Static
1 Static
1 Static
1 Static

0.476391
0.471243
0.469768
0.469843
0.477718

ThreadNum

ThreadNum

ThreadNum

Threadid

W e o

Threadid

W e o

Threadid
0

Idle Time Sync Time Qverhead Work Time
27842 0 0 0.064491 0.411899
27845 0.00001 0 0.026767 0.449614
27846 0.000008 0 0.012695 0.463688
27847 0.000009 0 0.000005 0.476377

OpenMP THREAD METRIC (collatz_sequence_computeSompSparallel_for:4@collatz-seguence-omp-10pr.c:34)

Idle Time Sync Time Overhead Work Time
27842 0 0 0.060944 0.410298
27845 0.000007 0 0.023169 0.448067
27846 0.000006 0 0.009212 0.462025
27847 0.000006 0 0.000005 0.471232

OpenMP THREAD METRIC (collatz_sequence_computeSompSparallel_for:d@collatz-sequence-omp-10pr.c:34)

Idle Time
27842 0

Sync Time Overhead Work Time
0 0.080453 0.409315

Figure 55. An OpenMP Report

Chapter 8

Performance Analysis (Linux)

163

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

It has following sub-sections:
* OpenMP OVERVIEW

* OpenMP PARALLEL-REGION METRIC helps in understanding the imbalanced region, that
is, a region with less total work time with respect to its total time. It has the following columns:

Imbalance Time: Total idle time spent by all the threads of the parallel region, normalized by
the number of threads.

Imbalance Time (%): Percentage of the imbalance time with respect to the total time spent in
the parallel region.

Threads: Number of threads in the parallel region.

Avg Idle Time: Average time spent by the parallel region threads waiting at the barrier for other
threads to complete.

Avg Sync Time: Average time spent by the parallel region threads waiting on the
synchronization locks to acquire the shared resource.

Avg Overhead Time: The thread management overhead.
Avg Work Time: Average time spent by the parallel region threads working.
Loop Chunk Size: Number of loop iterations scheduled for a chunk.

Schedule Type: Specifies how iterations of associated loops are divided into chunks and how
these chunks are distributed among threads.

Elapsed Time: Time spent in the parallel region.

* OpenMP THREAD METRIC helps in understanding how each thread spent its time in the
parallel region. If a thread spends too much time on non-work activity, the parallel region should
be optimized further to improve the work time of each thread in that region. It has the following
columns:

ThreadNum: Serial number of the thread.
Threadld: Thread identifier.
Idle Time: Time spent by the thread waiting at the barrier for other threads to complete.

Sync Time: Time spent by the thread waiting on the synchronization locks to acquire the shared
resource.

Overhead Time: Thread management overhead.
Work Time: Time spent by the thread working.

OpenMP trace data can be collected in Linux and the session can be imported to GUI or CLI on

Windows.
8.2.3 Environment Variables
AMDUPROF_MAX PR _INSTANCES — Set the max number of parallel regions to be traced. The
default value is 2000.
164 Performance Analysis (Linux) Chapter 8

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

8.2.4 Limitations

The following features not supported in this release:
* OpenMP profiling with system-wide profiling scope.

* Loop chunk size and schedule type when the parameters are specified using schedule clause. In
such as case, it shows the default values (1 and Static).

* Nested parallel regions.

* GPU offloading and related constructs.

» Callstack for individual OpenMP threads.

* OpenMP profiling on Windows and FreeBSD platforms.
* Applications with static linkage of OpenMP libraries.

+ Attaching to running OpenMP application.

8.3 MPI Profiling

The MPI programs launched through mpirun or mpiexec launcher programs can be profiled by AMD
uProf. To profile the MPI applications and analyze the data, complete the following the steps:

1. Collect the profile data using CLI collect command.

2. Process the profile data using CLI translate command which will generate the profile database.
3. Import the profile database in the GUI or generate the CSV report using CLI report command.
4

. Multiple ranks profiling requires higher limit to be set for memory locking using one of the
following methods:

— Increase the memory lock limit using the command ulimit -1, depending on the number of
ranks to be profiled on the target node.

— Set proc/sys/kernel/perf event paranoid to -1 or higher value based on the profile config and
scope.

— Perform MPI profiling with root privilege.

5. Multiple ranks profiling might require a high number of file descriptors. If the file descriptor limit
is reached during profile data collection, an error message will be displayed. You can increase this
limit in the file /etc/security/limits.conf.

6. For Multiple ranks profiling, if the /proc/sys/kernel/perf event paranoid value is greater than -1,
you must increase the /proc/sys/kernel/perf event mlockb value depending on the number of
ranks to profile. Alternatively, you can also use the -m option to decrease the number of memory
data buffer pages used by each instance of AMDuProfCLI.

Chapter 8 Performance Analysis (Linux) 165

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Support Matrix

The MPI profiling supports the following components and the corresponding versions:
Table 46. MPI Profiling Support Matrix

Component Supported Versions
MPI Spec MPI v3.1
MPI Libraries Open MPI v4.1.2
MPICH v4.0.2

ParaStation MPI v5.4.8

Intel® MPI 2021.1

0S Ubuntu 18.04 LTS, 20.04 LTS, and 22.04 LTS
RHEL 8.6 and 9

CentOS 8

8.3.1 Collecting Data Using CLI

The MPI jobs are launched using MPI launchers such as mpirun and mpiexec. You must use
AMDuProfCLI to collect the profile data for an MPI application.

The MPI job launch through mpirun uses the following syntax:

$ mpirun [options] <program> [<args>]

AMDuProfCLI is launched using <program> and the application is launched using the

AMDuProfCLI's arguments. So, use the following syntax to profile an MPI application using
AMDuProfCLI:

$ mpirun [options] AMDuProfCLI [options] <program> [<args>]
The MPI profiling specific AMDuProfCLI options:

* The --mpi option is to profile MPI application. The AMDuProfCLI will collect some additional
meta data from MPI processes.

* --output-dir <output dir> specifies the path to a directory in which the profile files are saved. A
session directory will be created within the <output dir> containing all the data collected from all
the ranks.

A typical command uses the following syntax:

$ mpirun -np <n> /tmp/AMDuProf/bin/AMDuProfCLI collect

--config <config-type> --mpi --output-dir <outpit_dir> [mpi_app] [<mpi_app_options>]

If an MPI application is launched on multiple nodes, AMDuProfCLI will profile all the MPI rank
processes running on all the nodes. You can either analyze the data for processes ran on one/many/all
node(s).

166 Performance Analysis (Linux) Chapter 8

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Method 1 - Profile All the Ranks On Single/Multiple Node(s)

To collect profile data for all the ranks running on a single node, execute the following commands:

$ mpirun -np 16 /tmp/AMDuProf/bin/AMDuProfCLI collect --config tbp
--mpi --output-dir /tmp/myapp-perf myapp.exe

To collect profile data for all the ranks in multiple nodes, use the options -H / --host mpirun or specify
-hostfile <hostfile>:

$ mpirun -np 16 -H hostl,host2 /tmp/AMDuProf/bin/AMDuProfCLI collect
--config tbp --mpi --output-dir /tmp/myapp-perf myapp.exe

Method 2 - Profiling Specific Rank(s)
To profile only a single rank running on host2, execute the following commands:

$ export AMDUPROFCLI_CMD=/tmp/AMDuProf/bin/AMDuUProfCLI collect --config tbp --mpi --output-dir
/tmp/myapp-perf
$ mpirun -np 4 -host hostl myapp.exe : -host host2 -np 1 $AMDUPROFCLI_CMD myapp.exe

To profile only a single rank in setup where 256 ranks running on 2 hosts (128 ranks per host):

$ mpirun -host host1:128 -np 1 $AMDUPROFCLI_CMD myapp.exe : -host host2:128,host1:128 -np 255
--map-by core myapp.exe

Method 3 — Using MPI Config File

The mpirun also takes config file as an input and the AMDuProfCLI can be used with the config file
to profile the MPI application.

Config file (myapp_config):

#MPI - myapp config file

-host hostl -n 4 myapp.exe

-host host2 -n 2 /tmp/AMDuProf/bin/AMDuProfCLI collect --config tbp --mpi \
--output-dir /tmp/myapp-perf myapp.exe

To run this config to collect data only for the MPI processes running on host2, execute the following
command:

$ mpirun --app myapp_config

8.3.2 Analyzing the Data with CLI

The data collected for MPI processes can be analyzed using the CSV reported by the AMDuProfCLI
report command. The generated reported is saved to the file report.csv in the <output-dir>/
<SESSION-DIR> folder.

Following are the reporting options for the CLI:

* Generate a report for all the MPI processes ran on the localhost (for example, hostl) in which the
MPI launcher was launched (using the new option --input-dir):

$ AMDuProfCLI report --input-dir /tmp/myapp-perf/<SESSION-DIR> --host hostl

Option --host is not mandatory to create the report file for the localhost.

Chapter 8 Performance Analysis (Linux) 167

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

* Generate a report for all the MPI processes ran on another host (for example, host2) in which the
MPI launcher was not launched:

$ AMDUProfCLI report --input-dir /tmp/myapp-perf/<SESSION-DIR> --host host2
* Generate a report for all the MPI processes ran on all the hosts:

$ AMDUProfCLI report --input-dir /tmp/myapp-perf/<SESSION-DIR> --host all

8.3.3 Analyze the Data with GUI

To analyze the profile data in the GUI, complete the following steps:
1. To generate the profile database, refer “Analyzing the Data with CLI” on page 167.
2. To import the profile database, refer “Importing Profile Database” on page 72.

8.34 Limitations

The MPI environment parameters such as Total number of ranks and Number of ranks running
on each node are currently supported only for OpenMPI. MPI profiling with system-wide profiling

scope is not supported.

8.4 Profiling Support on Linux for perf event paranoid

Values

Following table describes profiling support on Linux for different perf event paranoid values:

Table 47. Profiling perf_event_paranoid Values on Linux
perf_event paranoid Values
Config Profile Scope
-1 0 1 2
Time Based Profiling Specific Application or Y Y Y
Process
Time Based Profiling Kernel, Hypervisor Y Y N
Time Based Profiling Entire System Y Y N
Core PMC Event Based Specific Application or Y Y Y
Profiling Process
Core PMC Event Based Kernel, Hypervisor Y Y N
Profiling
Core PMC Event Based Entire System Y Y N
Profiling
Instruction Based Sampling Specific Application or Y Y N
Process
Instruction Based Sampling Entire System Y Y N
168 Performance Analysis (Linux) Chapter 8

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

8.5 Profiling Linux System Modules

To attribute the samples to the system modules (for example, glibc and libm), AMD uProf uses the
corresponding debug info files. The Linux distros do not contain the debug info files, but most of the
popular distros provide options to download the debug info files.

Refer the following resources for more information on how to download the debug info files:
» Ubuntu (https://wiki.ubuntu.com/Debug%20Symbol%20Packages)

* RHEL/CentOS (https://access.redhat.com/documentation/en-US/Red _Hat Enterprise Linux/7/
html/Developer Guide/intro.debuginfo.html)

Ensure that you download the debug info files for the required system modules for the required Linux
distros before starting the profiling.

8.6 Profiling Linux Kernel

To profile and analyze the Linux kernel modules and functions, do the following:
1. Enable the kernel symbol resolution.
2. Do one of the following:

— Download and install kernel debug symbol packages and source.
— Build Linux kernel with debug symbols.

After the kernel debug info is available in the default path, AMD uProf automatically locates and
utilizes that debug info to show the kernel sources lines and assembly in the source view.

Supported OS: Ubuntu 18.04 LTS, Ubuntu 20.04 LTS, RHEL 7, and RHEL 8

8.6.1 Enabling Kernel Symbol Resolution

To attribute the kernel samples to appropriate kernel functions, AMD uProf extracts required
information from the /proc/kallsyms file. Exposing the kernel symbol addresses through /proc/
kallsyms requires setting of the appropriate value to the /proc/sys/kernel/kptr restrict file as follows:

» Set /proc/sys/kernel/perf event paranoid to -1.
» Set /proc/sys/kernel/kptr_restrict to an appropriate value as follows:

— 0: The kernel addresses are available without any limitations.
— 1: The kernel addresses are available if the current user has a CAP_SYSLOG capability.
— 2: The kernel addresses are hidden.

Chapter 8 Performance Analysis (Linux) 169

https://wiki.ubuntu.com/Debug Symbol Packages
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/intro.debuginfo.htm

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Set the perf_event_paranoid value using one of the following:

$ sudo echo -1 > /proc/sys/kernel/perf_event_paranoid
or

$ sudo sysctl -w kernel.perf_event_paranoid=-1
Set the kptr_restrict value using one of the following:

$ sudo echo @ > /proc/sys/kernel/kptr_restrict
or

$ sudo sysctl -w kernel.kptr_restrict=e

8.6.2 Downloading and Installing Kernel Debug Symbol Packages

On a Linux system, the /boot directory either contains the compressed vmlinux or uncompressed
vmlinux image. These kernel files are stripped, have no symbol and debug information. If there is no
debug information, AMD uProf will not be able to attribute samples to kernel functions and hence, by
default, AMD uProf cannot report kernel functions.

Some Linux distros provide debug symbol files for their kernel which can be used for profiling
purposes.

Ubuntu

Complete the following steps to download kernel debug info and source code on Ubuntu systems
(verified on Ubuntu 18.04.03 LTS):

1. To trust the debug symbol signing key, execute the following commands:

// Ubuntu 18.04 LTS and later:

$ sudo apt install ubuntu-dbgsym-keyring

// For earlier releases of Ubuntu:

$ sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys
F2EDC64DC5AEE1F6BO9C621FOC8CAB6595FDFF622

2. Add the debug symbol repository as follows:

$ echo "deb http://ddebs.ubuntu.com $(1sb_release -cs) main restricted universe multiverse
deb http://ddebs.ubuntu.com $(1sb_release -cs)-security main restricted universe multiverse
deb http://ddebs.ubuntu.com $(1sb_release -cs)-updates main restricted universe multiverse
deb http://ddebs.ubuntu.com $(1sb_release -cs)-proposed main restricted universe multiverse"
\

sudo tee -a /etc/apt/sources.list.d/ddebs.list

3. Retrieve the list of available debug symbol packages:
$ sudo apt update
4. Install the debug symbols for the current kernel version:

$ sudo apt install --yes linux-image-$(uname -r)-dbgsym

170 Performance Analysis (Linux) Chapter 8

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

5. Download the kernel source

$ sudo apt source linux-image-unsigned-$(uname -r)

or

$ sudo apt source linux-image-$(uname -r)
After the kernel debug info file is downloaded, it can be found at the default path:
8 /usr/lib/debug/boot/vmlinux- ‘uname -r’
RHEL

Follow the steps in Red Hat knowledgebase (Attps://access.redhat.com/solutions/9907) to download
the RHEL kernel debug info.

After the kernel debug info file is downloaded, it can be found at the default path:
8 /usr/lib/debug/lib/modules/ uname -r’/vmlinux

8.6.3 Build Linux kernel with Debug Symbols

If the debug symbol packages are not available for pre-built kernel images, then analyzing the kernel
functions at the source level requires a recompilation of the Linux kernel with debug flag enabled.

8.6.4 Analyzing Hotspots in Kernel Functions

If the debug info for the kernel modules is available, any subsequent CPU performance analysis will
attribute the kernel space samples appropriately to [vmlinux] module and display the hot kernel
functions. Otherwise, kernel samples will be attributed to [kernel.kallsyms] text module.

During the hotspot analysis, do consider the following:

* Ifyou see [vmlinux] module, then you should be able to analyze the performance data for kernel
functions in the Source view and IMIX view in the GUI. The CLI should also be able to generate
source level report and IMIX report for the kernel.

» If the source is downloaded and copied to the expected path, then you should be able to see the
kernel source lines in GUI and CLI.

» Passing of kernel debug file path and passing of kernel source path is not recommended as that
might lead to performance issues.

8.6.5 Linux Kernel Callstack Sampling

In System-wide profile, the callstack samples can be collected for kernel functions. For example, the
following command will collect the kernel callstack:

AMDUProfCLI collect -a -g -o /tmp/usr/bin/stress-ng --cpu 8 --io 4 --vm 2 --vm-bytes 128M --
fork 4 --timeout 20s

Chapter 8 Performance Analysis (Linux) 171

https://access.redhat.com/solutions/9907

AMDZ\
AMD uProf User Guide 57368 Rev.4.2 January 2024

8.6.6 Constraints

* Do not move the downloaded kernel debug info from its default path.

+ If'the kernel version gets upgraded, then download the kernel debug info for the latest kernel
version. AMD uProf would not show correct source and assembly if there is any mismatch
between kernel debug info and kernel version.

* While profiling or analyzing kernel samples, do not reboot the system in between. Rebooting the
system would cause the kernel to load at a different virtual address due to the KASLR feature of
Linux kernel.

» The settings in the /proc/sys/kernel/kptr_restrict file enables AMD uProf to resolve kernel
symbols and attribute samples to kernel functions. It does not enable the source and assembly
level, call-graph analysis.

8.7 Kernel Block I/0 Analysis

The Linux OS block I/O calls like insert, issue, and complete can be traced to provide the various
metrics related to I/O operations performed by the application.

Table 48. 1/0 Operations

Category Event Description

OS and Runtime diskio To trace the block I/O operations when the application is running.

This analysis can be used to analyze:

» Time taken to complete the I/O operations

* IOPS - Number of block I/O operations per second
* Read or Write bytes of block I/O operation

* Block I/O bandwidth

Note: The kernel can continue to perform the queued 1/0 requests submitted by the profiled
application, even after the application exits. So, it is recommended to use system-wide tracing
for this analysis.

Prerequisites

For tracing OS events and runtime libraries:

* Requires Linux kernel 4.7 or later (it is recommended to use kernel 4.15 or later).
* Root access is required to trace the OS events in Linux.

+ To install BCC and eBPF scripts, refer section “Installing BCC and eBPF” on page 7. To validate
the BCC Installation, run the script sudo AMDuProfVerifyBpfiInstallation.sh.

172 Performance Analysis (Linux) Chapter 8

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

8.7.1 Kernel Block I/0 Analysis Using CLI

The AMDuProfCLI can be used to collect the required trace data and generate the report in .csv
format for further analysis. The processed profile data can also be imported in GUI.

Collect Profile Data

Example CLI command to trace block I/O operations along with time-based sampling:

$ sudo AMDuProfCLI collect --config tbp -trace os=diskio -o /tmp/blockio-analysis/ /usr/bin/
fio ...

Generated data files path: /tmp/blockio-analysis/AMDuProf-fio-OsTrace_Dec-09-2021 12-19-27

This command will launch the program and collect the profile and trace data. Once the launched
application is executed, the AMDuProfCLI will display the session directory path in which the raw
profile and trace data are saved.

In the above example, the session directory path is:
/tmp/blockio-analysis/AMDuProf-fio-OsTrace_Dec-09-2021 12-19-27/
Generate Profile Report

Use the following CLI report command to generate the profile report in .csv format by passing the
session directory path as the argument to -i option:

$./AMDuUProfCLI report -i /tmp/blockio-analysis/AMDuProf-fio-OsTrace_Dec-09-2021 12-19-27

Generated report file: /tmp/blockio-analysis/AMDuProf-fio-OsTrace_Dec-09-2021 12-19-27/
report.csv

After processing the data and generating the report, the report file path is displayed on the terminal.
An example of the disk I/O report section in the .csv report file is as follows:

MONITORED EVENTS

0S Trace Events: Name Threshold Description

DISKIO 0 Disk 1/0 tracing
OS TRACING REPORT
DISK |0 SUMMARY
Device Access Count 10PS Total Reac Total Write (Total Read S Total Write Si Avg 10 Latenc Read Bandwidi Write Bandwidth(MBPS)
/dev/nvmeOn1 24672 498 25 24647 0.1024 25797.4 220.256 0.00206889 521.213
Jdev/sda 150 3 18 127 3.31776 2.77299 4.50939 0.0674576 0.056381
/dev/sdb 5 384 0 0 0 0 2.52706 0 0
DISK 10 SUMMARY (PROCESS)
Process Device Access Count 10PS Total Read C« Total Write Total Read Siz Total Write Si Avg |0 Latency(msec)
fusr/bin/fio(102146) "/dev/nvme0On1" 25 907 25 0 0.1024 0 0.321129
Jusr/bin/fic(102146) "/dev/sda" 18 0 18 0 3.31776 0 23.9266

Figure 56. Disk I/O Summary Tables

Analyze Trace Data with GUI

To visualize the trace data collected using CLI, the collected raw profile and trace data should be
processed using CLI translate command and then it can be imported in the GUI.

Chapter 8 Performance Analysis (Linux) 173

AMDZ\
AMD uProf User Guide 57368 Rev.4.2 January 2024

Use the following CLI translate command invocation to process the raw trace records saved in the
corresponding session directory path:

$./AMDuUProfCLI translate -i /tmp/blockio-analysis/AMDuProf-classic-OsTrace_Dec-09-2021 12-19-
27
Translation finished

Then import this session in the GUI by specifying the session directory path in Profile Data File text
input box in the HOME > Import Session view. This will load the profile data saved in the session
directory for further analysis.

Navigate to the ANALYZE page and then select Disk I/0 Stats in the vertical navigation bar as
follows:

Pa] AMDuProf - [C\Users\amd\AMDuPr..c-20-2021_22-25-14] - [m] X

L. PROFILE ANALYZE

Disk I/0 Stats Access Count 10PS Total Read Cou; Total Write Count | Total Read Size{ Total Write Size(MBi Avg
24672 4358 25 24647 0.102 25797.431 220|

/dev/sda 150 3 18 127 3.318 2,773 4.5
Idev/sdb 5 384 0 0 0.000 0.000 2.5

/dev/nvmeOn1

Figure 57. ANALYZE - Block I/O Stats

In the above figure, the table shows various block I/O statistics at the device level.

8.8 GPU Offloading Analysis (GPU Tracing)

GPU offloading analysis is used to explore the traces of the function calls for a GPU compute-
intensive application.

The AMD ROCtracer library provides support to capture the runtime APIs and GPU activities such as
data transfer and kernel execution. This analysis helps to visualize the ROCr, HIP API calls, and GPU
activities when a HIP based application is running. It is supported only with a launch application.

Supported Interfaces

AMD uProf supports tracing the following ROCr runtime APIs, GPU activities, and to show the data
in GUI timeline view:

Table 49. Supported Interfaces for GPU Tracing

Category Event Description
GPU hip HIP runtime trace
GPU hsa AMD ROCr runtime trace

174 Performance Analysis (Linux) Chapter 8

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Prerequisites
For tracing ROCr, HIP APIs, and GPU activities:

* Requires AMD ROCm 5.5 to be installed. For the steps to install AMD ROCm, refer section
“Installing ROCm” on page 6.

Note: Tracing might not work as expected on '5.2.1 or older' versions.

* Support accelerators - AMD Instinct™ MI100 and MI200
Optional Settings
By default, AMDuProf uses the:

* ROCm version pointed by /opt/rocm/ symbolic link. To specify the rocm path, you must export it
using AMDUPROF_ROCM_PATH before launching AMD uProf.

Example:
export AMDUPROF_ROCM_PATH=/opt/rocm-5.5.0/

* ROCm libraries from /opt/rocm/lib. If AMDUPROF ROCM_PATH is specified, the specified
path or library will be used. To change this path, you must export it using
AMDUPROF ROCM LIB PATH before launching AMD uProf.

Example:

export AMDUPROF_ROCM_LIB PATH=/opt/rocm-5.5.0/1ib

8.8.1 GPU Offload Analysis Using CLI

The AMDuProfCLI can be used to collect the required trace data and generate the report in .csv
format for further analysis. The processed profile data can also be imported in GUI.

Collect Profile Data

The CLI has an option --trace to specify the GPU events and runtime libraries to be traced. For HIP
based applications, example CLI command to trace ROCr, HIP APIs, and GPU activity along with
time-based sampling for performing GPU offload analysis:

$ sudo AMDuProfCLI collect --config tbp --trace gpu -o /tmp/gpu-analysis/ /home/app/SampleApp

Generated data files path: /tmp/gpu-analysis/AMDuProf-SampleApp-GpuTrace_ Dec-09-2021 12-19-27

This command will launch the program and collect the profile and trace data. Once the launched
application is executed, the AMDuProfCLI will display the session directory path in which the raw
profile and trace data are saved.

In the above example, the session directory path is:
/tmp/gpu-analysis/AMDuProf-SampleApp-GpuTrace Dec-09-2021 12-19-27/

The behavior is undefined when the GPU profile collection is interrupted or the launch application is
killed from other terminal.

Chapter 8 Performance Analysis (Linux) 175

AMDA1

AMD uProf User Guide

Generate Profile Report

57368 Rev.4.2 January 2024

Use the following CLI report command to generate the profile report in .csv format by passing the
session directory path as the argument to -i option:

$./AMDuUProfCLI report -i /tmp/gpu-analysis/AMDuProf-SampleApp-GpuTrace_Dec-09-2021 12-19-27

oo

Generated report file: /tmp/gpu-analysis/AMDuProf-SampleApp-OsTrace_Dec-09-2021_12-19-27/

report.csv

After processing the data and generating the report, the report file path is displayed on the terminal.
An example of the GPU trace report section in the .csv report file is as follows:

GPU TRACING REPORT

KERNEL SUMMARY

Name Count
JacobilterationKernel(int, double, do
NormKernel1(int, double, double, do
LocallaplacianKernel(int, int, int, dot
HalolaplacianKernel(int, int, int, dou
NormKernel2(int, double const®, dot

DATA TRANSFER SUMMARY

Name Count
CopyHostToDevice

CopyDeviceToHost

FillBuffer

HIP APl SUMMARY

Name Count
hipMemepy
hipLaunchKernel
hipMemset
hipEventRecord
hipEventElapsedTime
hipStreamCreate
hipDeviceSynchronize
__hipPushCallConfiguration
__hipPopCallConfiguration
hipStreamSynchronize

HSA APl SUMMARY

Name Count
hsa_signal_wait_scacquire
hsa_system_get_info
hsa_amd_profiling_get_dispatch_tin

1000
1001
1000
1000
1001

a
1001

1005
5002

2000
1000

1001
5002
5002
2000

4035
44090
7003

Elapsed Time(secon Avg Elapsed Time(Elapsed Time(% From Total AP| Elapsed Time)

0.549017 0.000549017
0.470506 0.000470036
0.270641 0.000270641
0.015341 1.53E-05
0.00334609 3.34E-06

41.9465
35.948
20.6777
1.1721
0.255651

Elapsed Time(secon Avg Elapsed Time(Elapsed Time(% From Total AP| Elapsed Time)

0.00478305 0.00119576
0.00398993 3.99E-06
6.08E-06 6.08E-06

54.4825
45,4482
0.0692557

Elapsed Time(secon Avg Elapsed Time(Elapsed Time(% From Total AP| Elapsed Time)

0.920585 0.000916005
0.282263 5.64E-05
0.266986 0.266986
0.143416 7.17E-05
0.0270553 2.71E-05
0.0174582 0.00872911
0.0161897 1.62E-05
0.00542041 1.08E-06
0.00519112 1.04E-06
0.00242338 1.21E-06

54.4886
16.7069
15.8026
8.48868
1.60138
1.03334
0.958252
0.320829
0.307257
0.143438

Elapsed Time(secon Avg Elapsed Time(Elapsed Time(% From Total API Elapsed Time)

0.346774 8.59E-05
0.0470886 1.07E-06
0.0404551 5.78E-06

Figure 58. GPU Tracing Report

For more information on GPU tracing from GUI, refer to the section 7.8.1.

55.7946
7.57638
6.50908

176

Performance Analysis (Linux)

Chapter 8

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

8.9 GPU Profiling

The AMD ROCprofiler library provides support to monitor GPU hardware performance events when
GPU kernels are dispatched and executed. The derived performance metrics are computed and
reported in the CSV report. It is supported only with a launch application.

Prerequisites
For GPU performance profiling:

* Requires AMD ROCm 5.5 to be installed. For the steps to install AMD ROCm, refer section
“Installing ROCm™ on page 6

Note: Profiling might not work as expected on '5.2.1 or older' versions.

* Supported accelerators - AMD Instinct™ MI100 and MI200
Supported Events and Metrics

The following GPU performance metrics are supported. Run AMDuProfCLI info --list gpu-events
command to list the supported events on the target system.

The following table shows the list of supported events:
Table 50. Supported Events for GPU Profiling

Event Description

GRBM_COUNT GPU free running clock

GRBM_GUI ACTIVE GPU busy clock

SQ WAVES Count number of waves sent to SQs. (per-simd, emulated,
global)

TCC_HIT sum Number of cache hits.

TCC_MISS sum Number of cache misses. UC reads count as misses.

SQ INSTS VALU Number of VALU instructions issued. (per-simd, emulated)

SQ INSTS SALU Number of SALU instructions issued. (per-simd, emulated)

SQ INSTS SMEM Number of SMEM instructions issued (per-simd, emulated)

SQ _INSTS LDS Number of LDS instructions issued (including FLAT)
(per-simd, emulated)

SQ INSTS GDS Number of GDS instructions issued (per-simd, emulated)

TCC_EA RDREQ sum Number of TCC/EA read requests (either 32-byte or 64-byte)

TCC_EA RDREQ 32B sum Number of 32-byte TCC/EA read requests

SQ ACTIVE INST VALU Number of cycles the SQ instruction arbiter is working on a
VALU instruction (per-simd, nondeterministic)

SQ THREAD CYCLES VALU Number of thread-cycles used to execute VALU operations
(per-simd)

Chapter 8 Performance Analysis (Linux) 177

AMDA1

AMD uProf User Guide 57368 Rev.4.2

Table 50. Supported Events for GPU Profiling

January 2024

Event Description

TA_FLAT READ WAVEFRONTS sum | Number of flat opcode reads processed by the TA

TA_FLAT WRITE WAVEFRONTS sum | Number of flat opcode writes processed by the TA

The following table shows the list of supported metrics:
Table 51. Supported Metrics for GPU Profiling

Metric Description
GPU_UTIL (%) GPU utilization in percentage
VALU UTIL (%) VALU utilization in percentage
VALU THREAD DIVERGENCE (%) Average VALU thread divergence in percentage
L2 CACHE HIT RATE (%) Average L2 cache hit rate in percentage
VALU INSTR (IPW) Average number of VALU instructions per wave
SALU_INSTR (IPW) Average number of SALU instructions per wave
SMEM INSTR (IPW) Average number of SMEM instructions per wave
LDS INSTR (IPW) Average number of LDS instructions per wave
GDS _INSTR (IPW) Average number of GDS instructions per wave
L2 CACHE HITS (PW) Average number of L2 cache hits per wave
L2 CACHE MISSES (PW) Average number of L2 cache misses per wave
EA 32B _READ (PW) Average number of 32-byte reads per wave
EA 64B_READ (PW) Average number of 64-byte reads per wave
EA READ BW (GB/sec) Read Bandwidth in GB per second

8.9.1 GPU Profiling Using CLI

Collect Profile Data

Use the following command to collect the GPU performance data:

$ sudo AMDuProfCLI collect --config gpu -o /tmp/ /home/app/SampleApp

Generated data files path: /tmp/AMDuProf-SampleApp-GPUProfile_Dec-09-2021_12-19-27

This command will launch the program and collect the profile data. Once the launched application is
executed, the AMDuProfCLI will display the session directory path in which the raw profile data are

saved.
In the above example, the session directory path is:
/tmp/AMDuProf-SampleApp-GPUProfile Dec-09-2021 12-19-27/

178 Performance Analysis (Linux)

Chapter 8

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

The behavior is undefined when the GPU profile collection is interrupted or the launch application is
killed from other terminal.

Generate Profile Report
Use the following CLI report command to generate the profile report in .csv format by passing the
session directory path as the argument to -i option:

$./AMDuUProfCLI report -i /tmp/AMDuProf-SampleApp-GPUProfile_Dec-09-2021_12-19-27

Generated report file: /tmp/AMDuProf-SampleApp-GPUProfile Dec-09-2021 12-19-27/report.csv

After processing the data and generating the report, the report file path is displayed on the terminal.
An example of the GPU profile report section in the .csv report file is as follows:
GPU PROFILE REPORT

KERMEL STATS

MName Count Elapsed Time(: Avg Elapsed Ti Elapsed TilEA_READ_ SMEM_INS VALU_UTILL2_CACHE_LDS_INSTR L2_CACHE
__amd_rocclr_fillBuffer.kd 4501 7.21947 0.00160397 26.9689 13.47 8.42 35.32 85.7 40.69 92.04
void bondedForceskernel< 501 1.06586 0.00212747 3.98161 4,19 9.43 26.62 88.92 152.42 289.41
void nonbondedForceKern 375 1.59328 0.00424873 5.95181 5.48 31.66 34.85 95.54 692.39 1488.8
void nonbondedForceKern 51 0.236248 0.00463232 0.882524 4.06 a7 44.75 96.92 1125.23 1478.37
void modifiedExclusionFor 501 1.43712 0.00286851 5.36848 20.75 27.98 34.41 95.09 625.03 1338.54
void nonbondedForceKern 75 0.513087 0.00684115 1.91668 20.42 33.08 34.19 96.46 940.82 1476.51
void scalar_sum_kernel<fl¢ 126 0.687552 0.00545676 2.56841 25.03 32.24 34.44 96.27 909.84 1424.5
void real_post_process_ke 126 0.280848 0.00222896 1.04913 12.35 8.07 28.92 85.83 110.48 223.82
reduceNonbondedVirialKe 501 2.38511 0.0047607 8.90978 24.41 7.44 38.35 42.89 37.75 56.76
buildBoundingBoxesKerne 51 0.0754965 0.00148032 0.282023 13.16 9.58 26.39 88.56 166.04 325.81
RAW EVENTS

Name GRBM_COUN GRBM_GUI_ACSQ_WAVES TCC_HIT_s TCC_MISS_SQ_INSTS_SQ_INSTS_SQ_INSTS_5Q_INSTS_SQ_INSTS_
__amd_rocclr_fillBuffer.kd 655979072 655940864 9127359 8.4E+08 1L4E+08 3.05E+09 9.57E+08 76825480 3.71E+08 o
void bondedForcesKernel 334267520 334267520 1257630 3.64E+08 45374256 1.44E+09 4.51E+08 11863202 1.92E+08 1]
void nonbondedForceKern 250795680 250795680 1218813 1.81E+09 B4609696 1.52E+10 1.67E+09 38583192 B8.44E+08 4]
void nonbondedForceKern 223318368 223318368 912751 1.35E+09 42918508 1.48E+10 2.85E+09 42899296 1.03E+09 1]
void modifiedExclusionFor 220224080 220224080 1102476 1.48E+09 76276864 1.21E+10 1.32E+09 30845012 6.89E+08 1]
void nonbondedForceKern 200330336 200330336 1105181 1.63E+09 59872448 1.59E+10 1.49E+09 36560968 1.04E+09 1]
void scalar_sum_kernel<flc 167502944 167502944 915902 1.3E+09 50539992 1.27E+10 L1.19E+09 29525646 8.33E+08 1]
void real_post_process_ke 159802036 159802096 826017 1.85E+03 30512964 7.47E+03 2.44E+08 6665629 91260560 1]
reduceMonbondedVirialKe 109840608 109840608 798817 45339272 60364524 3.601E+08 1.32E+08 5944229 30156032 1]
buildBoundingBoxesKerne 96050120 96050120 336769 LI1E+08 14174039 4.27E+08 1.32E+08 3224846 55916176 4]
DISPATCH STATS

Mame Avg Grid Size Max Grid Size(Min Grid Size(' Avg Workg Max Work) Min Workg Avg LDS Al Max LDS A Min LDS Al Avg Scratc
void nonbondedForceKern 1145413.02 1165696 1055552 64 64 64 3072 3072 3072 16
void nonbondedForceKern 1033182.72 1165696 938496 64 64 64 2048 2048 2048 16
void nonbondedForceKern 1020388.69 1165696 938496 64 64 64 3072 3072 3072 16
void bondedForcesKernels 256904.81 365312 220480 64 64 64 512 512 512 0
void modifiedExclusionFor 73920 73920 73920 64 64 64 512 512 512 80
reduceNonbondedVirialKe 96665.8 96768 96256 256 256 256 512 512 512 76
void scalar_sum_kernel<fl¢ 65536 65536 65536 256 256 256 1536 1536 1536 0
void spread_charge_kerne 368896 368896 368896 128 128 128 2048 2048 2048 0

Figure 59. GPU Profile Report

Chapter 8 Performance Analysis (Linux) 179

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

8.10 Other OS Tracing Events

Apart from the OS events that are listed in section “Kernel Block I/0O Analysis™ on page 172,
following OS events can also be traced along with CPU sampling-based profiles:

Table 52. Supported Events for OS Tracing

Event Description
pagefault To trace the number of page faults.
memtrace To trace memory allocation and deallocation calls. By default, only memory allocations

that are >= 1KB are traced.
Note: This is supported only for application level tracing.

funccount Trace the functions provided with the option —--func.

Prerequisites

For tracing OS events and runtime libraries:

* Requires Linux kernel 4.7 or later (it is recommended to use kernel 4.15 or later).

* Root access is required to trace the OS events in Linux.

* To install BCC and eBPF scripts, refer section “Installing BCC and eBPF” on page 7. To validate
the BCC Installation, run the script sudo AMDuProfVerifyBpfInstallation.sh.

8.10.1 Tracing Page Faults and Memory Allocations Using CLI

The AMDuProfCLI can be used to collect the required trace data and generate the report in .csv
format for further analysis.

Collect Profile Data

The CLI has an option --trace to specify the OS events and runtime libraries to be traced. Example
CLI command to trace page faults and memory allocations along with time-based sampling for
performing holistic analysis:

$ sudo AMDuProfCLI collect --config tbp -trace os=pagefault,memtrace -o /tmp/ /home/app/classic

Generated data files path: /tmp/AMDuProf-classic-OsTrace Dec-09-2021 12-19-27

This command will launch the program and collect the profile and trace data. Once the launched
application is executed, the AMDuProfCLI will display the session directory path in which the raw
profile and trace data are saved.

In the above example, the session directory path is:

/tmp/AMDuProf-classic-OsTrace Dec-09-2021 12-19-27/Generate Profile Report

180 Performance Analysis (Linux) Chapter 8

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Use the following CLI report command to generate the profile report in .csv format by passing the
session directory path as the argument to -i option:

$./AMDuProfCLI report -i /tmp/AMDuProf-classic-OsTrace_Dec-09-2021_12-19-27

Generated report file: /tmp/AMDuProf-classic-OsTrace_Dec-09-2021 12-19-27/report.csv

After processing the data and generating the report, the report file path is displayed on the terminal.
An example of the GPU trace report section in the .csv report file is as follows:

MONITORED EVENTS

OS Trace Events: Name Threshold Description
PAGEFAULT 0 Page Faults for a process/thread
MEMTRACE 1024 bytes Dynamic Memory Allocation tracing

OS TRACING REPORT

PAGEFAULT SUMMARY

Process Thread User PF Count Kernel PF Count
fhomefamd/SamplePrograms/Scimai "ScimarkStable(196941)" 141 3

MEMORY ALLOC SUMMARY

Process Total Memory Allocated(Total Duration(sec Memory Allocati Memory Deallocation Count
S/home/amd/SamplePrograms/Scimai 0.097412 2.37E-05 7 6

Figure 60. Pagefault and Memory Allocation Summary
8.10.2 Tracing Function Call Count using CLI

funccount in OS Trace will count the functions of a module (Executable/Library or Kernel
Function). The maximum number of functions that can be traced in a single tracing is 1000.

For CLI options, refer to Table 27 on page 88.

An example of the function count report section in the .csv report file is as follows:

FUNCTION COUNT SUMMARY

Function Count Total Ti Min Ti Max Ti Avg Ti

main 1 575.689 575.689 575.689 575.689
kernel_measureMonteCarlo 1 529.388 529.388 529.388. 529.388
MonteCarlo_integrate 1 529.388 529.388 529.388 529.388
Random_nextDouble 536898960 294.149 5.10-07 0.000359381 5.48E-07
kernel_measureLU 1 13.4179 13.4179 13.4179 13.4179

FUNCTION COUNT DETAIL(From 0 To <5 Sec)
Function Process Thread Count Total Time(seconds) Min Time(seconds) Max Time(second Avg Time(seconds)
main i Linux_x64_Debug/Sci 118908) 1 575.689 575.689 575.689 575.689

FUNCTION COUNT DETAIL(From 5 To <10 Sec)

Function Process Thread Count Total Ti Min Ti Max Tit AvgTi
kernel_measureFFT i Linux_x64_Debug/ 118908) 1 869741 8.69741 869741 8.69741
RandomVector i Linux_x64_Debug/ 118908) 1 0.0020856 0.0020856 0.0020856 0.0020856
FFT_transform Linux_x64_Debug/ 118908) 1 0.000123624 0.000123624 0.000123624 0.000123624
FFT_transform_internal i Linux_x64_Debug/ 118908) 1 0.000117512 0.000117512 0.000117512 0.000117512
new_Random_seed Linux_x64_Debug/ 118908) 1 0.000100701 0.000100701 0.000100701 0.000100701
FUNCTION COUNT DETAIL{From 10 To <15 Sec)

Function Process Thread Count Total Ti Min Ti Max Tit AvgTi
FFT_transform_internal i Linux_x64_Debug/Sci 118908) a1 0.00456172 0.000100861 0.000171625 0000111262
FFT_transform Linux_x64_Debug/Sci 118908) 2 0.00273375 0.000101231 0.000173209 0.000113906
FFT_inverse i Linux_x64_Debug/Sci 118908) 18 0.00208564 0.000108716 0.00012703 0.000115869

Figure 61. Function Count Summary

Chapter 8 Performance Analysis (Linux) 181

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Examples:

» Collect the function count of malloc() from libc called by AMDTClassicMatMul-bin; libc will be
searched for in the default library paths:

$ AMDUProfCLI collect --trace os=funccount --func c:malloc -o /tmp/cpuprof-os
AMDTClassicMatMul-bin

* Collect context switches, syscalls, pthread API tracing, and function count of malloc() called by
AMDTClassicMatMul-bin:

$ AMDUProfCLI collect --trace os --func c:malloc -o /tmp/cpuprof-os AMDTClassicMatMul-bin

* Collect the count of malloc(), calloc(), and kernel functions that match the pattern 'vfs_read*'
system-wide:

$ AMDUProfCLI collect --trace os --func c:malloc,calloc,kernel:vfs _read* -o /tmp/cpuprof-os -
a -d 10

* (Collect the count of all the functions from AMDTClassicMatMul-bin:

$ AMDUProfCLI collect --trace os=funccount --func /home/amd/AMDTClassicMatMul-bin:—* -o /tmp/
cpuprof-os AMDTClassicMatMul-bin

For more information on GPU tracing from GUI, refer to the section 7.8.1.

8.11 MPI Trace Analysis

MPI trace analysis can be used to analyze; and compute the message passing load imbalance among
the ranks of a MPI application running on a cluster. It supports OpenMPI, MPICH, and their
derivatives.

The supported thread models are SINGLE, FUNNLED, and SERIALIZED. The profile reports are
generated for Point-to-Point and Collective API activity summary.

Fortran bindings are configured and built while compiling the MPI implementations. You can enable/
disable the Fortran bindings based on your need for Fortran language support.

Refer the following options to disable/enable the Fortran bindings:
* OpenMPI

--enable-mpi-fortran[=VALUE]
--disable-mpi-fortran

By default, OpenMPI will attempt to build all the 3 Fortran bindings: mpif.h, mpi module, and
mpi_f08 module.

« MPICH
--disable-fortran

By default, the Fortran bindings are enabled. You can use this option to disable it.

182 Performance Analysis (Linux) Chapter 8

AMDA1
AMD uProf User Guide

57368 Rev.4.2 January 2024

Support Matrix
Table 53. Support Matrix
Component Supported Versions
MPI Spec MPI v3.1
MPI Libraries | Open MPI v4.1.4, MPICH v4.0.3, ParaStation MPI v5.6.0, and Intel® MPI 2021.1
oS * Ubuntu: 18.04 LTS, 20.04 LTS, and 22.04.04 LTS
* RHEL: 8.6 and 9
* CentOS 8.4
Languages C, C++ and Fortran

Tracing Modes

The AMDuProf CLI supports the following 2 modes for MPI tracing:
* LWT - Light-weight tracing is useful for quick analysis of an application. The report gets

generated in .csv format on-the-fly during collection stage.

* FULL — Full tracing is useful for in-depth analysis. This mode requires post-processing for report
generation in .csv format .

MPI Implementation Support
AMD uProf supports tracing of Open MPI and MPICH and the derivatives:

* --trace mpi=mpich for MPICH and derivatives (default option)

* --trace mpi=openmpi for Open MPI

Ensure that the correct option (mpich or openmpi) is passed depending on the MPI implementation
used for compiling the MPI application. Passing incorrect option might cause undefined behavior.

For more information on MPI tracing options, refer “Linux Specific Options” on page 88.

8.11.1

MPI Light-weight Tracing Using CLI

In LWT mode, quick report gets generated during collection stage. This mode supports limited set of
APIs for tracing. This report gives overview of the application runtime activity as follows:

Table 54. List of Supported MPI APIs for Light-weight Tracing
MPI Bsend MPI_Recv _init MPI Bcast MPI Ireduce scatter
MPI Bsend Init MPI_Rsend MPI_Gather MPI Iscan
MPI_Ibsend MPI_Rsend_init MPI_Gatherv MPI _Iscatter
MPI_Improbe MPI_Send MPI _Iallgather MPI _Iscatterv
MPI_Imrecv MPI_Send_init MPI _Ilallgatherv MPI reduce
MPI Iprobe MPI_Ssend MPI Iallreduce MPI reduce_scatter
MPI_Irecv MPI_Ssend_Init MPI Ialltoall MPI_Scan
Chapter 8 Performance Analysis (Linux) 183

AMDA1

AMD uProf User Guide

Table 54.

List of Supported MPI APIs for Light-weight Tracing

57368 Rev.4.2 January 2024

MPI Irsend MPI_Allgather MPI Ialltoallv MPI_Scatter
MPI Isend MPI_Allgatherv MPI _Ialltoallw MPI_Scatterv
MPI Issend MPI_Allreduce MPI _Ibarrier MPI_Wait
MPI_Mprobe MPI_Alltoall MPI_Ibcast MPI_Waitall
MPI Mrecv MPI_Alltoallv MPI Igather MPI_Waitany
MPI Probe MPI_Alltoallw MPI_Igatherv MPI_Waitsome
MPI_Recv MPI_Barrier MPI_Ireduce

Collect Profile Data

Example of a command to LWT trace an MPI application using AMDuProfCLI:

$ mpirun -np <number of processes> ./AMDuProfCLI collect --trace mpi=lwt -o <output_directory>
<application>

After completing the tracing, the path to the session directory is displayed on the terminal. LWT
report is generated immediately after completing the collection and saved into the session directory
in: <output_directory>/<SESSION DIR>/mpi/lwt/mpi-summary.csv.

MPI implementation MPICH or Open MPI should be passed in the command; MPICH is the default.

Following are the sample commands:

$ mpirun -np <number of processes> ./AMDuProfCLI collect --trace mpi=lwt,openmpi -o
<output_directory> <application>

$ mpirun -np <number of processes> ./AMDuProfCLI collect --trace mpi=lwt,mpich -o
<output_directory><application>

Ensure that the correct option (mpich or openmpi) is passed depending on the MPI implementation
used for compiling the MPI application. Passing an incorrect option might cause undefined behavior.

184 Performance Analysis (Linux) Chapter 8

AMDA1

57368 Rev.4.2 January 2024

An example of the LWT report section in the .csv file is as follows:

MP| FUNCTIONS SUMMARY

Function Min Time(seconds) Max Time(seconds) Average Time(seconds) MPI Time(%)

MPI_Probe 0.00001 0.15412 0.0236 0.56106
MPI_Iprobe 0 0.15545 0.00005 3.48577
MPI_Wait 0.0004 0.28738 0.09301 8.6874
MPI_Barrier 0 0.13712 0.05841 6.3484
MPI_Recv 0 0.04478 0.00607 0.14428
MPI_Irecv 0 0.00001 0 0.00036
MP|_Send 0.00002 0.21753 0.04939 1.1742
MPI_Isend 0 0.0001 0.00001 0.00109
MPI_Reduce 0.00001 0.20347 0.0487 1.9848
MPI_Allreduce 0.00001 1.98697 0.21382 61.00609
MP|_Bcast 0.00002 0.1231 0.0555 6.03232

MPI RANK SUMMARY
Rank PID

N w A wN R o

1646816
1646829
1646828
1646806
1646819
1646830
1646818
1646817

MPI Time(seconds)
4.93464

9.85067

6.03492

8.42714

5.10993

9.1953

6.2113

9.11923

Figure 62. LWT Report
8.11.2 MPI Full Tracing Using CLI

MPI Time(%) Wait Time(seconds)
8.3804 0.6901

16.72919 0.56098

10.24898 0.49534

14.31164 0.48829

8.67809 0.39546

15.61618 1.13217

10.54852 0.60311

15.48701 0.74996

Volume(Byte Calls

0

0

0

0

899680
25433040
899680
25433040
1152
5312
60849496

Call Count Volume(Bytes)

6719
16343
1191
23500
912
12698
13873
5622

14
39557
55
64
14
72
14
72
24
168
64

2E+07
1E+07
1E+07
1E+07
1E+07
1E+07
1E+07
1E+07

Total Time(seconds)

0.33037
2.05253
5.11541
3.73814
0.08495
0.00021
0.6914
0.00064
1.16871
35.92229
3.55202

AMD uProf User Guide

Full tracing mode traces more APIs than LWT tracing. This mode is helpful for in-depth analysis of
an MPI Application activity.

The report file for the full tracing includes multiple tables to represent various details:

+ Communicator summary consists of the following columns:

— Communicator Size: Number of the member ranks

— Elapsed Time: Time spent by the MPI APIs in the communicator

— Ranks: Member rank IDs

* Rank summary consists of the following columns:

— Rank: Rank ID.

— PID: Process ID.
— MPI Time (seconds): Total time spent on the MPI APIs.
— MPI Time (%): Percentage of MPI Time with respect to the total MPI time of all the ranks.

— Wait Time (seconds): Time spent by the rank waiting.

— Wait Time (%): Percentage of the rank wait time with respect to the application runtime.
— Call Count: Number of times MPI APIs are called.
— Volume (bytes): Volume of data in bytes sent or received.

— Volume (%): Percentage of volume with respect to the total volume sent or received by all the

ranks.

— Elapsed Time (seconds): Application runtime.

— Time (%): Percentage of elapsed time with respect to the total elapsed time.

Chapter 8

Performance Analysis (Linux)

185

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

* P2P API summary consists of the following columns:

Function: MPI API name.

Min Time (seconds): Minimum time of the total time spent in this API in all the ranks.
Max Time (seconds): Maximum time of the total time spent in this API in all the ranks.
Average Time (seconds): Average time spent on the API.

MPI Time (%): Percentage of the time spent on this API with respect to the total time spent
on all the MPI APIs.

Volume (Bytes): Total volume sent or received by this MPI API.
Calls: Number of times this MPI API is called.
Total Time (seconds): Total time spent in the API in all the ranks.

* Communication matrix consists of the following columns:

Rank: Sender rank ID and receiver rank ID.

MPI Time (seconds): Total time spent on the APIs sending data from the sender rank to the
receiver rank.

MPI Time (%): Percentage of MPI time with respect to the total MPI Time spent on all the APIs.
Volume (Bytes): Total volume of data sent from the sender rank to the receiver rank.

Volume (%): Percentage of volume with respect to the total volume transferred between all the
ranks.

Transfers: Number of transfers from the sender rank to the receiver rank.

* Collective API summary consists of the following columns:

Function: API name.

Min Time (seconds): Minimum time spent on this API.
Max Time (seconds): Maximum time spent on this API.
Average time (seconds): Average time spent on this API.

MPI Time (%): Percentage of time spent on this API with respect to the total time spent on all
the MPI calls.

Input Volume (Bytes): Total data in bytes received by all the ranks involved in this API call.
Output Volume (Bytes): Total data sent by all the ranks involved in this API call.

Calls: Number of times this API is called.

Total Time (seconds): Total time spent in the API in all the ranks.

The list of supported MPI APIs is as follows:
Table 55. MPI APIs

MPI_Pcontrol MPI_Mrecv MPI_Reduce MPI_Iallreduce
MPI_Cancel MPI_Imrecv MPI_Allreduce MPI_Ialltoall
MPI_Probe MPI_Send MPI_Alltoall MPI_Jalltoallv
MPI_Iprobe MPI_Bsend MPI_Alltoallv MPI_Ialltoallw
MPI_Mprobe MPI_Ssend MPI_Alltoallw MPI_Ineighbor_Alltoall
186 Performance Analysis (Linux) Chapter 8

AMDA1

57368 Rev.4.2 January 2024

Table 55.

MPI APIs

AMD uProf User Guide

MPI_Improbe

MPI_Rsend

MPI_Neighbor Alltoal
|

MPI _Ineighbor_Alltoallw

MPI_Start

MPI Bsend init

MPI Neighbor Alltoal
lw

MPI Ineighbor Alltoallv

MPI_Startall

MPI_Ssend_init

MPI_ Neighbor_Alltoal
lv

MPI_Ibarrier

MPI_Test

MPI_Rsend _init

MPI Bcast

MPI_Ibcast

MPI_Testall

MPI_Send_init

MPI_Scan

MPI_Comm_ create

MPI_Testany MPI_Ibsend MPI_Reduce Scatter | MPI Comm_dup
MPI_Testsome MPI Issend MPI Ireduce Scatter | MPI Comm dup with info
MPI_Wait MPI_Irsend MPI_Iscan MPI_Comm_split
MPI_Waitall MPI Isend MPI Iscatter MPI_Comm_split_type

MPI_Waitany

MPI_Scatter

MPI Iscatterv

MPI Intercomm create

MPI_Waitsome

MPI_Scatterv

MPI_Igather

MPI_Intercomm_merge

MPI_Barrier MPI_Gather MPI_Igatherv MPI_Cart create
MPI_Recv MPI_Gatherv MPI_Iallgather MPI_Cart_sub
MPI_Irecv MPI_Allgather MPI Iallgatherv MPI_Graph_create

MPI_Sendrecv

MPI_Allgatherv

MPI_INeighbor Allgat
her

MPI_Dist_graph create

ace

MPI_Sendrecv_repl

MPI_Neighbor Allgat
her

MPI_Ineighbor_Allgat
herv

MPI Dist_graph create adjacent

MPI_Recv_Init

MPI_Neighbor Allgat
herv

MPI Ireduce

Collect Profile Data

Example of a command to FULL trace an MPI application using AMD uProf CLI:

$ mpirun -np <number of processes> ./AMDuProfCLI collect --trace mpi=full -o <output_directory>

<application>

After completing the tracing, the path to the session directory is displayed on the terminal.
MPI implementation MPICH or Open MPI should be passed in the command; MPICH is the default.

Following are the sample commands:

$ mpirun -np <number of processes> ./AMDuProfCLI collect --trace mpi=full,openmpi -o
<output_directory> <application>

$ mpirun -np <number of processes> ./AMDuProfCLI collect --trace mpi=full,mpich -o
<output_directory><application>

Chapter 8

Performance Analysis (Linux)

187

AMDA1

AMD uProf User Guide

57368 Rev.4.2 January 2024

Ensure that the correct option (mpich or openmpi) is passed depending on the MPI implementation
used for compiling the MPI application. Passing an incorrect option might cause undefined behavior.

Generate Profile Report

Example of a command to generate the report in .csv format. Pass the session directory path with -i

option:

$./AMDuUProfCLI report -i <output_directory>/<SESSION_DIR>

After completing the report generation, the report.csv file path is displayed on the terminal.

Tables in the Report file

The following screenshots show example sections of a full tracing report file:

MPI TRACING REPORT

ENVIRONMENT
Total Ranks
Library version
MPI 5td Version
Thread Model

MPI COMMUNICATOR SUMMARY (All Ranks)
Ranks
0;1;2,;3;4;5;6;7,8;9;10;11;12;13;14;15;
0;3;6;9;12;15;

0;1;3,;4;6;7,9;10;12;13;15;

1;4;7;10;13;

1;2;4;5;7;8;10;11;13;14;

2;5;8;11;14,

16
MPICH Version:4.0.2

a4
MPI_THREAD_SINGLE

Communicator Size
16 0.003844

6 0.002388

11 0

5 0.002872

10 0

5 0.002861

Figure 63. MPI Communicator Summary Table

RANK SUMMARY TABLE
Rank PID
0 139011 1.18992 6.82
1 139013 1.23819 7.1
2 139012 1.06928 6.13
3 139014 1.06525 6.11
4 139024 1.21312 6.96
5 139023 1.02078 5.85
6 139031 1.13994 6.54
7 139030 1.07894 6.19
8 139018 1.01404 5.81
9 139017 1.12509 6.45
10 139028 1.25932 7.22
11 139025 0.888971 5.1
12 139037 1.03417 5.93
13 139038 1.05169 6.03
14 139032 1.05608 6.05
15 139036 0.997395 5.72

0 0 154283 12004944 6.25
0 0 159097 12004844 6.25
0 0 106244 11997024 6.25
0 0 130112 11997024 6.25
0 0 254896 12004844 6.25
0 0 167413 12004944 6.25
0 0 228138 11997024 6.25
0 0 163684 11997024 6.25
0 0 78059 12004944 6.25
0 0 190392 12004844 6.25
0 0 263437 11997024 6.25
0 0 77798 11997024 6.25
0 0 177592 12004844 6.25
0 0 71849 12004944 6.25
0 0 129159 11997024 6.25
0 0 142573 11997024 6.25

Figure 64. MPI Rank Summary Table

Elapsed Time(seconds)

3.68395
3.68967
3.65075
3.67021
3.69118
3.69623
3.68951
3.69563
3.57768
3.70481
3.67135
3.64134
3.70373
3.71305
3.69288
3.69635

MPI Time(seconds) MPI Time(%) Wait Time(seconds) Wait Time(%) Call Count Volume(Bytes) Volume(%) Elapsed Time(seconds) Time(%)

6.26
6.27

6.2
6.23
6.27
6.28
6.27
6.28
6.08
6.29
6.24
6.19
6.29
6.31
6.27
6.28

188

Performance Analysis (Linux)

Chapter 8

AMDZ1
AMD uProf User Guide

57368 Rev.4.2 January 2024

MPI FUNCTION SUMMARY TABLE (All Ranks)

Function Min Time(seconds) Max Time(seconds) Average Time(seconds) MPI Time(%) Volume(Bytes) Calls Total Time(seconds)
MPI1_Cart_create 0.000661161 0.577336 0.192807 5.29 0 16 3.08491
MPI_Wait 5.09E-05 0.21472 0.0810626 8.63 0 62 5.02588
MPI_Send 1.24E-05 0.274551 0.0757055 1.82 899680 14 1.05988
MPI_Probe 1.31E-05 0.154153 0.0141356 0.34 0 14 0.197899
MPI1_Recv 3.50E-06 0.0485917 0.00687159 0.17 899680 14 0.0962022
MPI_Test 6.29E-06 0.222162 8.55E-05 4.48 0 30528 2.60932
MPI_lprobe 1.00E-07 0.105778 5.98E-05 3 0 29276 1.74939
MPI_Isend 1.47E-06 0.000238472 1.48E-05 0 25433040 72 0.0010647
MPI_Irecv 6.92E-07 7.88E-06 2.59E-06 0 25433040 72 0.0001866
Figure 65. MPI API Summary Table

COMMUNICATION MATRIX

Rank ---> Rank MPI Time(seconds) MPI Time(%) Volume(Bytes) Volume(%) Transfers

0--->1 0.0369763 0 1772934048 0.73 16810

0--->4 0.0734582 0 2481247344 1.02 16810

1---—>0 0.0289881 0 1772934048 0.73 16810

1-->2 0.0301966 0 1772934048 0.73 16810

1--->5 0.0565452 0 2540520192 1.04 16810

2-->1 0.0343381 0 1772934048 0.73 16810

2-->3 0.0328948 0 1772934048 0.73 16810

2-->6 0.0581532 0 2540520192 1.04 16810

3-->2 0.0353417 0 1772934048 0.73 16810

3-->7 0.0633404 0 2504096160 1.03 16810

4--->0 0.0363977 0 2481247344 1.02 16810

4--->5 0.0274887 0 1832206896 0.75 16810

4--->8 0.0665892 0 2481247344 1.02 16810

5-->1 0.0326747 0 2540520192 1.04 16810

5--->4 0.0225724 0 1832206896 0.75 16810

5--->6 0.029573 0 1832206896 0.75 16810

5-->9 0.0645192 0 2540520192 1.04 16810

6--->2 0.0428896 0 2540520192 1.04 16810

6--->5 0.0323074 0 1832206896 0.75 16810

6-->7 0.0325295 0 1832206896 0.75 16810

Figure 66. MPI Communication Matrix

COLLECTIVE EVENTS SUMMARY

Function Min Time(seconds) Max Time(seconds) Average Time(seconds) MPI Time(%) Input Volume(Bytes) Output Volume(Bytes) Calls Total Time(seconds)
MPI_Allreduce 8.86E-06 1.08372 0.215983 62.27 2656 2656 168 36.2852
MPI_Barrier 4.35E-06 0.110859 0.0603471 6.63 0 0 64 3.86221
MPI_Bcast 7.65E-06 0.207049 0.0555552 6.1 53243309 7606187 64 3.55554
MPI_Reduce 1.13E-05 0.177126 0.0309416 1.27 144 1008 24 0.742599

Figure 67. MPI Collective API Summary Table

Chapter 8 Performance Analysis (Linux) 189

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

8.11.3 MPI FULL Tracing Using GUI

Collecting and Importing a Trace

Use CLI to trace a target MPI application and generate the report using CLI. For the steps, refer
section “MPI Full Tracing Using CLI” on page 185. Import the report to GUI as shown in the
following figure to analyze the trace data:

X AMDuProf = O X

PROFILE

Welcome
Import Profile Session
Recent Sesslon(s)

_ |Prufi1e Data File /tmp/AMDuProf-MarDyn_31001fab-HPC_MP]| x ‘ Browse |

Root Path to Sources Enter path to root of the sources (Note: This leads to recursive search from root far sources Browse
About

Binary Path Enter path y binary file(n

Source Path Enter pathis) to source file '

Figure 68. Import Profile Session

Analyzing MPI Communication Matrix

After the import is complete, use MPI Communication Matrix view to analyze the MPI trace data in
the GUI. Navigate to HPC > MPI Communication Matrix to view the MPI communication matrix
visualizer. This view displays rank-to-rank communication summary in matrix format. The x and y-
axis in the matrix are receiver and sender ranks respectively.

Following figure shows the MPI communication matrix:

X AMDuProf - [/t.nPAR_DEBUG_SSE_mpich_aocc3-HPC_MPI] - 0 X
f PROFILE SUMMARY HPC X]
MPI Rank Timeline MPI Communication Matrix
Total Data Volume[Bytes] (Sender By Reciever)
| ammncmenc o
B RO R1 R2 | R3 R4 RS [R6 [R7 [sum [Mean |
MPI Collective API Summary RO 1198392 864456 3724548 1.24152e+6
R1 983756 - 3053852 1.01795e+6
MPI P2P APl Summary 13e+68
R2 | 1181964 - _ 3665236 1.22175e+6
120468
1e+68
_ 1199100 3753736 1.25125e+6
5 | ssess
m 1231936 Mpi Time(seconds): 0.000006 | Mpi Time(%): 0.000011 &) 741321
Volume(Bytes): 1662656 | Volume(%): 1.464519 | Transfers: 3 “
_ 1040972 888350 o
sum| 392199 3123124 3144424 3240616 3137364 3201664 3252360 311172
Mean| 560285 104104e+6 104814e+6 | 1.08021e+6 | 10457%+6 | 1.06722e+6 | 108412e+6 | 1.10372e+6

Figure 69. MPI Communication Matrix

In the above figure:
1. Ranks ordered in row-wise and column-wise.

2. Each cell displays the total data volume transferred from one rank to another rank.

190 Performance Analysis (Linux) Chapter 8

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Tool-tip shows additional details when the mouse is hovered over a cell.
Color-coding legend based on data volume.

Sum of all the data transfers for the rank.

S kW

Mean of all the data transfers for the rank.
Analyzing MPI Rank Timeline

Navigate to HPC > MPI Rank Timeline to view to MPI Ranks timeline. This view shows the MPI
activities in the timeline graph as follows:

X AMDUProf - [/t..n.PAR_DEBUG_SSE_mpich_aocc3-HPC_MPI] = =] X

PROFILE SUMMARY HPC

_ Select Data Source MPI Activity - Select Trace Overlay MPI API Trace - Trace Overlay Cutoff (ns) |8 50
00:25.000

00:05.000 00:10.000] 00:15.000 00:20.000

00:30.000

MPI Communication Matrix

MPI Collective API Summary Rank-5 I.I |‘I . .I- 2
SN e 1 i 1 n
— 1 | | |l

Rank-7 Il II
Rank-0 I | I “

;!

Rank-1 I-I-I-I.I
Rank:2 m
Rank-3 L] ||
Filters
Filter Ranks | S€lect| Rank | Process Hostname _|Running Time | Wait Time| P2P Receive Time P2P Send Time| Collective Communication Time |*
1 ¥ Rank-5 Process-1658791 milan-GN.localdomain 7042.70ms 1373.00ms 0.02ms 0.23ms 6918.20ms
v Rank-4 Process-1658790 milan-GN.localdomain 494484ms 1281.55ms 0.02ms 453.11ms 4297.38ms
v Rank-6 Process-1658788 milan-GN.localdomain 5319.28ms 1241.43ms 0.02ms 281.97ms 4395.43ms
v Rank-7 Process-1658777 milan-GN.localdomain 7806.10ms 1378.50ms 0.03ms 0.26ms 6989.30ms
v Rank-0 Process-1658776 milan-GN.localdomain 3336.46ms 1256.81ms 117.23ms 0.26ms 2826.09ms
o Rank-1__Process-1658780. milan-GN Incaldomain. 8489 S0ms._1172 00ms. n02ms. Nn32ms. 2670.47ms Y.

T

Data Source Legend W Wait Time M Running Time
Trace Overlay Legend P2PSend Time M P2P Receive Time M Collective Comm. Time 1 Environment Time ~ Control API Time ™ Communication Time M Topology APl Time M Request API Time

Figure 70. MPI Rank Timeline

In the above screenshot:
1. Rank ID
2. TFe-displayGraph of one of the following depending on the selected data source:

— MPI API Activity (running or waiting)

— MPI data transfer activity (receiving or sending)

— MPI APIs called

Tool-tip shows more information about the MPI activity.

4. Displays the time range.

To select the data source MPI Activity. For more information, refer tothe section “MPI Data
Source”.

6. To load more rank details.
7. To filter the ranks from the view.

Chapter 8 Performance Analysis (Linux) 191

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

8. Trace Overlay Cutoff can be used to specify a duration in nanoseconds, which acts as a cutoff to
load the trace data, that is, any traced data source which takes less than the specified nanoseconds
will not be displayed.

9. Color coding legends for data source and trace overlay.
Analyzing MPI P2P API Summary

Navigate to HPC > MPI P2P API Summary. This view summarizes the P2P APIs called by the
application as follows:

X AMDUProf - [/t.nPAR_DEBUG_SSE_mpich_aocc3-HPC_MPI] = X
L PROFILE SUMMARY HPC X o
MPI Rank Timeline Function MinTime | MaxTme | AverageTime | MPITime(¥%)v Volume(Bytes) calls
MPI_Cart_create 0.00s 0.585 0.19s 5.29 0 16
MPI Communication Matrix mPI_wait 0.00s’ 0.21s 0.08s| 8.63 0 62

MPI_Send 0.00s 0.27s] 0.08s 1.82 899680 14
MPI_Probe 0.00s! 0.15s 0.01s] 0.34) 0 14

MPI Collective API Summary

MPI_Recv 0.00s 0.05s] 0.01s 017, 899680 14
MPI_Test | 0.00s 0.225] 0.00s 4.48, [4 30528
MPI_iprobe | 0.00s 0.11s] 0.00s 3.00 0 29276
MPI_lsend | 0.00s 0.00s] 0.00s 0.00! 25433040 72
MPI_irecv | 0.00s 0.00s] 0.00s 0.00! 25433040 72

Figure 71. MPI P2P API Summary

Analyzing MPI Collective API Summary

Navigate to HPC > MPI Collective API Summary. This view summarizes the collective APIs called
by the application as follows:

x AMDuProf - [/t..n.PAR_DEBUG_SSE_mpich_aocc3-HPC_MPI] - X
L] PROFILE SUMMARY HPC X o
MPI Rank Timeline Function | MinTme | MaxTime | AverageTime MPITime(%) ¥ | inputVolume(Bytes) | Output Volume(Bytes) Calls
MP|_Allreduce 0.00s 1.98s/ 0.22s/ 62.27 2656 2656 168

MPI Communication Matrix MPI_Barrier 0.00s 0.11s 0.06s. 6.63 a 0 64
MPI_Bcast 0.00s 021s 0.06s 6.10 53243309 7606187 64

MPI_Reduce 0.00s 0.18s 0.03s 1.27 144! 1008’ 24

MPI P2P API Summary

Figure 72. MPI Collective API Summary

MPI Data Source
Supported list of MPI data source is as follows:

* An MPI Activity that classifies MPI APIs into either "waiting" APIs (MPI_ Barrier, MPI Wait,
MPI_Waitall, MPI Waitany, or MPI Waitsome) or "active" APIs (all the other MPI functions).

192 Performance Analysis (Linux) Chapter 8

AMDA1

57368 Rev.4.2 January 2024

* MPI APIs can be classified as follows:

AMD uProf User Guide

P2P Send P2P Receive
MPI_BSEND MPI_IMRECV
MPI_BSEND INIT MPI_IRECV
MPI_IBSEND MPI_MRECV
MPI IRSEND MPI RECV
MPI_ISEND MPI RECV_INIT
MPI_ISSEND
MPI_RSEND
MPI_RSEND INIT
MPI_SEND

MPI_SEND _INIT
MPI_SENDRECV
MPI_SENDRECV REPLACE
MPI_SSEND
MPI_SSEND_INIT

Collective Communication

MPI_ALLGATHER
MPI_ALLGATHERV
MPI_ALLREDUCE
MPI_ALLTOALL
MPI_ALLTOALLV
MPI_ALLTOALLW
MPI_BARRIER
MPI_BCAST
MPI_GATHER
MPI_GATHERV
MPI_IALLGATHER
MPI_IALLGATHERV
MPI_IALLREDUCE
MPI_IALLTOALL
MPI_IALLTOALLV
MPI_IALLTOALLW
MPI_IBARRIER
MPI_IBCAST
MPI_IGATHER
MPI_IGATHERV
MPI_IREDUCE
MPI_IREDUCE_SCATTER
MPI_ISCAN
MPI_ISCATTER
MPI_ISCATTERV
MPI_REDUCE
MPI_REDUCE_SCATTER
MPI_SCAN
MPI_SCATTER
MPI_SCATTERV

Chapter 8 Performance Analysis (Linux) 193

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024
Control API Request API Communication API
MPI PCONTROL | MPI CANCEL MPI_COMM_CREATE
MPI_START MPI_COMM_DUP
MPI_STARTALL | MPI COMM DUP WITH INFO
MPI_TEST MPI COMM_SPLIT

MPI TESTALL MPI_ COMM_SPLIT TYPE
MPI TESTANY MPI COMM SET NAME
MPI_TESTSOME MPI_INTERCOMM_CREATE
MPI_WAIT MPI_INTERCOMM_MERGE
MPI_WAITALL MPI_CART CREATE

MPI_ WAITANY MPI CART SUB
MPI_WAITSOME | MPI GRAPH CREATE

MPI IMPROBE MPI DIST GRAPH CREATE

MPI _IPROBE MPI_DIST GRAPH_CREATE ADJACENT
MPI_MPROBE
MPI PROBE
Topology API Environment API
MPI_NEIGHBOR ALLGATHER MPI_ABORT
MPI_NEIGHBOR ALLGATHERV MPI _FINALIZE
MPI NEIGHBOR ALLTOALL MPI_INIT
MPI NEIGHBOR ALLTOALLV MPI_INIT THREAD

MPI NEIGHBOR ALLTOALLW
MPI INEIGHBOR ALLGATHER
MPI INEIGHBOR ALLTOALL
MPI INEIGHBOR ALLGATHERV
MPI_INEIGHBOR ALLTOALLV
MPI_INEIGHBOR_ALLTOALLW

* MPI Data Transfer which classifies MPI P2P Send/Receive and plots the volume of data
transfered at the given time interval.

194 Performance Analysis (Linux) Chapter 8

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Chapter 9 Power Profile

9.1 Overview

System-wide Power Profile

The AMD uProf profiler offers live power profiling to monitor the behavior of the systems based on
AMD CPUs and APUs. It provides various counters to monitor power and thermal characteristics.

These counters are collected from various resources such as RAPL and MSRs. They are collected at
regular time interval and either reported as a text file or plotted as line graphs. They can also be saved
into the database for future analysis.

Features

AMD uProf comprises of the following features:

* The GUI can be used to configure and monitor the supported power metrics.
* The TIMECHART page helps to monitor and analyze:

— Logical Core level metrics — Core Effective Frequency and P-State
— Physical Core level metrics — RAPL based Core Power
— Package level metrics — RAPL based Package Power and Temperature
* AMDuProfCLI timechart command collects the system metrics and writes into a text file or
comma-separated-value (CSV) file.

* API library allows you to configure and collect the supported system level performance, thermal
and power metrics of AMD CPU/APUs.

» The collected live profile data can be stored in the database for future analysis.

9.2 Metrics

The supported metrics depend on the processor family and model and are broadly grouped under
various categories. Following are the supported counter categories by processor families:

Table 56. Family 17h Model 00h — 0Fh (AMD Ryzen™, AMD Ryzen ThreadRipper™, and
1t Gen AMD EPYC™)

Power Counter Category Description

Power Average Power for the sampling period, reported in Watts. This is an
estimated consumption value based on the platform activity levels. It is
available for Core and Package.

Frequency CPU Core Effective Frequency for the sampling period, reported in MHz.

Chapter 9 Power Profile 195

AMDA1

AMD uProf User Guide

57368 Rev.4.2 January 2024

Table 56. Family 17h Model 00h — 0Fh (AMD Ryzen™, AMD Ryzen ThreadRipper™, and
1t Gen AMD EPYC™)

Power Counter Category

Description

Temperature Average temperature for the sampling period, reported in Celsius. The
temperature reported is with reference to Tctl. It is available for Package.
P-State CPU P-State at the time when sampling was performed.

Table 57. Family 17h Model 10h — 1Fh (AMD Ryzen™ and AMD Ryzen™ PRO APU)

Power Counter Category Description

Power Average Power for the sampling period, reported in Watts. This is an
estimated consumption value based on platform activity levels. Available
for Core and Package.

Frequency CPU Core Effective Frequency for the sampling period, reported in MHz

Temperature Average temperature for the sampling period, reported in Celsius.
Temperature reported is with reference to Tctl. Available for Package.

P-State CPU P-State at the time when sampling was performed.

Table 58. Family 17h Model 70h — 7Fh (3"¢ Gen AMD Ryzen™)

Power Counter Category Description

Power Average Power for the sampling period, reported in Watts. This is an
estimated consumption value based on platform activity levels. Available
for Core and Package.

Frequency CPU Core Effective Frequency for the sampling period, reported in MHz

P-State CPU P-State at the time when sampling was performed.

Temperature Average temperature for the sampling period, reported in Celsius.
Temperature reported is with reference to Tctl. Available for Package.

Table 59. Family 17h Model 30h — 3Fh (EPYC 7002)

Power Counter Category

Description

Power Average Power for the sampling period, reported in Watts. This is an
estimated consumption value based on platform activity levels. Available
for Core and Package.
Frequency CPU Core Effective Frequency for the sampling period, reported in MHz
P-State CPU P-State at the time when sampling was performed.
196 Power Profile Chapter 9

AMDA1

57368 Rev.4.2 January 2024

AMD uProf User Guide

Table 59. Family 17h Model 30h — 3Fh (EPYC 7002)

Power Counter Category

Description

Temperature

Average temperature for the sampling period, reported in Celsius.
Temperature reported is with reference to Tctl. Available for Package.

Table 60. Family 19h Model 0h — 2Fh (EPYC 7003 and EPYC 9000)

Power Counter Category

Description

Power Average Power for the sampling period, reported in Watts. This is an
estimated consumption value based on platform activity levels. Available
for Core and Package.

Frequency CPU Core Effective Frequency for the sampling period, reported in MHz

P-State CPU P-State at the time when sampling was performed.

Temperature Average temperature for the sampling period, reported in Celsius.

Temperature reported is with reference to Tctl. Available for Package.

9.3 Using Profile through GUI

System-wide Power Profile (Live)

This profile type is used to perform the power analysis where the metrics are plotted in a live timeline
graph and/or saved in a database. Complete the following steps to configure and start the profile:

9.3.1 Configuring a Profile

Complete the following steps to configure a profile:

1. Click the PROFILE tab at the top navigation bar or one of the following on the Welcome page:

— Profile entire System

— See What’s guzzling power in your system

The Select Profile Target page is displayed.

2. Click the Next button.

The Select Profile Type page is displayed.

Chapter 9

Power Profile

197

AMDA1

AMD uProf User Guide

9.3

Once the required counters are selected and the profile data collection begins, the TIMECHART tab

From the Select Profile Configuration screen, select the Live Power Profile tab.

All the live profiling options and available counters are displayed in the respective panes as
follows:

AMDuProf

PROFILE

Predefined Configs Live Power Profile Custom Configs

et Duweprfiingopions
Remote Profile =m
sampling Interval |- 100 [#| Milli seconds

v [Jsystem
Frequency v [W]Socket0

v [Core0
P-State [/ Threado Core Effective Frequency
[AThread1 Core Effective Frequency
Power v Ocoret
[JThread2 Core Effective Frequency
Temperature [JThread3 Core Effective Frequency
v [Ocore2
[[JThread4 Core Effective Frequency
[[)Threads Core Effective Frequency
v [core3
[JThreads Core Effective Frequency
[[Thread7 Core Effective Frequency
v [Ocore4
[[Threads Core Effective Frequency
[[)Thread Core Effective Frequency
v [Jcores
[[JThread10 Core Effective Frequency
[IThread11 Core Effective Frequency
v [cores
[IThread12 Core Effective Frequency
[IThread13 Core Effective Frequency
v [core7

>

<

AMDUPrOfCLLexe 10 frequency -w CiTestCe -0 CaUsers\ A

CLI Command Copy

Config Name This configuration will not be saved... X ResetName Previous Next _-

Figure 73. Live System-wide Power Profile

In the Counters pane, select the required counter category and the respective options.
Note: You can configure multiple counter categories.
During the profiling, you can render the graphs live.

Click the Start Profile button.

In this profile type, the profile data will be generated as line graphs in the TIMECHART page for

further analysis.

The CLI Command will be displayed for all the options selected from the GUI for Live Power
Profiling.

2 Analyzing a Profile

will open and the metrics will be plotted in the live timeline graphs.

198

Power Profile Chapter 9

57368 Rev.4.2 January 2024

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

X AMDupret - 5 X

| e 1 e v S Y Y = T 4 (D

[Counter | Value

Figure 74. Timechart Page

1. Inthe TIMECHART page, the metrics will be plotted in the live timeline graphs. The line graphs
are grouped together and plotted based on the category.

2. There is a data table adjacent to each graph to display the current value of the counters.
From the Graph Visibility pane, you can choose the graph to display.

4. When plotting is in progress, you can:

— Click the Pause Graphs button to pause the graphs without pausing the data collection. You
can click the Play Graphs button to resume them later.

— Click the Stop Profiling button to stop the profiling without closing the view. This will stop
collecting the profile data.

— Click the Close View button to stop the profiling and close the view.

9.4 Using CLI to Profile

You can use AMDuProfCLI timechart command to collect the system metrics and write them into a
text file or comma-separated-value (CSV) file. To collect power profile counter values, complete the
following steps:

1. Run the command with --1ist option to get the list of supported counter categories.

2. Use the command to specify the required counters with -e or --event option to collect and report
the required counters.

Chapter 9 Power Profile 199

AMDA1

AMD uProf User Guide 57368 Rev. 4.2 January 2024

The timechart run to list the supported counter categories is as follows:

C: \Users\amd> | AMDUProfCLI.exe timechart --list

Supported Devices:-

Device Name Instance

Socket
Die
Core
Thread
Gfx

Supported Counter Categories:-
Category Supported Device Type

Power [Socket]
Frequency [Gfx, Thread]
Temperature [Socket]
P-State [Thread]
Energy [Socket, Core]
Controllers [Socket]

C: \Users\amd>_

Figure 75. --list Command Output

The timechart run to collect the profile samples and write into a file is as follows:

inefficient i i f matrix multiplication
d time: 1.6 ec (@ sec resolution)

tMul-Timechart D
tMul-Timechart D @- 6 \timechart.csv

Figure 76. Timechart Run

The above run will collect the power and frequency counters on all the devices on which these
counters are supported and writes them in the output file specified with -o option. Before the profiling
begins, the given application will be launched and the data will be collected till the application
terminates.

9.4.1 Examples

Windows

* Collect all the power counter values for a duration of 10 seconds with a sampling interval of 100
milliseconds:

C:\> AMDuProfCLI.exe timechart --event power --interval 100 --duration 10

200 Power Profile Chapter 9

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

* Collect all frequency counter values for 10 seconds, sampling them every 500 milliseconds and
adding the results to a csv file:

C:\> AMDuProfCLI.exe timechart --event frequency -o C:\Temp\Poweroutput --interval 500 --
duration 10

* Collect all the frequency counter values at core 0 to 3 for 10 seconds, sampling them every 500
milliseconds and adding the results to a text file:

C:\> AMDuProfCLI.exe timechart --event core=0-3,frequency -o C:\Temp\Poweroutput
--interval 500 --duration 10 --format txt

Linux

* Collect all the power counter values for a duration of 10 seconds with a sampling interval of 100
milliseconds:

$./AMDuUProfCLI timechart --event power --interval 100 --duration 10

* Collect all the frequency counter values for 10 seconds, sampling them every 500 milliseconds
and adding the results to a csv file:

$./AMDuProfCLI timechart --event frequency -o /tmp/PowerOutput
--interval 500 --duration 10

* Collect all the frequency counter values at core 0 to 3 for 10 seconds, sampling them every 500
milliseconds and adding the results to a text file:

$./AMDuUProfCLI timechart --event core=0-3,frequency
-0 /tmp/PowerOQutput --interval 500 --duration 10 --format txt

9.5 AMDPowerProfileAPI Library

API library allow you to configure and collect the supported power profiling counters on various
AMD platforms directly without using AMD uProf GUI or CLI. The AMDPowerProfileAPI library is
used to analyze the power efficiency of systems based on AMD CPUs and APUs.

These APIs provide interface to read the power, thermal, and frequency characteristics of AMD CPUs
and APUs and their subcomponents. These APIs are targeted for software developers who want to
write their own application to sample the power counters based on their specific use case(s).

For a detailed information on these APIs, refer AMDPowerProfilerAPI.pdf in the AMD uProf
installation folder.

9.5.1 Using the APIs

Refer the sample program CollectAllCounters.cpp on how to use these APIs. The program must be
linked with the AMDPowerProfileAPI library while compiling. The power profiling driver must be
installed and running.

A sample program CollectAllCounters.cpp that uses these APIs is available atthe directory
<AMDuProf-install-dir>/Examples/CollectAllCounters/. To build and execute the sample
application, complete the following steps based on the OS that you are using:

Chapter 9 Power Profile 201

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Windows

A Visual Studio 2015 solution file CollectAllCounters.sin is available atthe directory C:/Program
Files/AMD/AMDuProf/Examples/CollectAllCounters/ to build the sample program.

Linux

1. Execute the following commands to build:

$ cd <AMDuProf-install-dir>/Examples/CollectAllCounters

$ g++ -0 -std=c++11 CollectAllCounters.cpp -I<AMDuProf-install-dir>/include -1
AMDPowerProfileAPI -L<AMDuProf-install-dir>/1lib -W1,-rpath <AMDuProf-install-dir>/bin -o
CollectAllCounters

2. Run the following commands to execute:

$ export LD_LIBRARY_PATH=<AMDuProf-install-dir>/lib
$./CollectAllCounters

9.6 Limitations

* Only one power profile session can run at a time.

* Minimum supported sampling period in CLI is 100ms. It is recommended to use a large sampling
period to reduce the sampling and rendering overhead.

202 Power Profile Chapter 9

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Chapter 10 Remote Profiling

10.1 Overview

AMD uProf has the ability to connect to remote systems and trigger collection, translation of data on
the remote system and then visualize it in local GUL

Note: CLI does not support remote profiling.

AMD uProf uses a separate AMDProfilerService binary that can be launched as an application server
on the remote target and local GUI can connect to such a server. By default, authorization must be set
up on the server to connect to the local GUI. Complete the following steps:

1. Locate the local GUI client ID.
Authorize the client ID on the remote target to connect to AMDProfilerService.
Launch AMDProfilerService with appropriate options/permissions on remote target.

Specify the connection details in the local GUI to connect to the remote target.

A

Local GUI updates itself and displays the remote data (including settings, session history,
available events for profiling/tracing, and so on).

6. Proceed to import session/profile on the remote target.
7. When you are done with remote target, disconnect to update the local data in GUI.
Support

Remote profiling from Windows (host/local platform) to Linux (target/remote platform) is supported.

10.2 Setting up Authorization

Complete the following steps to set up the authorization:

1. Navigating to PROFILE > Remote Profile and locate Client ID:

AMDuFrof o X

13 PROFILE o

P R Connect to Remote Machine for Profiling

Saved Configurations

ICMFHHD 440198d472cba820 I
Address | |
Part

Name

You haven't connected to any remote target yet

Figure 77. Client ID

Chapter 10 Remote Profiling 203

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

10

Spe

Copy the Client ID (alphanumeric value).

On remote target, navigate to the AMD uProf bin directory and execute the following command:
AMDProfilerService --add <client_id>

This will authorize the client to connect to this remote target.

To revoke the authorization, execute the following command:

AMDProfilerService --clear-user <client_id>

.3 Launching AMDProfilerService

cify the binding IP address to launch AMDProfilerService as an application server:

AMDProfilerService --ip 127.0.0.1

This IP address should be one of the IP addresses of the target/remote machine on which
AMDProfilerService is launched.

If target/remote machine has multiple IP addresses, the ping command can be used on the host/local
machine to determine which IP address (of the remote machine) is reachable from the local machine.
The reachable IP address can be passed to --ip option.

(Optional) You can specify the following options:
Table 61. AMDProfilerService Options

Option Description
--port <port_ number> Specify the port number
--logpath <path> Specify the log file path
--bypass-auth Skip the authorization

Note: This option must be used with caution as it will skip the authorization.

--fsearch-depth <depth> | Specify the maximum depth for recursive file search operations

Note: This option is applicable only for importing a session from the GUL

--fsearch-timeout Specify the maximum duration (in seconds) for recursive file
<timeout> search operations

Note: This option is applicable only for importing a session from the GUI

Following is the sample screen of remote profiling connection establishment:

¢ .
AMD

Lis

JAMDProfilerService --ip 18.138.152.181 --port 32768
uProf service started...
tening for connection on port 32768 ...

Figure 78. Remote Profiling Connection Establishment

204

Remote Profiling Chapter 10

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Following is the sample screen of IP selection:

JProtilerService
ecified, found IP addr
ype the option number and press return)

(Adapter:

(Adapter:
10 1 (Adapter:
192.168.122.1 (Adapter: v

specify option (1-4): [

Figure 79. Selecting IP

10.4 Connecting to Remote Target

Complete the following steps to connect the remote target:

1. Once AMDProfilerService is launched on the remote target, go to the Remote Profile page and
specify the IP address, port number, and optional name for the remote target as follows:

AMDuProf = a X
Fl PROFILE E e
Start Profiling

Connect to Remote Machine for Profiling
Saved Conﬂgurauons

lmm Client D 440198d472cba820

Address 127.00.1
Part 32768

Name MyRemoteTarge]

Connect

You haven't connected to any remote target yet

Figure 80. Connect to Remote Machine

2. Click the Connect button.

Chapter 10 Remote Profiling 205

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

The remote target data is displayed after a few seconds. All the profiling steps or importing session
steps remain identical as local henceforth. Once connected, the provided IP, port, and name are saved
as follows:
B avuprot o

- PROFILE o d

SerEEiing Connect to Remote Machine for Profiling

Saved Configurations

RS <0 <coissoeraouszo
[Smeptis NI

Address | |

Part

Name

Address| Port Name | Last Connected
127.00.1 32768 My Remote Target Mon june 27 22 | 07:08 pr

Figure 81. Remote Target Data

You can double-click on any table entry containing IP address to load the corresponding details and
connect to the required remote target.

Once connected, the title bar will reflect the connection to the remote target, Disconnect button in the
Remote Profile page will be enabled (instead of the Connect button) as follows:

[l AnDuBrof Connected to 10.136.152.101:32832 o x

.3 PROFILE o

FaitPerline Connect to Remote Machine for Profiling

Saved Configurations

Client'D 440198d472cbas20

Figure 82. Disconnect Button

10.5 Limitations

* Once connected to a remote target, all the Browse buttons in the GUI will remain disabled. You
can copy/paste or type the URI paths wherever required.

» Ifyou have not closed the GUI after profiling locally and try to connect to Remote Target, the
GUI may crash sometimes. Hence, it is recommended to close the GUI after local profiling if
remote connection is desired.

206 Remote Profiling Chapter 10

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

If local data is not required and you try to connect to the same remote target frequently, use the
following command to directly connect to the remote target (if it is running):

AMDUProf <ip_address> <port>

For example, AMDuProf 127.0.0.1 32768

A client (GUI instance) can connect to a AMDProfilerService instance. However, if multiple
instances of the GUI are launched by a user, only one will succeed. Different users can connect to
the same AMDProfilerService as they will have different client IDs.

Multiple instances of AMDProfilerService can be launched. However, all of them must be on
different ports even if they are bound to the same IP address.

Remote profiling connection establishment might fail if the target system firewall is enabled. In
such cases, disable the firewall or add an exception for AMDProfilerService in the firewall rules
of the target system and try reconnecting. Another reason for failure could be unavailability of
port number. This can happen due to network configuration, firewall settings, or another program
blocking usable ports.

Profiling of MPI applications is not supported with remote profiling.

Chapter 10 Remote Profiling 207

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Chapter 11 AMD uProf Virtualization Support

11.1 OverView

AMD uProf supports profiling in the virtualized environments. Availability of the profiling features
depends on the counters virtualized by the hypervisor manager. Currently, AMD uProf supports the
following hypervisors (with Linux and Windows OS as guest on these virtualized environments):

* VMWare ESXi

* Microsoft Hyper-V
* Linux KVM

» Citrix Xen

Feature support matrix on various hypervisors:
Table 62. AMD uProf Virtualization Support

Microsoft Hyper-V KVM VMware ESXi Citrix Xen
Host
Features Root Host Guest Guest
Partition Root (\;flll\?lsst Host Host Host (‘;,lll\?lsst
(system | Partition VMs VMs
mode)
CPU Profiling
Time Based Yes Yes Yes Yes Yes Yes Yes Yes Yes
Profiling (TBP)
Micro- Yes Yes Yes Yes Yes Yes Yes No No
architecture
Analysis (EBP)
Instruction Based | Yes No No No No No No No No
Sampling (IBS)
Cache Analysis | Yes No No No No No No No No
HPC —-MPI Code | Yes Yes Yes Yes Yes Yes Yes Yes Yes
Profiling
HPC — OpenMP | Yes Yes Yes Yes Yes Yes Yes Yes Yes
Tracing
HPC - MPI Yes Yes Yes Yes Yes Yes Yes Yes Yes
Tracing
OS Tracing Yes Yes Yes Yes Yes Yes Yes Yes Yes

208 AMD uProf Virtualization Support Chapter 11

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Table 62. AMD uProf Virtualization Support

Microsoft Hyper-V KVM VMware ESXi Citrix Xen
Host
Features Root Host Guest Guest
Partition Root %lll\?[sst Host " Host " Host (\;]lll\?lsst
(system | Partition VMs VMs
mode)
Power Profiling
Live Power No No No No No No No No No
Profile
Power No No No No No No No No No
Application
Analysis
User Interface
Graphical Yes Yes Yes Yes Yes Yes Yes Yes Yes
Interface
Command Line | Yes Yes Yes Yes Yes Yes Yes Yes Yes
API
Profile Control Yes Yes Yes Yes Yes Yes Yes Yes Yes
API
Power Profiler No No No No No No No No No
API
System Analysis
AMDuProfPCM | Yes Yes Yes Yes Yes Yes Yes No No
AMDuProfSys Yes Yes Yes Yes Yes Yes Yes No No

Note: The virtualized hardware counters need to be enabled while configuring the guest VMs on the
respective hypervisors.

11.2 CPU Profiling

CPU Profiling supports:
* Profiling of guest VM from guest VM.
* Profiling of guest VM from host system (KVM hypervisor).

11.2.1 Profiling of Guest VM from Guest VM

Time based profiling can be performed on all the supported Host and Guest VMs, whereas the
hardware counter profiling is completely dependent on the vPMUs exposed by the hypervisor.

Chapter 11 AMD uProf Virtualization Support 209

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

11.2.2 Profiling of Guest VM from Host System (KVM Hypervisor)

This feature supports profiling of KVM guest OS kernel and kernel modules (*.ko) from the host. The
following features are supported:

* Collection of PMU samples on guest OS

* Profiling of guest OS and/or host OS

+ System wide profiling to profile KVM-guest and other running processes
The following features are not supported:

» Call stack

» Attach to process

* Launch application

11.2.3 Preparing Host system to Profile Guest Kernel Modules

Before beginning the profiling on the guest OS, the following files must be copied on the host
machine to facilitate symbol resolution for the guest VMs:

1. Copy /proc/kallsyms and /proc/modules from the guest OS to the host machine.

2. Copy guest vmlinux and kernel sources in a folder on a host system.

These files should belong to the guest VM whose PID is provided as an argument to --guest-kvm
option.

11.24 AMD uProf CLI with Profiling Options

AMD uProf CLI contains the following options to support the guest OS profiling from the host OS:

$./AMDUProfCLI collect [--kvm-guest <pid>] [--guest-kallsyms <path>] [--guest-modules <path>]
[--guest-search-path <path>]

The following table lists vaious collect command options:
Table 63. AMD uProf CLI Collect Command Options

Arguments Options Description
--kvm-guest PID of gemu-kvm process to be | Collect guest-side performance profile. This
profiled option collects KVM guest symbols
information.
--guest-kallsyms Path of guest /proc/kallsyms Guest OS /proc/kallsyms file copy. AMD uProf
copied on local host reads it to get guest kernel symbols. You can
copy it from the guest OS.

210 AMD uProf Virtualization Support Chapter 11

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Table 63. AMD uProf CLI Collect Command Options

Arguments Options Description
--guest-modules Path of guest /proc/modules Guest OS /proc/modules file copy. AMD uProf
copied on local host reads it to get the guest kernel module
information. You can copy it from the guest
OS.
--guest-search-path | Path of guest vmlinux and kernel | Guest OS vmlinux and search directory. AMD
sources copied on local host uProf reads it to resolve the guest kernel
module information. You can copy it from the
guest OS.

11.2.5 Examples

* Get the kvm guest OS PID:
$ ps aux | grep kvm
* Collecting pmcx76 event data for 10 secs (for guest kallsyms and guest kernel modules)

$./AMDuUProfCLI collect -e event=pmcx76,interval=250000 -o /tmp/cpuprof-76-guest-only -d 10 -
-kvm-guest 2444 --guest-kallsyms /home/amd/guest/guest-kallsyms --guest-modules /home/amd/
guest/guest-module

Generate report from the collected data:
$./AMDuUProfCLI report -i /tmp/cpuprof-76-guest-only/AMDuProf-SWP-EBP_Nov-08-2021_15-00-33
* Collecting pmcx76 event data for 10 secs (for guest kallsyms):

$./AMDuUProfCLI collect -e event=pmcx76,interval=250000 -o /tmp/cpuprof-76-guest-only -d 10 -
-kvm-guest 2444 --guest-kallsyms /home/amd/guest/guest-kallsyms

Generate report from the collected data:
$./AMDuProfCLI report -i /tmp/cpuprof-76-guest-only/AMDuProf-SWP-EBP_Nov-08-2021_15-00-33

* Collecting system-wide samples for pmcx76 event data for 10 secs (for guest kallsyms and guest
kernel modules):

$./AMDuUProfCLI collect -e event=pmcx76,interval=250000 -o /tmp/cpuprof-76-guest-only -d 10 -
-kvm-guest 2444 --guest-kallsyms /home/amd/guest/guest-kallsyms --guest-modules /home/amd/
guest/guest-module -a

Generate report from the collected data:
$./AMDuUProfCLI report -i /tmp/cpuprof-76-guest-only/AMDuProf-SWP-EBP_Nov-08-2021_15-00-33
* Collecting system-wide samples for pmcx76 event data for 10 secs (for guest kallsyms):

$./AMDuUProfCLI collect -e event=pmcx76,interval=250000 -o /tmp/cpuprof-76-guest-only -d 10 -
-kvm-guest 2444 --guest-kallsyms /home/amd/guest/guest-kallsyms -a

Generate report from the collected data

$./AMDuUProfCLI report -i /tmp/cpuprof-76-guest-only/AMDuProf-SWP-EBP_Nov-08-2021_ 15-00-33

Chapter 11 AMD uProf Virtualization Support 211

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

11.3 AMDuProfPcm

AMDuProfPcm is based on the following hardware and OS primitives provided by host or guest
operating system. Run the command ./AMDuProfCLI info --system to obtain this information and look
for the following sections:

[PERF Features Availability]

C ore PMC : Yes (Requires to collect dc, fp, ipc, 11, 12 metrics)
L3 PMC : Yes (Requires to collect 13 metrics option)

DF PMC : Yes (Requires to collect memory, xgmi, pcie metrics)
PERF TS : No

[RAPL/CEF Features Availability]

RAPL . Yes

APERF & MPERF : Yes (Requires to collect cpu “Utilization” and Effective
Frequency)

Read Only APERF & MPERF: Yes (Requires to collect cpu “Utilization” and Effective
Frequency)

IRPERF . Yes

HW P-State Control : Yes

In Linux environment, check if the msr module is available and can be loaded using following
command:

$ modprobe msr

11.4 AMDuProfSys

AMDuProfSys is based on the following hardware and OS primitives provided by host or guest
operating system. Run the command ./aMDuProfCLI info --system to obtain this information and look
for the following sections:

[PERF Features Availability]

Core PMC : Yes (Requires to collect core metrics)
L3 PMC : Yes (Requires to collect 13 metrics)
DF PMC : Yes (Requires to collect df metrics)
PERF TS : No

[RAPL/CEF Features Availability]

RAPL : Yes

APERF & MPERF : Yes (Requires to collect cpu “Utilization” and Effective
Frequency)

Read Only APERF & MPERF: Yes (Requires to collect cpu “Utilization” and Effective
Frequency)

IRPERF : Yes

HW P-State Control : Yes

In Linux environment, check if Linux kernel perf module and user space tools are available.

212 AMD uProf Virtualization Support Chapter 11

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Chapter 12 Profile Control APIs

12.1 AMDProfileControl APIs

The AMDProfileControl APIs allow you to limit the profiling scope to a specific portion of the code
within the target application.

AMDProfileControl APIs work only with AMDuProfCLI and GUI for application analysis. They do
not work with:

» Power Profiler
* System analysis tools (uProfPcm and uProfSys)

Usually, while profiling an application, samples for the entire control flow of the application
execution will be collected, that is, from the start of execution till end of the application execution.
The control APIs can be used to enable the profiler to collect data only for a specific part of
application, for example, a CPU intensive loop and a hot function.

The target application needs to be recompiled after instrumenting the application to enable/disable
profiling of the required code regions only.

Header Files

The application should include the header file AMDProfileController.h which declares the required
APIs. This file is available in the include directory under AMD uProf’s install path.

Static Library
The instrumented application should link with the AMDProfileController static library available in:

Windows

<AMDuProf-install-dir>\1ib\x86\AMDProfileController.1lib
<AMDuProf-install-dir>\1ib\x64\AMDProfileController.1lib

Linux

<AMDuProf-install-dir>/1ib/x64/1ibAMDProfileController.a

12.1.1 CPU Profile Control APIs

These profile control APIs are available to pause and resume the CPU profile data collection in a C or
C++ application.

Chapter 12 Profile Control APIs 213

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

amdProfileResume

When the instrumented target application is launched through AMDuProf/AMDuProfCLI, the
profiling will be in the paused state and no profile data will be collected till the application calls this
resume APIL.

bool amdProfileResume ();

amdProfilePause

When the instrumented target application has to pause the profile data collection, this API must be
called:

bool amdProfilePause ();

These APIs can be called multiple times within the application. Nested Resume - Pause calls are not
supported. AMD uProf profiles the code within each Resume-Pause APIs pair. After adding these
APIs, the target application should be compiled before initiating a profile session.

12.1.2 Using the APIs

Include the header file AMDProfileController.h and call the resume and pause APIs within the code.
The code encapsulated within resume-pause API pair will be profiled by the CPU Profiler.

These APIs can be:
» (alled multiple times to profile different parts of the code.

» Spread across multiple functions, that is, resume called from one function and stop called from
another function.

» Spread across threads, that is, resume called from one thread and stop called from another thread
of the same target application.

In the following code snippet, the CPU Profiling data collection is restricted to the execution of
multiply matrices() function:

#include <AMDProfileController.h>

int main (int argc, char* argv[])

{
// Initialize the matrices
initialize matrices ();

// Resume the collection
amdProfileResume ();

// Multiply the matrices
multiply matrices ();

// Stop the data collection
amdProfilePause ();

return 0;

214 Profile Control APIs Chapter 12

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

12.1.3 Compiling Instrumented Target Application

Windows

To compile the application on Microsoft Visual Studio, update the configuration properties to include
the path of header file and link it with AMDProfileController.lib library.

Linux

To compile a C++ application on Linux using g++, use the following command:

$ g++ -std=c++11 -g <sourcefile.cpp> -I <AMDuProf-install-dir>/include -L<AMDuProf-install-
dir>/1ib/x64/ -1AMDProfileController -1lrt -pthread

Note: Do not use the -static option while compiling with g++.

To compile a C application on Linux using gcc, use the following command:

$ gcc -g <sourcefile.c> -I <AMDuProf-install-dir>/include -L<AMDuProf-install-dir>/lib/x64/ -
1AMDProfileController -1rt -pthread

12.1.4 Profiling Instrumented Target Application

AMD uProf GUI

After compiling the target application, create a profile configuration in AMD uProf, set the desired
CPU profile session options. While setting the CPU profile session options, in the Profile Scheduling
section, select Are you using Profile Instrumentation API?.

Once all the settings are done, start the CPU profiling. The profiling will begin in the paused state and
the target application execution begins. When the resume API is called from target application, CPU
Profile starts profiling till pause API is called from the target application or the application is
terminated. When the pause API is called in the target application, the profiler stops profiling and
waits for the next control API call.

AMDuProfCLI
To profile from CLI, option --start-paused should be used to start the profiler in a paused state.

Windows

C:\> AMDuProfCLI.exe collect --config tbp --start-paused -o C:\Temp\prof-tbp
ClassicCpuProfileCtrl.exe

Linux

$./AMDuUProfCLI collect --config tbp --start-paused -o /tmp/cpuprof-tbp /tmp/AMDuProf/
Examples/ClassicCpuProfileCtrl/ClassicCpuProfileCtrl

12.1.5 Limitations

The CPU profile control APIs are not supported for the MPI applications.

Chapter 12 Profile Control APIs 215

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Chapter 13 Reference

13.1 Preparing an Application for Profiling

The AMD uProf uses the debug information generated by the compiler to show the correct function
names in various analysis views and to correlate the collected samples to source statements in Source
page. Otherwise, the results of the CPU Profiler would be less descriptive, displaying only the
assembly code.

13.1.1 Generating Debug Information on Windows

When using Microsoft Visual C++ to compile the application in release mode, set the following
options before compiling the application to ensure that the debug information is generated and saved
in a program database file (with a .pdb extension). To set the compiler option to generate the debug
information for a x64 application in release mode, complete the following steps:

Right-click the project and select Properties from the menu.

From the Configuration drop-down, select Active(Release).

From the Platform drop-down, select Active(Win32) or Active(x64).
In the project pane on the left, expand Configuration Properties.

Expand C/C++ and select General.

AN T

In the work pane, select Debug Information Format.

216 Reference Chapter 13

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

7. From the drop-down, select Program Database (/Zi) or Program Database for Edit &
Continue (/ZI).

AMDTClassicMatMul Property Pages ? *
Configuration: | Release w | Platform: | Active(Win32) w Cenfiguration Manager...
Language A Generate Debug Info true
Precompiled Heade Generate Program Database File S(0utDir)S(TargetMame). pdb
Output Files Generate Full Program Database File
Browse Infermaticn Strip Private Symbols
Advanced Generate Map File Mo
All Optiens Map File Name
Command Line Map Exports No
4 Linker Debuggable Assermbly
General
Input
Manifest File
System
Optimization
Embedded IDL
Windews Metadata
Advanced
All Options

Command Line
Manifest Tool
AML Document Genera
Browse Information
Build Events
Custom Build Step
Code Analysis

Generate Deﬁug Info
~ | | This opticn enables creation of debugging information for the .exe file or the DLL.

v v v v v v

Figure 83. AMDTClassicMatMul Property Page

8. In the project pane, expand Linker and then select Debugging.
9. From the Generate Debug Info drop-down, select/ DEBUG.

13.1.2 Generating Debug Information on Linux

The application must be compiled with the -g option to enable the compiler to generate debug
information. Modify either the Makefile or the respective build scripts accordingly.

13.2 CPU Profiling

The AMD uProf CPU Performance Profiling follows a sampling-based approach to gather the profile
data periodically. It uses a variety of software and hardware resources available in AMD x86 based
processor families. CPU Profiling uses the OS timer, HW Performance Monitor Counters (PMC), and
HW IBS feature.

The following section explains the various key concepts related to CPU Profiling.

Chapter 13 Reference 217

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

13.2.1 Hardware Sources

Performance Monitor Counters (PMC)

AMD processors have Performance Monitor Counters (PMC) that helps monitor various micro-
architectural events in a CPU core. The PMC counters are used in two modes:

* Counting mode: These counters are used to count the specific events that occur in a CPU core.

» Sampling mode: These counters are programmed to count the specific number of events. Once the
count reaches the appropriate number of times (called sampling interval), an interrupt is triggered.
During the interrupt handling, the CPU Profiler collects the profile data.

The number of hardware performance event counters available in each processor is implementation-
dependent.For the exact number of hardware performance counters, refer the Processor Programming
Reference (PPR - https://developer.amd.com/resources/developer-guides-manuals/) of the specific
processor. The operating system and/or BIOS can reserve one or more counters for internal use. Thus,
the actual number of available hardware counters may be less than the number of hardware counters.
The CPU Profiler uses all available counters for profiling.

Instruction-Based Sampling (IBS)

IBS is a code profiling mechanism that enables the processor to select a random instruction fetch or
micro-Op after a programmed time interval has expired and record specific performance information
about the operation. An interrupt is generated when the operation is complete as specified by IBS
Control MSR. An interrupt handler can then read the performance information that was logged for the
operation.

The IBS mechanism is split into two parts:
* Instruction Fetch performance
* Instruction Execution Performance

The instruction fetch sampling provides information about instruction TLB and instruction cache
behavior for fetched instructions.

Instruction execution sampling provides information about micro-Op execution behavior.

The data collected for the instruction fetch performance is independent of the data collected for the
instruction execution performance.

Instruction execution performance is profiled by tagging one micro-Op associated with an instruction.
Instructions that decode to more than one micro-Op return different performance data depending
upon which micro-Op associated with the instruction is tagged. These micro-Ops are associated with
the RIP of the next instruction.

In this mode, the CPU Profiler uses the IBS HW supported by the AMD processor to observe the
effect of instructions on the processor and on the memory subsystem. In IBS, the hardware events are
linked with the instruction that caused them. Also, the hardware events are used by the CPU Profiler
to derive various metrics, such as data cache latency.

218 Reference Chapter 13

https://developer.amd.com/resources/developer-guides-manuals/
https://developer.amd.com/resources/developer-guides-manuals/

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

L3 Cache Performance Monitor Counters (L3PMC)

A Core Complex (CCX) is a group of CPU cores that share L3 cache resources. All the cores in a
CCX share a single L3 cache. L3PMCs are available for AMD “Zen”-based processors to monitor the
performance of L3 resources. For more information, refer the respective PPR for the processor.

Data Fabric Performance Monitor Counters (DFPMC)

For AMD “Zen”-based processors, DFPMCs are available to monitor the performance of Data Fabric
resources. For more information, refer the respective Processor Programming Reference (PPR) for
the processor.

13.2.2 Profiling Concepts

Sampling

Sampling profilers works based on the logic that the part of a program that consumes most of the time
(or that triggers the most occurrence of the sampling event) have a larger number of samples. This is
because they have a higher probability of being executed while samples are being taken by the CPU

Profiler.

Sampling Interval

The time between the collection of every two samples is the Sampling Interval. For example, in TBP,
if the time interval is 1 millisecond, then roughly 1,000 TBP samples are being collected every
second for each processor core.

The purpose of a sampling interval depends on the resource used as the sampling event:

* OS timer — the sampling interval is in milliseconds.

* PMC events — the sampling interval is the number of occurrences of that sampling event.
* IBS — the number of processed instructions after which it will be tagged.

Smaller sampling interval increases the number of samples collected and the data collection
overhead. Since, the profile data is collected on the same system in which the workload is running,
more frequent sampling increases the intrusiveness of profiling. A very small sampling interval also
can cause system instability.

Sampling-point: When a sampling-point occurs upon the expiry of the sampling-interval for a
sampling-event, various profile data, such as Instruction Pointer, Process Id, Thread Id, and Call-stack
will be collected by the interrupt handler.

Event-Counter Multiplexing

If the number of the monitored PMC events is less than or equal to the number of available
performance counters, then each event can be assigned to a counter and monitored 100% of the time.
In a single-profile measurement, if the number of monitored events is larger than the number of
available counters, the CPU Profiler time-shares the available HW PMC counters. This is called event
counter multiplexing. It helps monitor more events and decreases the actual number of samples for
each event and thus, reduces the data accuracy. The CPU Profiler auto-scales the sample counts to

Chapter 13 Reference 219

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

compensate for this event counter multiplexing. For example, if an event is monitored 50% of the
time, the CPU Profiler scales the number of event samples by factor of 2.

13.2.3 Profile Types

The profile types are classified based on the hardware or software sampling events used to collect the
profile data.

Time-Based Profile (TBP)

In this profile, the profile data is periodically collected based on the specified OS timer interval. It is
used to identify the hotspots of the profiled applications.

Event-Based Profile (EBP)

In this profile, the CPU Profiler uses the PMCs to monitor the various micro-architectural events
supported by the AMD x86-based processor. It helps to identify the CPU and memory related
performance issues in the profiled applications. The CPU Profiler provides several predefined EBP
profile configurations. To analyze an aspect of the profiled application (or system), a specific set of
relevant events are grouped and monitored together. The CPU Profiler provides a list of predefined
event configurations, such as Assess Performance and Investigate Branching. You can select any of
these predefined configurations to profile and analyze the runtime characteristics of your application.
You also can create their custom configurations of events to profile.

In this profile mode, a delay called skid occurs between the time at which the sampling interrupt
occurs and the time at which the sampled instruction address is collected. This skid distributes the
samples in the neighborhood near the actual instruction that triggered a sampling interrupt. This
produces an inaccurate distribution of samples and events are often attributed to the wrong
instructions.

Instruction-Based Sampling (IBS)

In this profile, the CPU Profiler uses the IBS HW supported by the AMD x86-based processor to
observe the effect of instructions on the processor and on the memory subsystem. In IBS, HW events
are linked with the instruction that caused them. Also, HW events used by the CPU Profiler to derive
various metrics, such as data cache latency.

Custom Profile

This profile allows a combination of HW PMC events, OS timer, and IBS sampling events.

220 Reference Chapter 13

AMDA1

57368 Rev.4.2

January 2024

13.2.4 Predefined Core PMC Events

AMD uProf User Guide

Some of the Core Performance events of AMD “Zen” processors are listed in the following table:

Table 64.

Predefined Core PMC Events

Event Id,
Unit-mask

Event Abbreviation

Name and Description

AMD 2" Gen EPYC™ Processors

0x76, 0x00

CYCLES NOT IN HALT

CPU clock cycles not halted

The number of CPU cycles when the thread is
not in halt state.

0xC0, 0x00

RETIRED_INST

Retired Instructions

The number of instructions retired from
execution. This count includes exceptions and
interrupts. Each exception or interrupt is
counted as one instruction.

0xC1, 0x00

RETIRED_MICRO_OPS

Retired Macro Operations

The number of macro-ops retired. This count
includes all processor activity - instructions,
exceptions, interrupts, microcode assists, and
SO on.

0xC2, 0x00

RETIRED BR_INST

Retired Branch Instructions

The number of branch instructions retired. This
includes all types of architectural control flow
changes, including exceptions and interrupts

0xC3, 0x00

RETIRED BR_INST MISP

Retired Branch Instructions Mispredicted
The number of retired branch instructions that
were mis-predicted.

Note: Only EX direct mis-predicts and indirect target
mis-predicts are counted.

0x03, 0x08

RETIRED SSE_AVX_FLOPS

Retired SSE/AVX Flops

The number of retired SSE/AVX flops. The
number of events logged per cycle can vary
from 0 to 64. This is a large increment per
cycle event as it can count more than 15 events
per cycle. This count both single precision and
double precision FP events.

Chapter 13

Reference

221

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Table 64. Predefined Core PMC Events

EV.ent 1d, Event Abbreviation Name and Description
Unit-mask
0x29, 0x07 L1 DC ACCESSES ALL All Data cache accesses

The number of load and store ops dispatched to
LS unit. This counts the dispatch of single op
that performs a memory load, dispatch of
single op that performs a memory store,
dispatch of a single op that performs a load
from and store to the same memory address.

0x60, 0x10 L2 CACHE ACCESS FROM L1 IC | L2 cache access from L1 IC miss

MISS The L2 cache access requests due to L1
instruction cache misses.

0x60, 0xC8 L2 CACHE ACCESS FROM L1 DC |L2 cache access from L1 DC miss

MISS The L2 cache access requests due to L1 data
cache misses. This also counts hardware and
software prefetches.

0x64, 0x01 L2 CACHE MISS FROM L1 IC MIS |L2 cache miss from L1 IC miss

S Counts all the Instruction cache fill requests
that misses in L.2 cache

0x64, 0x08 L2 CACHE MISS FROM_L1 DC MIS | L2 cache miss from L1 DC miss

S Counts all the Data cache fill requests that
misses in L2 cache
0x71, 0x1F L2 HWPF HIT IN L3 L2 Prefetcher Hits in L3

Counts all L2 prefetches accepted by the L2
pipeline which miss the L2 cache and hit the
L3.

0x72, 0x1F L2 HWPF MISS IN L2 L3 L2 Prefetcher Misses in L3

Counts all L2 prefetches accepted by the L2
pipeline which miss the L2 and the L3 caches
0x64, 0x06 L2 CACHE HIT _FROM L1 IC MISS |L2 cache hit from L1 IC miss

Counts all the Instruction cache fill requests
that hits in L2 cache.

0x64, 0x70 L2 CACHE HIT FROM L1 DC MISS | L2 cache hit from L1 DC miss

Counts all the Data cache fill requests that hits
in L2 cache.

0x70, 0x1F L2 HWPF HIT IN L2 L2 cache hit from L2 HW Prefetch

Counts all L2 prefetches accepted by L2
pipeline which hit in the L2 cache

222 Reference Chapter 13

AMDA1

57368 Rev.4.2

Table 64.

January 2024

Predefined Core PMC Events

AMD uProf User Guide

Event Id,
Unit-mask

Event Abbreviation

Name and Description

0x43, 0x01

L1 DEMAND DC REFILLS LOCAL
L2

L1 demand DC fills from L2

The demand Data Cache (DC) fills from local
L2 cache to the core.

0x43, 0x02

L1 DEMAND DC REFILLS LOCAL _
CACHE

L1 demand DC fills from local CCX

The demand Data Cache (DC) fills from same
the cache of same CCX or cache of different
CCX in the same package (node).

0x43, 0x08

L1 DEMAND DC REFILLS LOCAL _
DRAM

L1 demand DC fills from local Memory

The demand Data Cache (DC) fills from
DRAM or IO connected in the same package
(node).

0x43, 0x10

L1 DEMAND DC REFILLS REMOTE
_CACHE

L1 demand DC fills from remote cache

The demand Data Cache (DC) fills from cache
of CCX in the different package (node).

0x43, 0x40

L1 DEMAND DC REFILLS REMOTE
DRAM

L1 demand DC fills from remote Memory
The demand Data Cache (DC) fills from
DRAM or IO connected in the different
package (node).

0x43, 0x5B

L1 DEMAND DC REFILLS ALL

L1 demand DC refills from all data sources.

The demand Data Cache (DC) fills from all the
data sources.

0x60, OxFF

L2 REQUESTS ALL

All L2 cache requests.

0x84, 0x00

L1 _ITLB_MISSES L2 HITS

L1 TLB miss L2 TLB hit

The instruction fetches that misses in the L1
Instruction Translation Lookaside Buffer
(ITLB) but hit in the L2-ITLB.

0x85, 0x07

L2 ITLB_MISSES

L1 TLB miss L2 TLB miss

The ITLB reloads originating from page table
walker. The table walk requests are made for
L1-ITLB miss and L2-ITLB misses.

0x45, OxFF

L1 _DTLB_MISSES

L1 DTLB miss

The L1 Data Translation Lookaside Buffer
(DTLB) misses from load store micro-ops.
This event counts both L2-DTLB hit and L2-
DTLB miss.

0x45, 0xFO

L2 DTLB_MISSES

L1 DTLB miss

The L2 Data Translation Lookaside Buffer
(DTLB) missed from load store micro-ops.

Chapter 13

Reference

223

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Table 64. Predefined Core PMC Events

EV.ent 1d, Event Abbreviation Name and Description
Unit-mask
0x47, 0x00 MISALIGNED LOADS Misaligned Loads

The number of misaligned loads.

Note: On AMD “Zen 3” core processors, this event
counts the 64B (cache-line crossing) and 4K
(page crossing) misaligned loads.

0x52, 0x03 INEFFECTIVE SW_PF Ineffective Software Prefetches

The number of software prefetches that did not
fetch data outside of the processor core. This
event counts the Software PREFETCH
instruction that saw a match on an already -
allocated miss request buffer. Also counts the
Software PREFETCH instruction that saw a
DC hit.

AMD EPYC™ 3rd Generation Processors

0x76, 0x00 CYCLES NOT IN HALT CPU clock cycles not halted

The number of CPUcycles when the thread is
not in halt state.

0xC0, 0x00 RETIRED_INST Retired Instructions

The number of instructions retired from
execution. This count includes exceptions and
interrupts. Each exception or interrupt is
counted as one instruction.

0xCl1, 0x00 RETIRED _MACRO_OPS Retired Macro Operations

The number of macro-ops retired. This count
includes all processor activity - instructions,
exceptions, interrupts, microcode assists, and
SO on.

0xC2, 0x00 RETIRED BR_INST Retired Branch Instructions

The number of branch instructions retired. This
includes all types of architectural control flow
changes, including exceptions and interrupts

0xC3, 0x00 RETIRED BR_INST MISP Retired Branch Instructions Mis-predicted

The number of retired branch instructions, that
were mis-predicted. Note that only EX direct
mis-predicts and indirect target mis-predicts
are counted.

224 Reference Chapter 13

AMDA1

57368 Rev.4.2 January 2024

Table 64. Predefined Core PMC Events

AMD uProf User Guide

Event Id,

Unit-mask Event Abbreviation

Name and Description

0x03,0x08 | RETIRED SSE AVX FLOPS

Retired SSE/AVX Flops

The number of retired SSE/AVX flops. The
number of events logged per cycle can vary
from 0 to 64. This is large increment per cycle
event, since it can count more than 15 events
per cycle. This count both single precision and
double precision FP events.

0x29, 0x07 L1 DC ACCESSES ALL

All Data cache accesses

The number of load and store ops dispatched to
LS unit. This counts the dispatch of single op
that performs a memory load, dispatch of
single op that performs a memory store, and
dispatch of a single op that performs a load
from and store to the same memory address.

0x60, 0x10
MISS

L2 CACHE ACCESS FROM L1 IC_

L2 cache access from L1 IC miss

The L2 cache access requests due to L1
instruction cache misses.

0x60, 0xE8
MISS

L2 CACHE ACCESS FROM L1 DC_

L2 cache access from L1 DC miss

The L2 cache access requests due to L1 data
cache misses. This also counts hardware and
software prefetches.

0x64, 0x01
S

L2 CACHE MISS FROM L1 _IC_MIS

L2 cache miss from L1 IC miss

Counts all the Instruction cache fill requests
that misses in L2 cache.

0x64, 0x08
S

L2 CACHE MISS FROM L1 DC MIS

L2 cache miss from L1 DC miss

Counts all the Data cache fill requests that
misses in L2 cache.

0x71,0xFF |L2 HWPF HIT IN L3

L2 Prefetcher Hits in L3

Counts all L2 prefetches accepted by the L2
pipeline which miss the L2 cache and hit the
L3.

0x72, 0xFF | L2 HWPF _MISS IN L2 L3

L2 Prefetcher Misses in L3

Counts all L2 prefetches accepted by the L2
pipeline which miss the L2 and the L3 caches.

0x64, 0x06

L2 CACHE_HIT FROM L1 IC_MISS

L2 cache hit from L1 IC miss

Counts all the Instruction cache fill requests
that hits in L2 cache.

Chapter 13

Reference

225

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024
Table 64. Predefined Core PMC Events
EV.ent 1d, Event Abbreviation Name and Description
Unit-mask
0x64, 0xFO L2 CACHE HIT.FROM L1 DC MISS |L2 cache hit from L1 DC miss
Counts all the Data cache fill requests that hits
in L2 cache.
0x70, OxFF L2 HWPF HIT IN L2 L2 cache hit from L2 HW Prefetch
Counts all L2 prefetches accepted by L2
pipeline which hit in the L2 cache
0x43, 0x01 L1 DEMAND DC REFILLS LOCAL_|L1 demand DC fills from L2
L2 The demand Data Cache (DC) fills from local
L2 cache to the core.
0x43, 0x02 L1 DEMAND DC REFILLS LOCAL |L1 demand DC fills from local CCX
CACHE The demand Data Cache (DC) fills from the L3
cache or L2 in the same CCX.
0x43, 0x04 L1 DC REFILLS EXTERNAL CACH |L1 DC fills from local external CCX caches
E LOCAL The Data Cache (DC) fills from cache of
different CCX in the same package (node).
0x43, 0x08 L1 DEMAND DC REFILLS LOCAL_ | L1 demand DC fills from local Memory
DRAM The demand Data Cache (DC) fills from
DRAM or IO connected in the same package
(node).
0x43, 0x10 L1 DEMAND DC REFILLS EXTERN | L1 demand DC fills from remote external
AL CACHE REMOTE cache
The demand Data Cache (DC) fills from cache
of CCX in the different package (node).
0x43, 0x40 L1 DEMAND DC REFILLS REMOTE | L1 demand DC fills from remote Memory
_DRAM The demand Data Cache (DC) fills from
DRAM or IO connected in the different
package (node).
0x43,0x14 |L1 DEMAND DC REFILLS EXTERN |L1 demand DC fills from external caches
AL_CACHE The demand Data Cache (DC) fills from cache
of different CCX in the same or different
package (node).
0x43, 0x5F L1 DEMAND DC REFILLS ALL L1 demand DC refills from all data sources.
The demand Data Cache (DC) fills from all the
data sources.
0x44, 0x01 L1 DC REFILLS.LOCAL L2 L1 DC fills from local L2
The Data Cache (DC) fills from local L2 cache
to the core.
226 Reference Chapter 13

AMDA1

57368 Rev.4.2

Table 64.

January 2024

Predefined Core PMC Events

AMD uProf User Guide

Event Id,
Unit-mask

Event Abbreviation

Name and Description

0x44, 0x02

L1 DC REFILLS LOCAL CACHE

L1 DC fills from local CCX cache

The Data Cache (DC) fills from different L2
cache in the same CCX or L3 cache that
belongs to the same CCX.

0x44, 0x08

L1 DC REFILLS LOCAL DRAM

L1 DC fills from local Memory

The Data Cache (DC) fills from DRAM or 10
connected in the same package (node).

0x44, 0x04

L1 DC REFILLS EXTERNAL CACH
E LOCAL

L1 DC fills from local external CCX caches

The Data Cache (DC) fills from cache of
different CCX in the same package (node).

0x44, 0x10

L1 DC REFILLS EXTERNAL CACH
E_REMOTE

L1 DC fills from remote external CCX caches

The Data Cache (DC) fills from cache of CCX
in the different package (node).

0x44, 0x40

L1 DC REFILLS REMOTE DRAM

L1 DC fills from remote Memory

The Data Cache (DC) fills from DRAM or 10
connected in the different package (node).

0x44, 0x14

L1 DC REFILLS EXTENAL CACHE

L1 DC fills from local external CCX caches

The Data Cache (DC) fills from cache of
different CCX in the same or different package
(node).

0x44, 0x48

L1 DC REFILLS DRAM

L1 DC fills from local Memory

The Data Cache (DC) fills from DRAM or 10
connected in the same or different package
(node).

0x44, 0x50

L1 DC REFILLS REMOTE NODE

L1 DC fills from remote node

The Data Cache (DC) fills from cache of CCX
in the different package (node) or the DRAM /
10 connected in the different package (node).

0x44, 0x03

L1 DC REFILLS LOCAL CACHE L2
L3

L1 DC fills from same CCX

The Data Cache (DC) fills from local L2 cache
to the core or different L2 cache in the same
CCX or L3 cache that belongs to the same
CCX

0x44, 0x5F

L1 DC REFILLS ALL

L1 DC fills from all the data sources
The Data Cache fills from all the data sources

0x60, OxFF

L2 REQUESTS ALL

All L2 cache requests.

Chapter 13

Reference

227

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Table 64. Predefined Core PMC Events

EV.ent 1d, Event Abbreviation Name and Description
Unit-mask
0x84, 0x00 L1 ITLB MISSES L2 HITS L1 TLB miss L2 TLB hit

The instruction fetches that misses in the L1
Instruction Translation Lookaside Buffer
(ITLB) but hit in the L2-ITLB.

0x85, 0x07 L2 ITLB_MISSES L1 TLB miss L2 TLB miss
The ITLB reloads originating from page table

walker. The table walk requests are made for
L1-ITLB miss and L2-ITLB misses.

0x45, 0xFF L1 DTLB_MISSES L1 DTLB miss

The L1 Data Translation Lookaside Buffer
(DTLB) misses from load store micro-ops.
This event counts both L2-DTLB hit and L2-
DTLB miss

0x45, 0xFO L2 DTLB_MISSES L1 DTLB miss

The L2 Data Translation Lookaside Buffer
(DTLB) missed from load store micro-ops

0x78, OXFF ALL TLB FLUSHES All TLB flushes
0x47, 0x03 MISALIGNED LOADS The number of misaligned loads.

Note: On AMD “Zen 3” core processors, this event
counts the 64B (cache-line crossing) and 4K
(page crossing) misaligned loads.

0x52, 0x03 INEFFECTIVE _SW_PF Ineffective Software Prefetches

The number of software prefetches that did not
fetch data outside of the processor core. This
event counts the Software PREFETCH
instruction that saw a match on an already
allocated miss request buffer. Also counts the
Software PREFETCH instruction that saw a
DC hit.

AMD EPYC™ 4t Generation Processors

0x76, 0x00 CYCLES NOT_IN_HALT CPU clock cycles not halted

The number of CPU cycles when the thread is
not in halt state.

0xCO0, 0x00 RETIRED INST Retired Instructions

The number of instructions retired from
execution. This count includes exceptions and
interrupts. Each exception or interrupt is
counted as one instruction.

228 Reference Chapter 13

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Table 64. Predefined Core PMC Events

EV.ent 1d, Event Abbreviation Name and Description
Unit-mask
0xC1, 0x00 RETIRED MACRO_OPS Retired Macro Operations
The number of macro-ops retired. This count
includes all processor activity - instructions,
exceptions, interrupts, microcode assists, and
S0 on.
0xC2, 0x00 RETIRED BR INST Retired Branch Instructions

The number of branch instructions retired. This
includes all types of architectural control flow
changes, including exceptions and interrupts

0xC3, 0x00 RETIRED BR_INST MISP Retired Branch Instructions Mis-predicted
The number of retired branch instructions, that
were mis-predicted.

Note: Only EX direct mis-predicts and indirect target
mis-predicts are counted

0x03, 0x1F RETIRED SSE AVX FLOPS Retired SSE/AVX Flops

The number of retired SSE/AVX flops. The
number of events logged per cycle can vary
from 0 to 64. This is a large increment per
cycle event as it can count more than 15 events
per cycle. This counts both the single precision
and double precision FP events.

0x29, 0x07 L1 DC ACCESSES ALL All Data Cache Accesses

The number of load and store ops dispatched to
the LS unit. This counts the dispatch of a
single op that performs a:

* memory load
* memory store
* load from and store to the same memory

address
0x60, 0x10 L2 CACHE ACCESS FROM L1 IC | L2 cache access from L1 IC miss
MISS The L2 cache access requests due to the L1

instruction cache misses.

0x60, 0xES8 L2 CACHE ACCESS FROM L1 DC_|L2 cache access from L1 DC miss

MISS The L2 cache access requests due to the L1
data cache misses. This also counts the
hardware and software prefetches.

0x64, 0x01 L2 CACHE MISS FROM L1 IC MIS |L2 cache miss from L1 IC miss

S Counts all the instruction cache fill request
misses in the L2 cache.

Chapter 13 Reference 229

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024
Table 64. Predefined Core PMC Events
EV.ent 1d, Event Abbreviation Name and Description
Unit-mask
0x64, 0x08 L2 CACHE MISS FROM L1 DC MIS | L2 cache miss from L1 DC miss
S Counts all the data cache fill request misses in
L2 cache.
0x71, OxFF L2 HWPF HIT IN L3 L2 Prefetcher Hits in L3
Counts all the L2 prefetches accepted by the
L2 pipeline which miss the L2 cache and hit
the L3.
0x72, OxFF L2 HWPF MISS IN L2 L3 L2 Prefetcher Misses in L3
Counts all the L2 prefetches accepted by the
L2 pipeline which miss the L2 and L3 caches.
0x64, 0x06 L2 CACHE HIT FROM L1 IC MISS |L2 cache hit from L1 IC miss
Counts all the instruction cache fill requests
that hit the L2 cache.
0x64, 0xFO L2 CACHE HIT FROM L1 DC MISS | L2 cache hit from L1 DC miss
Counts all the data cache fill requests that hit
the L2 cache.
0x70, OxFF L2 HWPF HIT IN L2 L2 cache hit from L2 HW Prefetch
Counts all the L2 prefetches accepted by L2
pipeline which hit the L2 cache.
0x43, 0x01 L1 DEMAND DC REFILLS LOCAL |L1 demand DC fills from L2
L2 The demand Data Cache (DC) fills from the
local L2 cache to the core.
0x43, 0x02 L1 DEMAND DC REFILLS LOCAL_ |L1 demand DC fills from local CCX
CACHE The demand Data Cache (DC) fills from the L3
cache or L2 in the same CCX.
0x43, 0x04 L1 DEMAND DC REFILLS EXTERN | L1 DC fills from local external CCX caches
AL_CACHE_LOCAL The DC fills from the cache of different CCX
in the same package (node).
0x43, 0x08 L1 DEMAND DC REFILLS LOCAL | L1 demand DC fills from local Memory
DRAM The demand DC fills from DRAM or 10
connected in the same package (node).
0x43, 0x10 L1 DEMAND DC REFILLS EXTERN | L1 demand DC fills from remote external
AL _CACHE REMOTE cache
The demand DC fills from the CCX cache in
the different package (node).
230 Reference Chapter 13

AMDA1

57368 Rev.4.2

January 2024

AMD uProf User Guide

Table 64. Predefined Core PMC Events
EV.ent 1d, Event Abbreviation Name and Description
Unit-mask
0x43, 0x40 L1 DEMAND DC REFILLS REMOTE | L1 demand DC fills from remote Memory
_DRAM The demand DC fills from DRAM or 10
connected in the different package (node).
0x43, 0x14 L1 DEMAND DC REFILLS EXTERN | L1 demand DC fills from external caches
AL_CACHE The demand DC fills from the cache of
different CCX in the same or different package
(node).
0x43, 0xDF |L1 DEMAND DC REFILLS ALL L1 demand DC refills from all data sources.
The demand DC fills from all the data sources.
0x44, 0x01 L1 DC REFILLS LOCAL L2 L1 DC fills from local L2
The DC fills from the local L2 cache to the
core.
0x44, 0x02 L1 DC REFILLS LOCAL CACHE L1 DC fills from local CCX cache
The DC fills from different L2 cache in the
same CCX or L3 cache that belongs to the
same CCX.
0x44, 0x08 L1 DC REFILLS EXTERNAL CACH | L1 DC fills from local Memory
E LOCAL The DC fills from DRAM or IO connected in
the same package (node).
0x44, 0x04 L1 DC REFILLS EXTERNAL CACH |L1 DC fills from local external CCX caches
E_LOCAL The DC fills from the cache of different CCX
in the same package (node).
0x44, 0x10 L1 DC REFILLS EXTERNAL CACH |L1 DC fills from remote external CCX caches
E_REMOTE The DC fills from the CCX cache in the
different package (node).
0x44, 0x40 L1 DC REFILLS REMOTE DRAM L1 DC fills from remote Memory
The DC fills from DRAM or IO connected in
the different package (node).
0x44, 0x14 L1 DC REFILLS EXTENAL CACHE |L1 DC fills from local external CCX caches
The DC fills from cache of different CCX in
the same or different package (node).
0x44, 0x48 L1 DC REFILLS DRAM L1 DC fills from local Memory

The DC fills from DRAM or IO connected in
the same or different package (node).

Chapter 13

Reference

231

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024
Table 64. Predefined Core PMC Events
EV.ent 1d, Event Abbreviation Name and Description
Unit-mask
0x44, 0x50 L1 DC REFILLS REMOTE NODE L1 DC fills from remote node
The DC fills from the CCX cache in the
different package (node) or the DRAM /10
connected in the different package (node).
0x44, 0x03 L1 DC REFILLS LOCAL CACHE L2 |L1 DC fills from same CCX
_L3 The DC fills from the local L2 cache to the
core or different L2 cache in the same CCX or
L3 cache that belongs to the same CCX.
0x44,0xDF |L1 DC REFILLS ALL L1 DC fills from all the data sources
The DC fills from all the data sources
0x60, OxFF L2 REQUESTS ALL All L2 cache requests.
0x84, 0x00 L1 _ITLB_MISSES L2 HITS L1 TLB miss L2 TLB hit
The instruction fetches that misses in the L1
Instruction Translation Lookaside Buffer
(ITLB) but hit in the L2-ITLB.
0x85, 0x07 L2 ITLB MISSES L1 TLB miss L2 TLB miss
The ITLB reloads originating from page table
walker. The table walk requests are made for
L1-ITLB miss and L2-ITLB misses.
0x45, OxFF L1 DTLB_MISSES L1 DTLB miss
The L1 Data Translation Lookaside Buffer
(DTLB) misses from load store micro-ops.
This event counts both L2-DTLB hit and L2-
DTLB miss
0x45, 0xFO L2 DTLB_MISSES L1 DTLB miss
The L2 Data Translation Lookaside Buffer
(DTLB) missed from load store micro-ops
0x78, OXxFF ALL TLB FLUSHES All TLB flushes
0x47, 0x03 MISALIGNED LOADS The number of misaligned loads.
Note: On AMD “Zen 3” core processors, this event
counts the 64 B (cache-line crossing) and 4 K
(page crossing) misaligned loads.
232 Reference Chapter 13

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Table 64. Predefined Core PMC Events

EV.ent 1d, Event Abbreviation Name and Description
Unit-mask
0x52, 0x03 INEFFECTIVE SW_PF Ineffective Software Prefetches
The number of software prefetches that did not
fetch data outside of the processor core. This
event counts the Software PREFETCH
instruction that saw a match on allocated miss
request buffer. Also counts the Software
PREFETCH instruction that saw a DC hit.
Ox18E, Ox1F |IC TAG ALL IC ACCESS IC Tag All Instruction Cache Access
0x18E, 0x18 |IC_TAG _IC MISS IC Tag Instruction Cache Miss
0x28F, 0x07 | OP_CACHE_ALL ACCESS All OP Cache Accesses
0x28F, 0x04 | OP_CACHE MISS Op Cache Miss

Following table shows the CPU performance metrics:
Table 65. Core CPU Metrics
CPU Metric Description

Core Effective Frequency Core Effective Frequency (without halted cycles) over the sampling
period, reported in GHz. The metric is based on APERF and MPERF
MSRs. MPEREF is incremented by the core at the PO state frequency
while the core is in CO state. APERF is incremented in proportion to the
actual number of core cycles while the core is in CO state.

IPC Instructions Retired Per Cycle (IPC) is the average number of
instructions retired per cycle. This is measured using Core PMC events
PMCx0CO [Retired Instructions] and PMCx076 [CPU Clocks not
Halted]. These PMC events are counted in both OS and User mode.

CPI Cycles Per Instruction Retired (CPI) is the multiplicative inverse of IPC
metric. This is one of the basic performance metrics indicating how
cache misses, branch mis-predictions, memory latencies, and other
bottlenecks are affecting the execution of an application. Lower CPI
value is better.

L1 DC REFILLS ALL (PTI) | The number of demand data cache (DC) fills per thousand retired
instructions. These demand DC fills are from all the data sources like
Local L2/L3 cache, remote caches, local memory, and remote memory.

Chapter 13 Reference 233

AMDA1

AMD uProf User Guide

Table 65.

57368 Rev.4.2 January 2024

Core CPU Metrics

CPU Metric

Description

L1 DC MISSES (PTI)

The number of L2 cache access requests due to L1 data cache misses,
per thousand retired instructions. This L2 cache access requests also
includes the hardware and software prefetches.

L1 DC_ACCESS_RATE

The DC access rate is the number of DC accesses divided by the total
number of retired instructions

L1 DC_MISS RATE

The DC miss rate is the number of DC misses divided by the total
number of retired instructions.

L1 DC_MISS RATIO

The DC miss ratio is the number of DC misses divided by the total
number of DC accesses.

RETIRED BR_INST MISP R
ATIO

This metric is computed as the retired mis-predicted branches divided
by the total number of retired branch instructions.

RETIRED BR_INST RATE

The number of retired branch instructions rate. This metric is computed
as the retired branches divided by the total number of retired
instructions.

RETIRED BR_INST MISP R
ATE

This metric is computed as retired mis-predicted branches divided by
the total number of retired instructions.

RETIRED TAKEN BR_INST
(PTI)

The number of retired taken branches per thousand instructions.

RETIRED TAKEN BR_INST
RATE

The number of retired taken branches rate. This metric is computed as
the retired taken branches divided by the total number of retired
instructions.

RETIRED TAKEN BR_INST
MISP (PTI)

The number of retired mis-predicted taken branches per thousand
instructions.

RETIRED INDIRECT BR_IN
ST MISP (PTI)

The number of retired indirect branches per thousand instructions.

RETIRED NEAR RETURNS
(PTI)

The number of retired near branches per thousand instructions.

RETIRED NEAR RETURNS_
MISP (PTI)

The number of retired mis-predicted near branches per thousand
instructions.

RETIRED NEAR RETURNS
MISP_RATE

This metric is computed as the retired mis-predicted near returns
divided by the total number of retired instructions.

RETIRED NEAR RETURNS
MISP_RATIO

This metric is computed as retired mis-predicted near returns divided by
the total number of retired return instructions.

L1 DTLB MISS_RATE

The DTLB L1 miss rate is the number of DTLB L1 misses divided by
the total number of retired instructions.

L2 DTLB MISS_RATE

The L2 DTLB miss rate is the number of L2 DTLB misses divided by
the total number of retired instructions.

234

Reference

Chapter 13

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Table 65. Core CPU Metrics
CPU Metric Description

L1 ITLB MISS RATE The ITLB L1 miss rate is the number of ITLB L1_Miss L2 Hits and
L1 Miss L2 Miss divided by the total number of retired instructions.

L2 ITLB MISS RATE The ITLB L2 miss rate is the number of ITLB L2 miss divided by the
total number of retired instructions.

MISALIGNED LOADS RATI | The misalign ratio is the number of misaligned loads divided by the
0] total number of DC accesses.

MISALIGNED LOADS RATE | The misalign rate is the number of misaligned loads divided by the total
number of retired instructions.

STLI OTHER Store-to-load conflicts: A load was unable to complete due to a non-
forwardable conflict with an older store. Most commonly, a load's
address range partially but not completely overlaps with an
uncompleted older store. Software can avoid this problem by using the
same size and alignment loads and stores when accessing the data.
Vector/SIMD code is particularly susceptible to this problem; software
should construct wide vector stores by manipulating the vector elements
in the registers using shuffle/blend/swap instructions prior to storing to
the memory, instead of using narrow element-by-element stores.

L2 CACHE _ACCESSES _FRO | The number of L2 cache access requests due to the L1 instruction cache
M _IC MISSES misses per thousand retired instructions. This L2 cache access requests
also includes the prefetches.

L2 CACHE MISSES FROM I | The number of L2 cache misses from L1 instruction cache misses per
C _MISSES thousand retired instructions.

13.2.5 IBS Derived Events

AMD uProf translates the IBS information produced by the hardware into derived event sample
counts that resemble EBP sample counts. All the IBS-derived events contain IBS in the event name
and abbreviation. Although IBS-derived events and sample counts look similar to the EBP events and
sample counts, the source and sampling basis for the IBS event information are different.

Arithmetic calculation should never be performed between IBS derived event sample counts and EBP
event sample counts. It is not meaningful to directly compare the number of samples taken for events
that represent the same hardware condition. For example, fewer IBS DC miss samples is not
necessarily better than a larger quantity of EBP DC miss samples.

Chapter 13 Reference 235

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Following table shows the IBS fetch events:
Table 66. IBS Fetch Events
IBS Fetch Event Description

AMD “Zenl1”, AMD “Zen2”, and AMD “Zen3” Client Platforms

IBS FETCH The number of all the IBS fetch samples. This derived event counts the
number of all the IBS fetch samples that were collected including IBS-killed
fetch samples.

IBS FETCH_KILLED The number of IBS sampled fetches that were killed fetches. A fetch operation
is killed if the fetch did not reach ITLB or IC access. The number of killed
fetch samples is not generally useful for analysis and are filtered out in other
derived IBS fetch events (except Event Select 0xF000 which counts all IBS
fetch samples including IBS killed fetch samples).

IBS FETCH_ATTEMPT | The number of IBS sampled fetches that were not killed fetch attempts. This
derived event measures the number of useful fetch attempts and does not
include the number of IBS killed fetch samples. This event should be used to
compute ratios such as the ratio of IBS fetch IC misses to attempted fetches.
The number of attempted fetches should equal the sum of the number of
completed fetches and the number of aborted fetches.

IBS FETCH_COMP The number of completed IBS sampled fetches. A fetch is completed if the
attempted fetch delivers instruction data to the instruction decoder. Although
the instruction data was delivered, it may still not be used. For example, the
instruction data may have been on the “wrong path” of an incorrectly predicted
branch.

IBS FETCH_ABORT The number of IBS sampled fetches that aborted. An attempted fetch is
aborted if it did not complete and deliver instruction data to the decoder. An
attempted fetch may abort at any point in the process of fetching instruction
data. An abort may be due to a branch redirection as the result of a
mispredicted branch. The number of IBS aborted fetch samples is a lower
bound on the number of unsuccessful, speculative fetch activity. It is a lower
bound as the instruction data delivered by completed fetches may not be used.

IBS L1 ITLB HIT The number of IBS attempted fetch samples where the fetch operation initially
hit in the L1 ITLB (Instruction Translation Lookaside Buffer).

IBS ITLB L1M _L2H The number of IBS attempted fetch samples where the fetch operation initially
missed in the L1 ITLB and hit in the L2 ITLB.

IBS ITLB L1M_L2M The number of IBS attempted fetch samples where the fetch operation initially
missed in both the L1 ITLB and the L2 ITLB.

IBS IC MISS The number of IBS attempted fetch samples where the fetch operation initially
missed in the IC (instruction cache).

IBS _IC HIT The number of IBS attempted fetch samples where the fetch operation initially
hit in the IC.

236 Reference Chapter 13

AMDA1

57368 Rev.4.2 January 2024

AMD uProf User Guide

Table 66. 1IBS Fetch Events
IBS Fetch Event Description
IBS 4K PAGE The number of IBS attempted fetch samples where the fetch operation
produced a valid physical address (that is, address translation completed
successfully) and used a 4-KByte page entry in the L1 ITLB.
IBS 2M_PAGE The number of IBS attempted fetch samples where the fetch operation

produced a valid physical address (that is, address translation completed
successfully) and used a 2 MB page entry in the L1 ITLB.

IBS_FETCH_LAT

The total latency of all IBS attempted fetch samples. Divide the total IBS fetch
latency by the number of IBS attempted fetch samples to obtain the average
latency of the attempted fetches that were sampled.

IBS FETCH L2C_MISS

The instruction fetch missed in the L2 Cache.

IBS_ITLB_REFILL LAT

The number of cycles when the fetch engine is stalled for an ITLB reload for
the sampled fetch. If there is no reload, the latency will be 0.

AMD “Zen3” and AMD “Zen4” Server Platforms

IBS FETCH

Number of all the IBS fetch samples. This derived event counts the number of
all the IBS fetch samples that were collected, including IBS-killed fetch
samples.

IBS FETCH_ATTEMPT
ED

The number of IBS sampled fetches that were not killed fetch attempts. This
derived event measures the number of useful fetch attempts and does not
include the number of IBS killed fetch samples. This event should be used to
compute ratios such as the ratio of IBS fetch IC misses to attempted fetches.
The number of attempted fetches should equal the sum of the number of
completed fetches and the number of aborted fetches.

IBS FETCH_COMPLET
ED

The number of IBS sampled fetches that completed. A fetch is completed if
the attempted fetch delivers instruction data to the instruction decoder.
Although the instruction data was delivered, it may still not be used (for
example, the instruction data may have been on the wrong path of an
incorrectly predicted branch.)

IBS_ FETCH _ABORTED

The number of IBS sampled fetches that aborted. An attempted fetch is
aborted if it does not complete and deliver instruction data to the decoder. An
attempted fetch may abort at any point in the process of fetching instruction
data. An abort may be due to a branch redirection as the result of a mis-
predicted branch. The number of IBS aborted fetch samples is a lower bound
on the amount of unsuccessful, speculative fetch activity. It is a lower bound as
the instruction data delivered by completed fetches may not be used.

IBS FETCH L1 ITLB_
HIT

The number of IBS attempted fetch samples where the fetch operation initially
hit in the L1 ITLB (Instruction Translation Lookaside Buffer).

IBS_ FETCH L1 _ITLB_
MISS_L2 ITLB_HIT

The number of IBS attempted fetch samples where the fetch operation initially
missed in the L1 ITLB and hit in the L2 ITLB.

IBS FETCH L1 ITLB_
MISS_L2_ITLB_MISS

The number of IBS attempted fetch samples where the fetch operation initially
missed in both the L1 ITLB and the L2 ITLB.

Chapter 13

Reference

237

AMDA1

AMD uProf User Guide

Table 66.

57368 Rev.4.2 January 2024

IBS Fetch Events

IBS Fetch Event

Description

IBS FETCH L1 _IC_MIS
S

The number of IBS attempted fetch samples where the fetch operation initially
missed in the IC (instruction cache).

IBS FETCH L1 IC HIT

The number of IBS attempted fetch samples where the fetch operation initially
hit in the IC.

IBS FETCH L1 _ITLB 4
K _PAGE

The number of IBS attempted fetch samples where the fetch operation
produced a valid physical address (for example, address translation completed
successfully) and used a 4 KB page entry in the L1 ITLB.

IBS_FETCH_L1 ITLB 2
M_PAGE

The number of IBS attempted fetch samples where the fetch operation
produced a valid physical address (for example, address translation completed
successfully) and used a 2 MB page entry in the L1 ITLB.

IBS FETCH L1 ITLB 1
G_PAGE

The number of IBS attempted fetch samples where the fetch operation
produced a valid physical address (for example, address translation completed
successfully) and used a 1 GB page entry in the L1 ITLB.

IBS_ FETCH_LAT

The total latency of all IBS attempted fetch samples. Divide the total IBS fetch
latency by the number of IBS attempted fetch samples to obtain the average
latency of the attempted fetches that were sampled.

IBS_FETCH L2 MISS

The instruction fetch missed in the L2 Cache.

IBS_FETCH_ITLB_REFI
LL LAT

The number of cycles when the fetch engine is stalled for an ITLB reload for
the sampled fetch. If there is no reload, the latency will be 0.

IBS FETCH OP_CACH
E_MISS

The number of IBS attempted fetch samples where the Op Cache was not able
to supply all the bytes for the tagged fetch.

IBS FETCH L3 MISS

The number of IBS attempted fetch samples where the instruction fetch missed
in the L3 cache on the same CCX.

Following table lists the IBS fetch metrics:

Table 67.

IBS Fetch Metrics

IBS Fetch Metric

Description

ATE %

IBS_FETCH L1 IC_MISS R

Percentage of IBS fetch L1 instruction cache misses with respect to the
total number of IBS fetch attempts.

IBS FETCH LAT AVE

The average IBS fetch latency. Calculated by dividing the IBS fetch
latency by the total number of IBS fetch attempts.

L2 ITLB_HIT RATE %

IBS FETCH L1 ITLB MISS_

Percentage of IBS fetch L1 ITLB miss and L2 ITLB hits with respect to
the total number of IBS fetch attempts.

IBS_ FETCH L1 _ITLB_MISS
L2 ITLB_MISS_RATE %

Percentage of IBS fetch L1 and L2 ITLB misses with respect to the total
number of IBS fetch attempts.

238

Reference

Chapter 13

AMDA1

57368 Rev.4.2 January 2024 AMD uProf User Guide

Following table lists the IBS op events:
Table 68. IBS Op Events
IBS Op Event Description

AMD “Zenl”, “Zen2”, and “Zen3” Client Platforms

IBS ALL OPS The number of all the IBS op samples collected. These op samples may be
branch ops, resync ops, ops that perform load/store operations, or
undifferentiated ops (for example, those ops that perform arithmetic
operations, logical operations, and so on). IBS collects data for the retired
ops. No data is collected for the ops that are aborted due to pipeline
flushes and so on. Thus, all the sampled ops are architecturally significant
and contribute to the successful execution of programs.

IBS TAG TO RET The total number of tag-to-retire cycles across all the IBS op samples. The
tag-to-retire time of an op is the number of cycles from when the op was
tagged (selected for sampling) to when the op retired.

IBS COMP_TO RET The total number of completion-to-retire cycles across all the IBS op
samples. The completion-to-retire time of an op is the number of cycles
from when the op completed to when the op retired.

IBS BR The number of IBS retired branch op samples. A branch operation is a
change in the program control flow and includes unconditional and
conditional branches, subroutine calls, and subroutine returns. Branch ops
are used to implement AMD64 branch semantics.

IBS_MISP_BR The number of IBS samples for retired branch operations that were mis-
predicted. This event should be used to compute the ratio of mis-predicted
branch operations to all the branch operations.

IBS TAKEN BR The number of IBS samples for the retired branch operations that were
taken branches.

IBS MISP_TAKEN BR The number of IBS samples for the retired branch operations that were
mis-predicted taken branches.

IBS RET The number of IBS retired branch op samples where the operation was a
subroutine return. These samples are a subset of all the IBS retired branch
op samples.

IBS MISP_RET The number of IBS retired branch op samples where the operation was a

mis-predicted subroutine return. This event should be used to compute the
ratio of the mis-predicted returns to all the subroutine returns.

IBS RESYNC The number of IBS resync op samples. A resync op is only found in
certain microcoded AMD64 instructions and causes a complete pipeline
flush.

IBS LOAD STORE The number of IBS op samples for ops that perform either a load and/or

store operation. Each op may perform a load operation, a store operation,
or both a load and store operation (each to the same address).

IBS LOAD The number of IBS op samples for ops that perform a load operation.

Chapter 13 Reference 239

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024
Table 68. IBS Op Events
IBS Op Event Description
IBS STORE The number of IBS op samples for ops that perform a store operation.

IBS L1 DTLB HIT

The number of IBS op samples where either a load or store operation
initially hit the L1 DTLB (data translation lookaside buffer).

IBS DTLB LIM L2H

The number of IBS op samples where either a load or store operation
initially missed in the L1 DTLB and hit the L2 DTLB.

IBS DTLB_LIM_L2M

The number of IBS op samples where either a load or store operation
initially missed in both the L1 DTLB and the L2 DTLB.

IBS DC MISS The number of IBS op samples where either a load or store operation
initially missed in the L1 DC.
IBS DC HIT The number of IBS op samples where either a load or store operation

initially hit the L1 DC.

IBS MISALIGN_ACC

The number of IBS op samples where either a load or store operation
caused a misaligned access (for example, the load or store operation
crossed a 128-bit boundary).

IBS BANK_CONF LOAD

The number of IBS op samples where either a load or store operation
caused a bank conflict with a load operation.

IBS BANK_CONF_STORE

The number of IBS op samples where either a load or store operation
caused a bank conflict with a store operation.

IBS FORWARDED

The number of IBS op samples where data for a load operation was
forwarded from a store operation.

IBS STLF CANCELLED

The number of IBS op samples where data forwarding to a load operation
from a store was canceled.

IBS_UC_MEM_ACC

The number of IBS op samples where a load or store operation accessed
uncacheable (UC) memory.

IBS WC_MEM_ACC

The number of IBS op samples where a load or store operation accessed
write combining (WC) memory.

IBS LOCKED_OP

The number of IBS op samples where a load or store operation was a
locked operation.

IBS MAB_HIT

The number of IBS op samples where a load or store operation hit an
already allocated entry in the Miss Address Buffer (MAB).

IBS L1 DTLB 4K

The number of IBS op samples where a load or store operation produced a
valid linear (virtual) address and a 4 KB page entry in the L1 DTLB was
used for the address translation.

IBS_ L1 _DTLB 2M

The number of IBS op samples where a load or store operation produced a
valid linear (virtual) address and a 2 M page entry in the L1 DTLB was
used for the address translation.

240

Reference Chapter 13

AMDA1

57368 Rev.4.2 January 2024

Table 68. IBS Op Events

AMD uProf User Guide

IBS Op Event

Description

IBS L1 DTLB 1G

The number of IBS op samples where a load or store operation produced a
valid linear (virtual) address and a 1 GB page entry in the L1 DTLB was
used for the address translation.

IBS L2 DTLB 4K

The number of IBS op samples where a load or store operation produced a
valid linear (virtual) address, hit the L2 DTLB, and used a 4 KB page
entry for the address translation.

IBS_L2 DTLB 2M

The number of IBS op samples where a load or store operation produced a
valid linear (virtual) address, hit the L2 DTLB, and used a 2 MB page
entry for the address translation

IBS L2 DTLB 1G

The number of IBS op samples where a load or store operation produced a
valid linear (virtual) address, hit the L2 DTLB, and used a 1 GB page
entry for address translation.

IBS LOAD DC MISS_LAT

The total L1 DC miss load latency (in processor cycles) across all the IBS
op samples that performed a load operation and missed in the data cache.
The miss latency is the number of clock cycles from when the L1 data
cache miss was detected to when data was delivered to the core.

IBS_LOAD RESYNC

Load Resync.

IBS_ NB_LOCAL

The number of IBS op samples where a load operation was serviced from
the local processor. Northbridge IBS data is only valid for the load
operations that miss in both the L1 data cache and the L2 data cache. If a
load operation crosses a cache line boundary, he IBS data reflects the
access to the lower cache line.

IBS NB_REMOTE

The number of IBS op samples where a load operation was serviced from
a remote processor.

IBS_ NB_LOCAL_L3

The number of IBS op samples where a load operation was serviced by
the local L3 cache.

IBS_ NB_LOCAL CACHE

The number of IBS op samples where a load operation was serviced by a
cache (L1 or L2 data cache) belonging to a local core which is a sibling of
the core making the memory request.

IBS NB REMOTE_CACHE

The number of IBS op samples where a load operation was serviced by a
remote L1 data cache, L2 cache, or L3 cache after traversing one or more
coherent Hyper Transport links.

IBS NB_LOCAL DRAM

The number of IBS op samples where a load operation was serviced by
local system memory (local DRAM through the memory controller).

IBS NB_REMOTE_DRAM

The number of IBS op samples where a load operation was serviced by
the remote system memory (after traversing one or more coherent Hyper
Transport links and through a remote memory controller).

IBS NB_LOCAL OTHER

The number of IBS op samples where a load operation was serviced from
local MMIO, configuration or PCI space, or from the local APIC.

Chapter 13

241

Reference

AMDA1

AMD uProf User Guide

Table 68. IBS Op Events

57368 Rev.4.2 January 2024

IBS Op Event

Description

IBS NB_REMOTE_OTHER

The number of IBS op samples where a load operation was serviced from
remote MMIO, configuration, or PCI space.

IBS NB_CACHE MODIFIED

The number of IBS op samples where a load operation was serviced from
local or remote cache, and the cache hit state was the Modified (M) state.

IBS NB_CACHE_OWNED

The number of IBS op samples where a load operation was serviced from
local or remote cache, and the cache hit state was the Owned (O) state.

IBS NB_LOCAL_LAT

The total data cache miss latency (in processor cycles) for the load
operations that were serviced by the local processor.

IBS_ NB_REMOTE_LAT

The total data cache miss latency (in processor cycles) for the load
operations that were serviced by a remote processor.

AMD “Zend4” and AMD “Zen3” Server Platforms

IBS ALL OPS

The number of all the IBS op samples that were collected. These samples
may be branch ops, resync ops, ops that perform load/store operations, or
undifferentiated ops. For example, the ops that perform arithmetic
operations, logical operations, and so on. IBS collects data for retired ops.
No data is collected for ops that are aborted due to pipeline flushes and so
on. Thus, all sampled ops are architecturally significant and contribute to
the successful program execution.

IBS TAG TO RET

The total number of tag-to-retire cycles across all the IBS op samples. The
tag-to-retire time of an op is the number of cycles from when the op was
tagged (selected for sampling) to when the op retired.

IBS_ COMP_TO RET

The total number of completion-to-retire cycles across all the IBS op
samples. The completion-to-retire time of an op is the number of cycles
from when the op completed to when the op retired.

IBS BR The number of IBS retired branch op samples. A branch operation is a
change in program control flow; includes unconditional and conditional
branches, subroutine and subroutine returns. Branch ops are used to
implement AMDG64 branch semantics.

IBS MISP BR The number of IBS samples for the retired branch operations that were

mis-predicted. This event should be used to compute the ratio of mis-
predicted branch operations to all branch operations.

IBS TAKEN BR

The number of IBS samples for retired branch operations that were taken
branches.

IBS_MISP_TAKEN BR

The number of IBS samples for the retired branch operations that were
mis-predicted taken branches.

IBS RET The number of IBS retired branch op samples where the operation was a
subroutine return. These samples are a subset of all the IBS retired branch
op samples.

242 Reference Chapter 13

AMDA1

57368 Rev.4.2 January 2024

Table 68.

IBS Op Events

AMD uProf User Guide

IBS Op Event

Description

IBS MISP RET

The number of IBS retired branch op samples where the operation was a
mis-predicted subroutine return. This event should be used to compute the
ratio of the mis-predicted returns to all the subroutine returns.

IBS RESYNC

The number of IBS resync op samples. A resync op is only found in
certain microcoded AMD64 instructions and causes a complete pipeline
flush.

IBS_LOAD STORE

The number of IBS op samples for the ops that perform either a load and/
or store operation. Each op may perform a load/store operation or both a
load and store operation (each to the same address).

IBS_LOAD

The number of IBS op samples for the ops that perform a load operation.

IBS_STORE

The number of IBS op samples for the ops that perform a store operation.

IBS L1 DTLB_HIT

The number of IBS op samples where either a load or store operation
initially hit in the L1 DTLB (data translation look aside buffer).

IBS DTLB LIM L2H

The number of IBS op samples where either a load or store operation
initially missed in the L1 DTLB and hit in the L2 DTLB.

IBS DTLB_LIM_L2M

The number of IBS op samples where either a load or store operation
initially missed in both the L1 DTLB and the L2 DTLB.

IBS DC MISS The number of IBS op samples where either a load or store operation
initially missed in the L.1 data cache (DC).
IBS DC HIT The number of IBS op samples where either a load or store operation

initially hit in the L1 data cache (DC).

IBS_MISALIGN_ACC

The number of IBS op samples where either a load or store operation
caused a misaligned access (that is, the load or store operation crossed a
128-bit boundary).

IBS BANK_CONF LOAD

The number of IBS op samples where either a load or store operation
caused a bank conflict with a load operation.

IBS BANK_CONF_STORE

The number of IBS op samples where either a load or store operation
caused a bank conflict with a store operation.

IBS FORWARDED

The number of IBS op samples where data for a load operation was
forwarded from a store operation.

IBS STLF CANCELLED

The number of IBS op samples where data forwarding to a load operation
from a store was canceled.

IBS_UC_MEM_ACC

The number of IBS op samples where a load or store operation accessed
uncacheable (UC) memory.

IBS WC_MEM_ACC

The number of IBS op samples where a load or store operation accessed
write combining (WC) memory.

IBS LOCKED_OP

The number of IBS op samples where a load or store operation was a
locked operation.

Chapter 13

Reference 243

AMDA1

AMD uProf User Guide

Table 68. IBS Op Events

57368 Rev.4.2 January 2024

IBS Op Event

Description

IBS MAB_HIT

The number of IBS op samples where a load or store operation hit an
allocated entry in the Miss Address Buffer (MAB).

IBS L1 DTLB 4K

The number of IBS op samples where a load or store operation produced a
valid linear (virtual) address and a 4 KB page entry in L1 DTLB was used
for the address translation.

IBS L1 DTLB 2M

The number of IBS op samples where a load or store operation produced a
valid linear (virtual) address and a 2 MB page entry in L1 DTLB was used
for the address translation.

IBS L1 DTLB_1G

The number of IBS op samples where a load or store operation produced a
valid linear (virtual) address and a 1 GB page entry in L1 DTLB was used
for the address translation.

IBS L2 DTLB 4K

The number of IBS op samples where a load or store operation produced a
valid linear (virtual) address, hit L2 DTLB, and used a 4 KB page entry
for the address translation.

IBS L2 DTLB 2M

The number of IBS op samples where a load or store operation produced a
valid linear (virtual) address, hit L2 DTLB, and used a 2 MB page entry
for the address translation.

IBS L2 DTLB_1G

The number of IBS op samples where a load or store operation produced a
valid linear (virtual) address, hit L2 DTLB, and used a 1 GB page entry
for the address translation.

IBS LOAD DC MISS LAT

The total L1 DC miss load latency (in processor cycles) across all the IBS
op samples that performed a load operation and missed in the data cache.
The miss latency is the number of clock cycles from when the L1 data
cache miss was detected to when data was delivered to the core.

IBS_ LOAD RESYNC

Load Resync.

IBS_ NB_LOCAL

The number of IBS op samples where a load operation was serviced from
the local processor. Northbridge IBS data is only valid for the load
operations that miss in both the L1 and L2 data cache. If a load operation
crosses a cache line boundary, the IBS data reflects the access to the lower
cache line.

IBS NB_REMOTE

The number of IBS op samples where a load operation was serviced from
a remote processor.

IBS NB_LOCAL L3

The number of IBS op samples where a load operation was serviced by
the local L3 cache.

IBS_ NB_LOCAL CACHE

The number of IBS op samples where a load operation was serviced by a
cache (L1 data cache or L2 cache) belonging to a local core that is a
sibling of the core making the memory request.

244

Reference Chapter 13

AMDA1

57368 Rev.4.2 January 2024

Table 68. IBS Op Events

AMD uProf User Guide

IBS Op Event

Description

IBS NB_REMOTE_CACHE

The number of IBS op samples where a load operation was serviced by a
remote L1 data, L2, or L3 cache after traversing one or more coherent
HyperTransport links.

IBS NB_LOCAL DRAM

The number of IBS op samples where a load operation was serviced by
local system memory (local DRAM through the memory controller).

IBS NB_REMOTE_DRAM

The number of IBS op samples where a load operation was serviced by
the remote system memory (after traversing one or more coherent
HyperTransport links and through a remote memory controller).

IBS_ NB_LOCAL_OTHER

The number of IBS op samples where a load operation was serviced from
the local MMIO, configuration, PCI space, or local APIC.

IBS NB_REMOTE_OTHER

The number of IBS op samples where a load operation was serviced from
the remote MMIO, configuration, or PCI space.

IBS NB_CACHE MODIFIED

The number of IBS op samples where a load operation was serviced from
the local or remote cache, and the cache hit state was the Modified (M)
state.

IBS NB_CACHE_OWNED

The number of IBS op samples where a load operation was serviced from
the local or remote cache, and the cache hit state was the Owned (O) state.

IBS_ NB_LOCAL_LAT

The total data cache miss latency (in processor cycles) for the load
operations that were serviced by the local processor.

IBS_ NB_REMOTE_LAT

The total data cache miss latency (in processor cycles) for the load
operations that were serviced by a remote processor.

Following table lists the IBS op

metrics for AMD “Zen4” and AMD “Zen3” server platforms:

Table 69. IBS Op Metrics for AMD “Zen4” and AMD “Zen3” Server Platforms

IBS Op Metric Description

%IBS BR TAG TO RETIRE CYCLES Percentage of IBS Branch op tag to retire cycles.

%IBS BR MISP TAG TO RETIRE CYCLES Percentage of IBS Branch mis-predict op tag to retire
cycles.

%IBS TAKEN BR TAG TO RETIRE CYCLES | Percentage of IBS Branch taken op tag to retire
cycles.

%IBS RET TAG TO RETIRE CYCLES Percentage of IBS Branch return op tag to retire
cycles.

%IBS BR COMP _TO RETIRE CYCLES Percentage of IBS Branch op completion to retire
cycles.

%IBS BR_MISP COMP TO RETIRE CYCLES | Percentage of IBS Branch mis-predict op completion

to retire cycles.

S

%IBS_TAKEN BR COMP_TO RETIRE CYCLE | Percentage of IBS Branch taken op completion to

retire cycles.

Chapter 13

Reference 245

AMDA1

AMD uProf User Guide 57368 Rev.4.2 January 2024

Table 69. IBS Op Metrics for AMD “Zen4” and AMD “Zen3” Server Platforms

IBS Op Metric Description
%IBS RET COMP TO RETIRE CYCLES Percentage of IBS Branch return op completion to
retire cycles.
IBS BR_MISP RATE % Branch mis-predict rate in percentage. The number of

branch mis-predicts divided by the total number of
branch operations, expressed as percentage.

%IBS L1 DTLB REFILL LAT CYCLES Percentage of cycles wasted due to L1 DTLB misses.
The number of .1 DTLB refill latency cycles divided
by the total number of Tag-To-Retire cycles of all the
operations, expressed as percentage.

IBS ST L1 DC_MISS RATE % Store L1 DC Miss rate in percentage. The number of
store L1 DC misses divided by the total number of
store ops, expressed as percentage.

IBS LD L1 DC MISS RATE % Load L1 DC Miss rate in percentage. The number of
load L1 DC misses divided by the total number of
load ops, expressed as percentage.

IBS LD L1 DC HIT RATE % Load L1 DC Hit rate in percentage. The number of
load L1 DC hits divided by the total number of load
ops, expressed as percentage.

IBS LD L2 HIT RATE % Load L2 Hit rate in percentage. The number of load
L2 hits divided by the total number of load ops,
expressed as percentage.

IBS LD LOCAL CACHE HIT RATE % Percentage of load samples where the load operation
was serviced by the shared L3 cache or other L1/L.2
cache in the same CCX. The number of

IBS LD LOCAL_CACHE_HIT divided by
IBS_LOAD, expressed in percentage.

IBS LD PEER _CACHE HIT RATE % Percentage of load samples where the load operation
was serviced by L2/L3 cache in a different CCX of
same NUMA node. The number of

IBS LD PEER CACHE HIT divided by
IBS_LOAD, expressed in percentage.

IBS LD RMT CACHE HIT RATE % Percentage of load samples where the load operation
was serviced by L2/L3 cache of different CCX in
different NUMA node. The number of

IBS LD RMT CACHE HIT divided by

IBS _LOAD, expressed in percentage.

246 Reference Chapter 13

AMDA1

57368 Rev.4.2 January 2024

Table 69.

AMD uProf User Guide

IBS Op Metrics for AMD “Zen4” and AMD “Zen3” Server Platforms

IBS Op Metric

Description

IBS LD LOCAL DRAM HIT RATE %

Percentage of load samples where the load operation
was serviced by local system memory (local DRAM
via the memory controller) of same NUMA node. The
number of IBS LD LOCAL DRAM HIT divided
by IBS_LOAD, expressed in percentage.

IBS_ LD RMT DRAM HIT RATE %

Percentage of load samples where the load operation
was serviced by DRAM in different NUMA node.
The number of IBS LD RMT DRAM_HIT divided
by IBS LOAD, expressed in percentage.

IBS LD DRAM HIT RATE %

Percentage of load samples where the load operation
was serviced by DRAM in the system. The number of
IBS LD DRAM HIT divided by IBS LOAD,
expressed in percentage.

IBS_ LD NVDIMM HIT RATE %

Percentage of load samples where the load operation

was serviced by NVDIMM in the system. The number
of IBS LD NVDIMM_HIT divided by IBS_LOAD,

expressed in percentage.

IBS LD EXT MEM HIT RATE %

Percentage of load samples where the load operation
was serviced by Extension Memory in the system.
The number of IBS LD EXT MEM HIT divided by
IBS_LOAD, expressed in percentage.

IBS_ LD PEER_AGENT MEM_RATE %

Percentage of load samples where the load operation
was serviced by Peer agent Memory in the system.
The number of IBS LD EXT MEM HIT divided by
IBS_LOAD, expressed in percentage.

IBS LD NON_MAIN MEM HIT RATE %

Percentage of load samples where the load operation
was serviced from MMIO, configuration or PCI
space, or from the local APIC in the system. The
number of IBS LD NON_MAIN MEM HIT
divided by IBS _LOAD, expressed in percentage.

IBS LD L1 DC MISS LAT AVE

Average Load L1 DC Miss latency cycles. The
number of load L1 DC misses latency divided by the
total number of load L1 DC misses latency cycles.

%IBS_LD L1 DC_MISS_LAT CYCLES

Percentage of cycles wasted to fetch the data. The
number of Load L1 DC misses latency cycles divided
by the total number of Tag-To-Retire cycles of all the
operations, expressed as percentage.

%IBS_LD L2 HIT LAT

Percentage of IBS load L2 hit latency cycles wrt. load
L1 DC miss latency cycles.

Chapter 13

Reference 247

AMDA1

AMD uProf User Guide

57368 Rev.4.2 January 2024

Table 69. IBS Op Metrics for AMD “Zen4” and AMD “Zen3” Server Platforms

IBS Op Metric

Description

%IBS_LD LOCAL CACHE HIT LAT

Percentage of IBS load local cache hit latency cycles
with respect to the load L1 DC miss latency cycles.

%IBS LD PEER CACHE HIT LAT

Percentage of IBS load peer cache hit latency cycles
with respect to the load L1 DC miss latency cycles.

%IBS_LD RMT CACHE_HIT LAT

Percentage of IBS load remote cache hit latency
cycles with respect to the load L1 DC miss latency
cycles.

%IBS_LD LOCAL DRAM HIT LAT

Percentage of IBS load local DRAM hit latency
cycles with respect to the load L1 DC miss latency
cycles.

%IBS LD RMT DRAM HIT LAT

Percentage of IBS load remote DRAM hit latency
cycles with respect to the load L1 DC miss latency
cycles.

%IBS_LD DRAM HIT LAT

Percentage of IBS load DRAM hit latency cycles with
respect to the load L1 DC miss latency cycles.

%IBS_LD NVDIMM HIT LAT

Percentage of IBS load NVDIMM hit latency cycles
with respect to the load L1 DC miss latency cycles.

%IBS_LD EXTN_MEM HIT LAT

Percentage of IBS load Extension Memory hit latency
cycles with respect to the load L1 DC miss latency
cycles.

%IBS_LD PEER_ AGENT MEM HIT LAT

Percentage of IBS load Peer Agent Memory hit
latency cycles with respect to the load L1 DC miss
latency cycles.

%IBS_LD NON_MAIN MEM _HIT LAT

Percentage of IBS load Non main memory hit latency
cycles with respect to the load L1 DC miss latency
cycles.

13.3 Useful URLS

For the processor specific PMC events and their descriptions, refer the following AMD developer

documents:

* Processor Programming Reference (PPR) for AMD Processors (https://developer.amd.com/

resources/developer-guides-manuals/)

* Software Optimization Guide for AMD Family 17h Processors (https.//developer.amd.com/

wordpress/media/2013/12/55723 3 00.ZIP)

» Software Optimization Guide for AMD Family 19h Processors (https.//www.amd.com/system/

files/TechDocs/56665.zip)

248

Reference

Chapter 13

https://developer.amd.com/wordpress/media/2013/12/55723_3_00.ZIP
https://developer.amd.com/wordpress/media/2013/12/55723_3_00.ZIP
https://www.amd.com/system/files/TechDocs/56665.zip
https://www.amd.com/system/files/TechDocs/56665.zip
https://developer.amd.com/resources/developer-guides-manuals/
https://developer.amd.com/resources/developer-guides-manuals/

	Contents
	List of Tables
	List of Figures
	Revision History
	About this Document
	Intended Audience
	Conventions
	Abbreviations
	Terminology

	Part 1: Introduction
	Chapter 1 Introduction
	1.1 Overview
	1.2 Specification
	1.2.1 Processors
	1.2.2 Operating Systems
	1.2.3 Compilers and Application Environment
	1.2.4 Virtualization Support
	1.2.5 Container Support

	1.3 Installing AMD uProf
	1.3.1 Windows
	1.3.2 Linux
	1.3.3 FreeBSD

	1.4 Sample Programs
	1.5 Support

	Part 2: System Analysis
	Chapter 2 Getting started with AMDuProfPcm
	2.1 Overview
	2.1.1 Prerequisite(s)

	2.2 Options
	2.3 Commands
	2.4 Examples
	2.4.1 Linux and FreeBSD
	2.4.2 Windows

	2.5 BIOS Settings - Known Behavior
	2.6 Monitoring without Root Privileges
	2.7 Roofline Model
	2.8 Pipeline Utilization

	Chapter 3 Getting Started with AMDuProfSys
	3.1 Overview
	3.2 Supported Platforms
	3.3 Supported Hardware Counters
	3.4 Supported Operating Systems
	3.5 Set up
	3.5.1 Linux
	3.5.2 Windows

	3.6 Options
	3.6.1 Generic
	3.6.2 Collect Command
	3.6.3 Report Command

	3.7 Examples
	3.8 Limitations

	Part 3: Application Analysis
	Chapter 4 Workflow and Key Concepts
	4.1 Workflow
	4.1.1 Collect Phase
	4.1.2 Translate and Report Phases
	4.1.3 Analyze Phase

	4.2 Predefined Sampling Configuration
	4.3 Predefined View Configuration

	Chapter 5 Getting Started with AMD uProf GUI
	5.1 User Interface
	5.2 Launching GUI
	5.3 Configure a Profile
	5.3.1 Select Profile Target
	5.3.2 Select Profile Type
	5.3.3 Advanced Options
	5.3.4 Start Profile

	5.4 Translation Progress
	5.5 Analyze the Profile Data
	5.5.1 Overview of Performance Hotspots
	5.5.2 Thread Concurrency Graph
	5.5.3 Function HotSpots
	5.5.4 Process and Functions
	5.5.5 Source and Assembly
	5.5.6 Top-down Callstack
	5.5.7 Flame Graph
	5.5.8 Call Graph
	5.5.9 IMIX View

	5.6 Importing Profile Database
	5.7 Analyzing Saved Profile Session
	5.8 Using Saved Profile Configuration
	5.9 Settings
	5.10 Shortcut Keys

	Chapter 6 Getting Started with AMD uProf CLI
	6.1 Overview
	6.2 Starting a CPU Profile
	6.2.1 List of Predefined Sample Configurations
	6.2.2 Profile Report

	6.3 Starting a Power Profile
	6.3.1 System-wide Power Profiling (Live)

	6.4 Collect Command
	6.4.1 Options
	6.4.2 Windows Specific Options
	6.4.3 Linux Specific Options
	6.4.4 Examples

	6.5 Report Command
	6.5.1 Options
	6.5.2 Windows Specific Options
	6.5.3 Linux Specific Options
	6.5.4 Examples

	6.6 Translate Command
	6.6.1 Options
	6.6.2 Windows Specific Options
	6.6.3 Linux Specific Options
	6.6.4 Examples

	6.7 Timechart Command
	6.7.1 Options
	6.7.2 Examples

	6.8 Diff Command
	6.8.1 Profile Comparison Eligibility Criteria
	6.8.2 Options
	6.8.3 Examples

	6.9 Profile Command
	6.9.1 Options
	6.9.2 Windows Specific Options
	6.9.3 Linux Specific Options
	6.9.4 Examples

	6.10 Info Command
	6.10.1 Options
	6.10.2 Examples

	Chapter 7 Performance Analysis
	7.1 CPU Profiling
	7.2 Analysis with Time-based Profiling
	7.2.1 Configuring and Starting Profile
	7.2.2 Analyzing Profile Data

	7.3 Analysis with Event-based Profiling
	7.3.1 Configuring and Starting Profile
	7.3.2 Analyzing Profile Data

	7.4 Analysis with Instruction-based Sampling
	7.4.1 Configuring and Starting Profile
	7.4.2 Analyzing Profile Data

	7.5 Analysis with Call Stack Samples
	7.5.1 Flame Graph
	7.5.2 Call Graph

	7.6 Profiling a Java Application
	7.6.1 Launching a Java Application
	7.6.2 Attaching a Java Process to Profile
	7.6.3 Java Source View
	7.6.4 Java Call Stack and Flame Graph

	7.7 Cache Analysis
	7.7.1 Supported Metrics
	7.7.2 Cache Analysis Using GUI
	7.7.3 Cache Analysis Using CLI

	7.8 Custom Profile
	7.8.1 Configuring and Starting Profile
	7.8.2 Analyzing Profile Data

	7.9 Advisory
	7.9.1 Confidence Threshold
	7.9.2 Issue Threshold

	7.10 ASCII Dump of IBS Samples
	7.11 Branch Analysis
	7.12 Export Session
	7.13 Limitations

	Chapter 8 Performance Analysis (Linux)
	8.1 Threading Analysis
	8.1.1 Threading Analyis Using CLI
	8.1.2 pthread Synchronization APIs
	8.1.3 libc System Call Wrapper APIs
	8.1.4 Timeline Analysis GUI in Linux

	8.2 OpenMP Analysis
	8.2.1 Profiling OpenMP Application using GUI
	8.2.2 Profiling OpenMP Application Using CLI
	8.2.3 Environment Variables
	8.2.4 Limitations

	8.3 MPI Profiling
	8.3.1 Collecting Data Using CLI
	8.3.2 Analyzing the Data with CLI
	8.3.3 Analyze the Data with GUI
	8.3.4 Limitations

	8.4 Profiling Support on Linux for perf_event_paranoid Values
	8.5 Profiling Linux System Modules
	8.6 Profiling Linux Kernel
	8.6.1 Enabling Kernel Symbol Resolution
	8.6.2 Downloading and Installing Kernel Debug Symbol Packages
	8.6.3 Build Linux kernel with Debug Symbols
	8.6.4 Analyzing Hotspots in Kernel Functions
	8.6.5 Linux Kernel Callstack Sampling
	8.6.6 Constraints

	8.7 Kernel Block I/O Analysis
	8.7.1 Kernel Block I/O Analysis Using CLI

	8.8 GPU Offloading Analysis (GPU Tracing)
	8.8.1 GPU Offload Analysis Using CLI

	8.9 GPU Profiling
	8.9.1 GPU Profiling Using CLI

	8.10 Other OS Tracing Events
	8.10.1 Tracing Page Faults and Memory Allocations Using CLI
	8.10.2 Tracing Function Call Count using CLI

	8.11 MPI Trace Analysis
	8.11.1 MPI Light-weight Tracing Using CLI
	8.11.2 MPI Full Tracing Using CLI
	8.11.3 MPI FULL Tracing Using GUI

	Chapter 9 Power Profile
	9.1 Overview
	9.2 Metrics
	9.3 Using Profile through GUI
	9.3.1 Configuring a Profile
	9.3.2 Analyzing a Profile

	9.4 Using CLI to Profile
	9.4.1 Examples

	9.5 AMDPowerProfileAPI Library
	9.5.1 Using the APIs

	9.6 Limitations

	Chapter 10 Remote Profiling
	10.1 Overview
	10.2 Setting up Authorization
	10.3 Launching AMDProfilerService
	10.4 Connecting to Remote Target
	10.5 Limitations

	Chapter 11 AMD uProf Virtualization Support
	11.1 OverView
	11.2 CPU Profiling
	11.2.1 Profiling of Guest VM from Guest VM
	11.2.2 Profiling of Guest VM from Host System (KVM Hypervisor)
	11.2.3 Preparing Host system to Profile Guest Kernel Modules
	11.2.4 AMD uProf CLI with Profiling Options
	11.2.5 Examples

	11.3 AMDuProfPcm
	11.4 AMDuProfSys

	Chapter 12 Profile Control APIs
	12.1 AMDProfileControl APIs
	12.1.1 CPU Profile Control APIs
	12.1.2 Using the APIs
	12.1.3 Compiling Instrumented Target Application
	12.1.4 Profiling Instrumented Target Application
	12.1.5 Limitations

	Chapter 13 Reference
	13.1 Preparing an Application for Profiling
	13.1.1 Generating Debug Information on Windows
	13.1.2 Generating Debug Information on Linux

	13.2 CPU Profiling
	13.2.1 Hardware Sources
	13.2.2 Profiling Concepts
	13.2.3 Profile Types
	13.2.4 Predefined Core PMC Events
	13.2.5 IBS Derived Events

	13.3 Useful URLs

