

 Advanced Micro Devices

[AMD Public Use]

AMD uProf User Guide
Version 3.4

AMD uProf User Guide

[AMD Public Use]

© 2021 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice. While

every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions

and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced

Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the

contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,

merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software

or other products described herein. No license, including implied or arising by estoppel, to any intellectual property

rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are

as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Microsoft, Windows, Windows 10 are registered trademarks of Microsoft Corporation.

MMX is a trademark of Intel Corporation.

PCIe is a registered trademark of PCI-Special Interest Group (PCI-SIG).

Other product names used in this publication are for identification purposes only and may be trademarks of their

respective companies.

AMD uProf User Guide

 3

[AMD Public Use]

Contents

About this document ... 7

Chapter 1 Introduction ... 10

1.1 Overview ... 10

1.2 Specifications .. 11

1.3 Installing uProf .. 12

1.3.1 Windows .. 12

1.3.2 Linux ... 12

1.3.3 FreeBSD .. 14

1.4 Sample programs ... 14

1.5 Support .. 15

Chapter 2 CPU Profiling - workflow and key concepts ... 16

2.1 CPU Profiling .. 16

2.2 Workflow .. 17

2.2.1 Collect phase.. 18

2.2.2 Translate phase .. 19

2.2.3 Analyze phase .. 20

2.3 Predefined Sampling Configuration ... 20

2.4 Predefined View Configuration.. 21

Chapter 3 Getting started with AMDuProfPcm – System Analysis 26

Chapter 4 Getting started with AMDuProf GUI.. 40

4.1 User Interface .. 40

4.2 Launching GUI .. 41

4.3 Configure a profile... 42

4.3.1 Select Profile Target... 42

4.3.2 Select Profile Type ... 43

4.3.3 Advanced Options .. 45

4.3.4 Start Profile .. 47

4.4 Analyze the profile data ... 48

4.4.1 Overview of performance hotspots ... 48

AMD uProf User Guide

4

[AMD Public Use]

4.4.2 Thread Concurrency Graph .. 49

4.4.3 Function Hotspots .. 50

4.4.4 Process and Functions .. 51

4.4.5 Source and Assembly ... 53

4.4.6 Flame Graph... 55

4.4.7 Callgraph.. 56

4.5 Importing Profile Databases ...57

4.6 Analyzing saved Profile Session ..58

4.7 Using saved Profile Configuration ...59

4.8 Settings ..60

Chapter 5 Getting started with AMDuProfCLI ... 63

5.1 How to start CPU profile? ..64

5.2 How to start Power profile? ..67

5.3 Collect command ...69

5.4 Report command ..76

5.5 Timechart command ..80

5.6 Info command ..83

Chapter 6 Performance Analysis .. 86

6.1 Analysis with Time-based profiling..87

6.2 Analysis with Event based profiling ...89

6.3 Analysis with Instruction based sampling ...90

6.4 Analysis with Callstack samples ..91

6.4.1 Flame graph ... 92

6.4.2 Call graph... 93

6.5 Profiling a Java Application ...94

6.6 Cache Analysis ..97

6.6.2 Cache Analysis using GUI.. 98

6.6.3 Cache Analysis using CLI .. 99

6.7 Custom Profile ... 102

6.8 Advisory .. 104

6.9 ASCII dump of IBS samples .. 105

6.10 Limitations... 106

AMD uProf User Guide

 5

[AMD Public Use]

Chapter 7 Performance Analysis (Linux only) ... 107

7.1 OpenMP Analysis .. 107

7.1.1 Profiling OpenMP Application using GUI .. 108

7.1.2 Profiling OpenMP Application using CLI .. 110

7.1.3 Environment variables ... 111

7.1.4 Limitations ... 112

7.2 MPI Profiling... 113

7.2.1 Data Collection using CLI .. 113

7.2.2 Analyze the data using CLI .. 115

7.2.3 Analyze the data using GUI ... 116

7.2.4 Limitations ... 116

7.3 Profiling Linux System Modules ... 117

7.4 Profiling Linux Kernel ... 118

7.4.1 Enable kernel symbol resolution... 118

7.4.2 Download and install kernel debug symbol packages ... 118

7.4.3 Build Linux kernel with debug symbols ... 120

7.4.4 How to analyze hotspots in kernel functions: .. 120

7.4.5 Linux kernel callstack sampling ... 121

7.4.6 Constraints ... 122

Chapter 8 Performance Analysis (Windows) ... 123

8.1 Thread Concurrency .. 123

Chapter 9 Power Profile .. 125

9.1 Metrics .. 125

9.2 Profile using GUI .. 128

9.2.1 Configure ... 129

9.2.2 Analyze.. 130

9.3 Profile using CLI ... 131

9.3.1 Examples ... 132

9.4 AMDPowerProfileAPI Library .. 133

9.4.1 How to use the APIs? ... 133

9.5 Limitations .. 134

Chapter 10 Energy Analysis.. 135

AMD uProf User Guide

6

[AMD Public Use]

10.1 Profile using GUI ... 136

10.2 Profile using CLI ... 137

10.3 Limitations... 138

Chapter 11 Remote Profiling ... 139

11.1 Profile remote targets using CLI... 139

11.1.1 Adding user-id in the remote target system ... 139

11.1.2 Launching Remote Agent ... 139

11.1.3 Collect data and generate report .. 140

11.2 Limitations... 140

Chapter 12 Profile Control APIs ... 141

12.1 AMDProfileControl APIs .. 141

12.1.1 Profile Control APIs ... 141

12.1.2 How to use the APIs? ... 142

12.1.3 Compiling instrumented target application ... 143

12.1.4 Profiling instrumented target application .. 143

Chapter 13 Reference .. 144

13.1 Preparing an application for profiling ... 144

13.1.1 Generate debug information on Windows: .. 144

13.1.2 Generate debug information on Linux: ... 145

13.2 CPU Profiling .. 146

13.2.1 Hardware Sources .. 146

13.2.2 Profiling Concepts .. 147

13.2.3 Profile Types .. 148

13.2.4 Predefined Core PMC Events ... 149

13.2.5 IBS Derived Events .. 158

13.3 Useful links .. 164

AMD uProf User Guide

 7

[AMD Public Use]

About this document

This document describes how to use AMD uProf to perform CPU and Power analysis of applications

running on Windows and Linux operating systems on AMD processors.

The latest version of this document is available at AMD uProf web site at the following URL:

https://developer.amd.com/amd-uprof/

Intended Audience

This document is intended for software developers and performance tuning experts who want to

improve the performance of their application. It assumes prior understanding of CPU architecture,

concepts of threads, processes, load modules and familiarity with performance analysis concepts.

Conventions:

Following conventions are used in this document:

Convention Description

GUI element A Graphical User Interface element like menu name or button

→ Menu item within a Menu

[] Contents are optional in syntax

… Preceding element can be repeated

| Denotes “or”, like two options are not allowed together

File name Name of a file or path or source code snippet

Command Command name or command phrase

Hyperlink Links to external web sites

Link Links to the section within this document

https://developer.amd.com/amd-uprof/

AMD uProf User Guide

8

[AMD Public Use]

Definitions:

Following terms may be used in this document.

Term Description

PMC Performance Monitoring Counter

TBP Timer Based Profiling

EBP Event Based Profiling. This uses Core PMC events.

IBS Instruction Based Sampling

NB Northbridge

SMU System Management Unit

RAPL Running Average Power Limit

MSR Model Specific Register

DTLB Data Translation Lookaside Buffer

DC Data Cache

ITLB Instruction Translation Lookaside Buffer

IC Instruction Cache

PTI Per Thousand Instructions

IPC Instruction Per Cycle

CPI Cycles Per Instruction

ASLR Address Space Layout Randomization

GUI Graphical User Interface

CLI Command Line Interface

CSV Comma Separated Values format

Target system System in which the profile data is collected

Host system System in which the AMDuProf client process runs

AMD uProf User Guide

 9

[AMD Public Use]

Client Instance of AMDuProf or AMDuProfCLI running on a host

system

Agent Instance of AMDRemoteAgent process running on a target

system

AMD uProf Denotes the uProf product name

AMDuProfPcm Denotes the CLI that is used to perform system analysis

AMDuProf Denotes the name of the graphical-user-interface tool

AMDuProfCLI Denotes the name of the command-line-interface tool

AMDRemoteAgent Denotes the name of the remote agent tool which runs on target

system

Performance Profiling (or)

CPU Profiling

Identify and analyze the performance bottlenecks. Performance

Profiling and CPU Profiling denotes the same.

System Analysis Refers AMDuProfPcm

AMD uProf User Guide

10

[AMD Public Use]

Chapter 1 Introduction

1.1 Overview

AMD uProf is a performance analysis tool for applications running on Windows and Linux

operating systems. It allows developers to better understand the runtime performance of their

application and to identify ways to improve its performance.

AMD uProf offers functionalities to perform:

• Performance Analysis (CPU Profile)

▪ To identify runtime performance bottlenecks of the application

• System Analysis

▪ To monitor basic system performance metrics like IPC, memory bandwidth

• Live Power Profile

▪ To monitor thermal and power characteristics of the system

• Energy Analysis

▪ To identify energy hotspots in the application (Windows only)

AMD uProf has following user interfaces:

Executable Description Supported OS

AMDuProf GUI to perform CPU & Power Profile Windows, Linux

AMDuProfCLI CLI to perform CPU & Power Profile Windows, Linux, FreeBSD

AMDuProfPcm CLI to perform System Analysis Windows, Linux, FreeBSD

AMDRemoteAgent CLI agent for remote profiling Windows, Linux

AMD uProf can effectively be used to:

• Analyze the performance of one or more processes/applications

• Track down the performance bottlenecks in the source code

• Identify ways to optimize the source code for better performance and power efficiency

• Examine the behavior of kernel, drivers, and system modules

• Observe system-level thermal and power characteristics

• Observe system metrics like IPC, memory bandwidth

AMD uProf User Guide

 11

[AMD Public Use]

1.2 Specifications

AMD uProf supports the following specifications. For detailed list of supported processors and

operating systems, refer Release Notes.

Processors

• AMD CPU & APU Processors

• Discrete GPUs: Graphics IP 7 GPUs, AMD Radeon 500 Series, FirePro models (Power

Profiling Only)

Operating Systems

AMD uProf supports the 64-bit version of the following Operating Systems:

• Microsoft

▪ Windows 7, Windows 10, Windows Server 2016, Windows Server 2019

• Linux

▪ Ubuntu 16.04 & later, RHEL 7.0 & later, CentOS 7.0 & later

▪ openSUSE Leap 15.0, SLES 12 & 15

Compilers and Application Environment

AMD uProf supports following application environment:

• Languages:

▪ Native languages: - C, C++, Fortran, Assembly

▪ Non-Native languages: - Java, C#

• Programs compiled with

▪ Microsoft compilers, GNU compilers, LLVM

▪ AMD’s AOCC, Intel compilers

• Parallelism

▪ OpenMP

▪ MPI

• Debug info formats:

▪ PDB, COFF, DWARF, STABS

• Applications compiled with and without optimization or debug information

• Single-process, multi-process, single-thread, multi-threaded applications

• Dynamically linked/loaded libraries

• POSIX development environment on Windows

▪ Cygwin

▪ MinGW

AMD uProf User Guide

12

[AMD Public Use]

1.3 Installing uProf

The latest version of the AMD uProf installer package for the supported Operating systems can be

downloaded from https://developer.amd.com/amd-uprof/. Install AMD uProf using one of the

following methods.

1.3.1 Windows

Run the 64-bit Windows installer binary AMDuProf-x.y.z.exe. Upon successful completion

of the installation the executables, libraries and the other required files will be installed at

C:\Program Files\AMD\AMDuProf\ folder.

1.3.2 Linux

Install using tar file

Install uProf from the downloaded tar file, by extracting the tar.bz2 binary.

$ tar -xf AMDuProf_Linux_x64_x.y.z.tar.bz2

The Power Profiler Linux driver must be installed manually. To do that, refer this section.

Install using RPM package (RHEL)

Install the uProf RPM package by either using the rpm or yum command.

$ sudo rpm --install amduprof-x.y-z.x86_64.rpm

$ sudo yum install amduprof-x.y-z.x86_64.rpm

Upon successful completion of the installation the executables, libraries and the other required files

will be installed at /opt/AMDuProf_X.Y-ZZZ/ directory.

Install using Debian package (Ubuntu)

Install the uProf Debian package by using the dpkg command.

$ sudo dpkg --install amduprof_x.y-z_amd64.deb

Upon successful completion of the installation the executables, libraries and the other required files

will be installed at /opt/AMDuProf_X.Y-ZZZ/ directory.

https://developer.amd.com/amd-uprof/

AMD uProf User Guide

 13

[AMD Public Use]

Installing Power Profiling driver on Linux

While installing uProf using RPM and Debian installer packages, the Power Profiling driver gets

build and installed automatically. However, if you have downloaded the AMD uProf tar.bz2 archive,

you must install the Power Profiler’s Linux driver manually.

The GCC and MAKE software packages are prerequisites for installing Power Profiler’s Linux

driver. If you do not have these packages, they can be installed using the following commands:

On RHEL and CentOS distros:

 $ sudo yum install gcc make

On Debian/Ubuntu distros:

 $ sudo apt install build-essential

Perform the following steps:

$ tar –xf AMDuProf_Linux_x64_x.y.z.tar.bz2

$ cd AMDuProf_Linux_x64_x.y.z/bin

$ sudo ./AMDPowerProfilerDriver.sh install

Installer will create a source tree for power profiler driver at /usr/src/AMDPowerProfiler-

<version> directory. All the source files required for module compilation are in this directory

and under MIT license.

To uninstall the driver run the following command:

$ cd AMDuProf_Linux_x64_x.y.z/bin

$ sudo ./AMDPowerProfilerDriver.sh uninstall

Linux Power Profiling driver support for DKMS

On Linux machines, Power profiling driver can also be installed with Dynamic Kernel Module

Support (DKMS) framework support. DKMS framework automatically upgrades the power

profiling driver module whenever there is a change in the existing kernel. This saves user from

manually upgrading the power profiling driver module. The DKMS package needs to be installed

on target machines before running the installation steps mentioned in the above section.

AMDPowerProfilerDriver.sh installer script will automatically take care of DKMS related

configuration if DKMS package is installed in the target machine.

AMD uProf User Guide

14

[AMD Public Use]

Example (for Ubuntu distros):

$ sudo apt-get install dkms

$ tar –xf AMDuProf_Linux_x64_x.y.z.tar.bz2

$ cd AMDuProf_Linux_x64_x.y.z/bin

$ sudo ./AMDPowerProfilerDriver.sh install

If the user upgrades the kernel version frequently it is recommended to use DKMS for installation.

1.3.3 FreeBSD

Install using tar file

Install uProf from the downloaded tar file, by extracting the tar.bz2 binary.

$ tar -xf AMDuProf_FreeBSD_x64_x.y.z.tar.bz2

1.4 Sample programs

Few sample programs are installed along with the product is installed along with the product to let

you use with the tool.

Windows:

• A sample matrix multiplication application

C:\Program Files\AMD\AMDuProf\Examples\AMDTClassicMatMul\bin\AMDTClassicMatMul.exe

Linux:

• A sample matrix multiplication program with makefile

/opt/AMDuProf_X.Y-ZZZ/Examples/AMDTClassicMat/

• An OpenMP example program and its variants with makefile

/opt/AMDuProf_X.Y-ZZZ/Examples/CollatzSequence_C-OMP/

FreeBSD:

• A sample matrix multiplication program with makefile

/<install dir>/AMDuProf_FreeBSD_x64_X.Y.ZZZ/Examples/AMDTClassicMat/

AMD uProf User Guide

 15

[AMD Public Use]

1.5 Support

Visit the following sites for downloading the latest version, bug reports, support, and feature

requests.

AMD uProf product page - https://developer.amd.com/amd-uprof/

AMD Developer Community forum - https://community.amd.com/t5/server-gurus/ct-p/amd-server-

gurus

https://developer.amd.com/amd-uprof/
file:///C:/Users/gnanam/AppData/Roaming/Microsoft/Word/AMD%20Developer%20Community
https://community.amd.com/t5/server-gurus/ct-p/amd-server-gurus
https://community.amd.com/t5/server-gurus/ct-p/amd-server-gurus

AMD uProf User Guide

16

[AMD Public Use]

Chapter 2 CPU Profiling - workflow and key

concepts

2.1 CPU Profiling

AMD uProf profiler follows a statistical sampling-based approach to collect profile data to identify

the performance bottlenecks in the application.

• Profile data is collected using any of the following approaches:

▪ Timer Based Profiling (TBP) - to identify the hotspots in the profiled applications

▪ Event Based Profiling (EBP) - sampling based on Core PMC events to identify micro-

architecture related performance issues in the profiled applications

▪ Instruction based Sampling (IBS) - precise instruction-based sampling

• Call-stack Sampling

• Secondary profile data (Windows only)

▪ Thread concurrency

▪ Thread Names

• Profile scope

▪ Per-Process: Launch an application and profile that process its children

▪ System-wide: Profile all the running processes and/or kernel

▪ Attach to an existing application (Native applications only)

• Profile mode

▪ Profile data is collected when the application is running in User and/or Kernel mode

• Profiles

▪ C, C++, Java, .NET, FORTRAN, Assembly applications

▪ Various software components – Applications, dynamically linked/loaded modules,

Driver, OS Kernel modules

• Profile data is attributed at various granularities

▪ Process / Thread / Load Module / Function / Source line / Disassembly

▪ To correlate the profile data to Function and Source line, debug information emitted

by the compiler is required

▪ C++ & Java in-lined functions

• Processed profile data is stored in databases, which can be used to generate reports later.

AMD uProf User Guide

 17

[AMD Public Use]

• Profile reports are available in comma-separated-value (CSV) format to use with spreadsheets.

• AMDuProfCLI, the command-line-interface can be used to configure a profile run, collect

the profile data, and generate the profile report.

▪ collect option to configure and collect the profile data

▪ report option to process the profile data and to generate the profile report

• AMDuProf GUI can be used to:

▪ Configure a profile run

▪ Start the profile run to collect the performance data

▪ Analyze the performance data to identify potential bottlenecks

• AMDuProf GUI has various UIs to analyze and view the profile data at various granularities

▪ Hot spots summary

▪ Thread concurrency graph (Windows only and requires admin privileges)

▪ Process and function analysis

▪ Source and disassembly analysis

▪ Flame Graph - a stack visualizer based on collected call-stack samples

▪ Call Graph - butterfly view of callgraph based on call-stack samples

▪ HPC - to analyze OpenMP profile data

▪ Cache Analysis - to analyze the hot cache lines that are false shared

• Profile Control API to selectively enable and disable profiling from the target application by

instrumenting it, to limit the scope of the profiling

2.2 Workflow

The AMD uProf workflow has the following phases:

Phase Description

Collect Running the application program and collect the profile data

Translate Process the profile data to aggregate and correlate and save them in a DB

Analyze View and analyze the performance data to identify bottlenecks

The profile data can be collected and analyzed using either by the GUI or the command-line-

interface tool.

AMD uProf User Guide

18

[AMD Public Use]

2.2.1 Collect phase

Important concepts of collect phase are explained in this section.

Profile Target

The profile target is the any of the following for which profile data will be collected.

▪ Application - Launch application and profile that process and its children

▪ System - Profile all the running processes and/or kernel

▪ Process - Attach to an existing application (Native applications only)

Profile Type

The profile type defines the type of profile data collected and how the data should be collected.

Following profile types are supported:

▪ CPU Profile

▪ System-wide Power Profile

▪ Power Application Analysis (Windows only)

How data should be collected is defined by Sampling Configuration.

• Sampling Configuration identifies the set of Sampling Events, and their Sampling Interval

and mode.

• Sampling Event is a resource used to trigger a sampling point at which a sample (profile data)

will be collected.

• Sampling Interval defines the number of the occurrences of the sampling event after which

an interrupt will be generated to collect the sample.

• Mode defines when to count the occurrences of the sampling event – in User mode and/or OS

mode.

What type of profile data to collect – Sampled data:

• Sampled data – the profile data that can be collected when the interrupt is generated upon the

expiry of the sampling interval of a sampling event.

Profile Type Type of Profile data collected Sampling Events

CPU Profiling Process ID,

Thread ID,

IP,

Callstack,

ETL tracing (Windows only)

OpenMP Trace – OMPT (Linux)

OS Timer,

Core PMC events,

IBS

AMD uProf User Guide

 19

[AMD Public Use]

For CPU Profiling, since there are numerous micro-architecture specific events are available to

monitor, the tool itself groups the related and interesting events to monitor – which is called

Predefined Sampling Configuration. For example, Assess Performance is one such

configuration, which is used to get the overall assessment of performance and to find potential issues

for investigation. Refer this section for all the supported Predefined Sampling Configurations.

A Custom Sampling Configuration is the one in which the user can define a sampling

configuration with events of interest.

Profile Configuration

A profile configuration identifies all the information used to perform a collect measurement. It

contains the information about profile target, sampling configuration and data to sample and profile

scheduling details.

The GUI saves these profile configuration details with a default name (Ex: AMDuProf-TBP-

Classic> which is also user definable. Since the performance analysis is iterative, this is persistent

(can be deleted), so that the user can reuse the same configuration for future data collection runs.

Profile Session (or Profile Run)

A profile session represents a single performance experiment for a Profile Configuration. The tool

saves all the profile data, translated data (in a DB) under the folder which is named as <profile

config name>-<timestamp>.

Once the profile data is collected, the GUI will process the data to aggregate and attribute the

samples to the respective processes, threads, load modules, functions, and instructions. This

aggregated data will be written into an SQLite DB which is used during Analyze phase. This process

of the translating the raw profile data happens in CLI while generating the profile report.

2.2.2 Translate phase

The collected raw profile data will be processed to aggregate and attribute to the respective

processes, threads, load modules, functions, and instructions. Debug information for the launched

application generated by the compiler is needed to correlate the samples to functions and source

lines.

This phase is performed automatically in GUI once the profiling is stopped and in the CLI, when

you invoke the report command to generate the report from the raw profile file.

AMD uProf User Guide

20

[AMD Public Use]

2.2.3 Analyze phase

View Configuration

A View is a set of sampled event data and computed performance metrics either displayed in the

GUI pages or in the text report generated by the CLI. Each predefined sampling configuration has

a list of associated predefined views.

For CPU Profiling, since there are numerous micro-architecture specific events data can be

collected, the tool itself groups the related and interesting metrics – which is called Predefined

View. For example, IPC assessment view, lists metrics like CPU Clocks, Retired Instructions, IPC,

and CPI. Refer this section for all the supported Predefined View Configurations.

2.3 Predefined Sampling Configuration

For CPU Profiling, since there are numerous micro-architecture specific events are available to

monitor, the tool itself groups the related and interesting events to monitor – which is called

Predefined Sampling Configuration. They provide a convenient way to select a useful set of

sampling events for profile analysis.

Here is the list of predefined sampling configurations:

Profile

Type

Predefined Configuration

Name

Abbreviation Description

TBP Time-based profile tbp To identify where programs are

spending time.

EBP

Assess performance assess Provides an overall assessment of

performance.

Assess performance

(Extended)

assess_ext Provides an overall assessment of

performance with additional metrics.

Investigate data access data_access To find data access operations with

poor L1 data cache locality and poor

DTLB behavior.

Investigate instruction access inst_access To find instruction fetches with poor

L1 instruction cache locality and

poor ITLB behavior.

AMD uProf User Guide

 21

[AMD Public Use]

Investigate branching branch To find poorly predicted branches

and near returns.

IBS Instruction based sampling ibs To collect sample data using IBS

Fetch and IBS OP. Precise sample

attribution to instructions.

Energy Power Application Analysis power To identify where the programs are

consuming energy.

Note:

• The AMDuProf GUI uses the name of the predefined configuration in the above table.

• Abbreviation is used with AMDuProfCLI collect command’s --config option.

• The supported predefined configurations and the sampling events used in them, is based on

the processor family and model.

2.4 Predefined View Configuration

A View is a set of sampled event data and computed performance metrics either displayed in the

GUI pages or in the text report generated by the CLI. Each predefined sampling configuration has

a list of associated predefined views.

List of predefined view configurations for Assess Performance:

View configuration Abbreviation Description

Assess

Performance

triage_assess This view gives the overall picture of performance,

including instructions per clock cycle (IPC), data cache

accesses and misses, mispredicted branches, and

misaligned data access. Use it to find possible issues for

deeper investigation.

IPC assessment ipc_assess To find hotspots with low instruction level parallelism.

Provides performance indicators – IPC and CPI.

Branch assessment br_assess Use this view to find code with a high branch density

and poorly predicted branches.

Data access

assessment

dc_assess Information about data cache (DC) access including DC

miss rate and DC miss ratio.

AMD uProf User Guide

22

[AMD Public Use]

Misaligned access

assessment

misalign_assess To identify regions of code that access misaligned data.

List of predefined view configurations for Investigate Data Access:

View configuration Abbreviation Description

IPC assessment ipc_assess To find hotspots with low instruction level parallelism.

Provides performance indicators – IPC and CPI.

Data access

assessment

dc_assess Information about data cache (DC) access including

DC miss rate and DC miss ratio.

Data access report dc_focus Use this view to analyze L1 Data Cache (DC) behavior

and compare misses versus refills.

Misaligned access

assessment

misalign_assess To identify regions of code that access misaligned data.

DTLB report dtlb_focus Information about L1 DTLB access and miss rates.

List of predefined view configurations for Investigate Branch Access:

View configuration Abbreviation Description

Investigate

Branching

Branch Use this view to find code with a high branch density

and poorly predicted branches.

IPC assessment ipc_assess To find hotspots with low instruction level parallelism.

Provides performance indicators – IPC and CPI.

Branch assessment br_assess Use this view to find code with a high branch density

and poorly predicted branches.

Taken branch

report

taken_focus Use this view to find code with a high number of taken

branches.

Near return report return_focus Use this view to find code with poorly predicted near

returns.

List of predefined view configurations for Assess Performance (Extended):

View configuration Abbreviation Description

AMD uProf User Guide

 23

[AMD Public Use]

Assess

Performance

(Extended)

triage_assess_ext This view gives an overall picture of performance. Use

it to find possible issues for deeper investigation.

IPC assessment ipc_assess To find hotspots with low instruction level parallelism.

Provides performance indicators – IPC and CPI.

Branch assessment br_assess Use this view to find code with a high branch density

and poorly predicted branches.

Data access

assessment

dc_assess Information about data cache (DC) access including

DC miss rate and DC miss ratio.

Misaligned access

assessment

misalign_assess To identify regions of code that access misaligned

data.

List of predefined view configurations for Investigate Instruction Access:

View configuration Abbreviation Description

IPC assessment ipc_assess To find hotspots with low instruction level parallelism.

Provides performance indicators – IPC and CPI.

Instruction cache

report

ic_focus Use this view to identify regions of code that miss in

the Instruction Cache (IC).

ITLB report itlb_focus Use this view to analyze and break out ITLB miss rates

by levels L1 and L2.

List of predefined view configurations for Instruction Based Sampling:

View configuration Abbreviation Description

IBS fetch overall ibs_fetch_overall Use this view to show an overall summary of the

IBS fetch sample data.

IBS fetch

instruction cache

ibs_fetch_ic Use this view to show a summary of IBS attempted

fetch Instruction Cache (IC) miss data.

IBS fetch

instruction TLB

ibs_fetch_itlb Use this view to show a summary of IBS attempted

fetch ITLB misses.

IBS fetch page

translations

ibs_fetch_page Use this view to show a summary of the IBS L1

ITLB page translations for attempted fetches.

AMD uProf User Guide

24

[AMD Public Use]

IBS All ops ibs_op_overall Use this view to show a summary of all IBS Op

samples.

IBS MEM all

load/store

ibs_op_ls Use this view to show a summary of IBS Op

load/store data.

IBS MEM data

cache

ibs_op_ls_dc Use this view to show a summary of DC behavior

derived from IBS Op load/store samples.

IBS MEM data

TLB

ibs_op_ls_dtlb Use this view to show a summary of DTLB behavior

derived from IBS Op load/store data.

IBS MEM locked

ops and access by

type

ibs_op_ls_memacc Use this view to show uncacheable (UC) memory

access, write combining (WC) memory access and

locked load/store operations.

IBS MEM

translations by page

size

ibs_op_ls_page Use this view to show a summary of DTLB address

translations broken out by page size.

IBS MEM

forwarding and

bank conflicts

ibs_op_ls_expert Use this view to show memory access bank

conflicts, data forwarding and Missed Address

Buffer (MAB) hits.

IBS BR branch ibs_op_branch Use this view to show IBS retired branch op

measurements including mispredicted and taken

branches.

IBS BR return ibs_op_return Use this view to show IBS return op measurements

including the return misprediction ratio.

IBS NB

local/remote access

ibs_op_nb_access Use this view to show the number and latency of

local and remote accesses.

IBS NB cache state ibs_op_nb_cache Use this view to show cache owned (O) and

modified (M) state for NB cache service requests.

IBS NB request

breakdown

ibs_op_nb_service Use this view to show a breakdown of NB access

requests.

Note:

• The AMDuProf GUI uses the name of the predefined configuration in the above tables.

• Abbreviation is used with AMDuProfCLI report command’s --view option.

AMD uProf User Guide

 25

[AMD Public Use]

• The supported predefined Views and the corresponding metrics are based on the processor

family and model.

AMD uProf User Guide

26

[AMD Public Use]

Chapter 3 Getting started with

AMDuProfPcm – System Analysis

System Analysis utility AMDuProfPcm helps to monitor basic performance monitoring metrics for

AMD’s family 17h processors. This utility periodically collects the CPU Core, L3 & DF

performance events count values and report various metrics.

Notes:

• This tool is supported on Windows, Linux, and FreeBSD.

• On Linux:

▪ AMDuProfPcm uses msr driver and either requires root privileges or read write

permissions for /dev/cpu/*/msr devices.

▪ NMI watchdog needs to be disabled. (echo 0 > /proc/sys/kernel/nmi_watchdog)

• On FreeBSD, AMDuProfPcm uses cpuctl module and either requires root privileges or read

write permissions for /dev/cpuctl* devices

Synopsis:

AMDuProfPcm [<OPTIONS>] -- [<PROGRAM>] [<ARGS>]

<PROGRAM> - Denotes a launch application to be profiled

<ARGS> - Denotes the list of arguments for the launch application

Common usages:

$ AMDuProfPcm -h

AMDuProfPcm -m ipc -c core=0 -d 10 -o /tmp/pmcdata.txt

AMDuProfPcm -m memory -a -d 10 -o /tmp/memdata.txt -- /tmp/myapp.exe

Options:

Option Description

-h Displays this help information on the console/terminal.

-m <metric,...> Metrics to report. Default metric group is 'ipc'.

Supported metric groups and the corresponding metrics

are Platform, OS, and Hypervisor specific.

AMD uProf User Guide

 27

[AMD Public Use]

Run “AMDuProfpcm -h” to get the list of supported

metrics.

In general, following metric groups will be supported:

 ipc – reports metrics like CEF, Utilization, CPI, IPC

 fp – reports GFLOPS

 l1 – L1 cache related metrics (DC access and IC Fetch

miss ratio)

 l2 – L2D and L2I cache related access / hit / miss

metrics

 l3 – L3 cache metrics like L3 Access, L3 Miss, and

Average Miss latency

 dc – advanced caching metrics like DC refills by

source

 memory – approximate memory read and write

bandwidths in GB/s for all the channels

 pcie – PCIe bandwidth in GB/s

 xgmi – approximate xGMI outbound data bytes in

GB/s for all the remote links

-c <core|ccx|ccd|package=<n> Collect from the specified core | ccx | die | package.

Default is 'core=0'.

If 'ccx' is specified:

- core events will be collected from all the cores of this

ccx.

- l3 events will be collected from the first core of this

ccx.

- df events will be collected from the first core of this

ccx.

If 'die' is specified:

- core events will be collected from all the cores of this

die.

- l3 events will be collected from the first core of all the

ccx's of this die.

AMD uProf User Guide

28

[AMD Public Use]

- df events will be collected from the first core of this

die.

If 'package' is specified:

- core events will be collected from all the cores of this

package.

- l3 events will be collected from the first core of all the

ccx's of this package.

- df events will be collected from the first core of all

the die of this package.

-a Collect from all the cores.

Note: Options -c and -a cannot be used together.

-C Prints the cumulative data at the end of the profile

duration. Otherwise, all the samples will be reported as

timeseries data.

-A

<system,package,ccd,ccx,core>
Print aggregated metrics at various component level.

Following are various granularity that are supported:

system – samples from all the cores in the system will be

aggregated;

package - samples from all the cores in the package will

be aggregated and reported for all the packages available

in the system; Applicable for multi-package systems.

ccd - samples from all the cores in CCD will be

aggregated and reported for all the CCDs.

ccx - samples from all the cores in CCX will be

aggregated and reported for all the CCXs.

core - samples from all the cores on which samples are

collected will be reported without aggregation.

Note:

- Option -a should be used along with this option to

collect samples from all the cores.

- Comma separated list of components can be specified

AMD uProf User Guide

 29

[AMD Public Use]

-i <config file> User defined XML config file that specifies Core|L3|DF

counters to monitor.

Refer sample files at <install-dir>/bin/Data/Config/ dir

for the format.

Note:

- Options -i and -m cannot be used together.

- If option -i is used, all the events mentioned in the

user-defined config file will be collected.

-d <seconds> Profile duration to run

-t < multiplex interval in
ms>

Interval in which PMC count values will be read.

Minimum is 16ms

-o <output file> Output file name. The output report will be in CSV

format.

-D <dump file> Output file that contains the event count dump for all the

events that are being monitored. This output report will

be in CSV format.

-p <n> Set precision of the metrics reported. Default is 2.

-q Hide CPU topology section in the output report.

-r To force reset the MSRs

-l List supported raw PMC events

-z <pmc-event> Print the name, description, and available unit masks for

the event.

-x <core-id,...> Core affinity for launched application, comma separated

list of core ids.

-w <dir> Specify the working directory. Default will be the path of

the launched application

-v Print version

AMD uProf User Guide

30

[AMD Public Use]

Following performance metrics are reported for AMD EPYC 2nd generation processors:

Metric group Metric Description

ipc Utilization (%) Percentage of time the Core was running – i.e.,

non-idle time

 Eff Freq Core Effective Frequency (CEF) Core Effective

Frequency (without halted cycles) over the

sampling period, reported in GHz. The metric is

based on APERF and MPERF MSRs. MPERF is

incremented by the core at the P0 state frequency

while the core is in C0 state. APERF is

incremented in proportion to the actual number of

core cycles while the core is in C0 state.

 IPC Instruction Per Cycle (IPC) is the average number

of instructions retired per cpu cycle. This is

measured using Core PMC events PMCx0C0

[Retired Instructions] and PMCx076 [CPU

Clocks not Halted]. These PMC events are

counted in both OS and User mode.

 CPI Cycles Per Instruction (CPI) is the multiplicative

inverse of IPC metric. This is one of the basic

performance metrics indicating how cache misses,

branch mis-predictions, memory latencies and

other bottlenecks are affecting the execution of an

application. Lower CPI value is better.

 Branch Misprediction

Ratio

The ration between mispredicted branches and

retired branch instructions.

fp Retired SSE/AVX

Flops(GFLOPs)

The number of retired SSE/AVX FLOPs.

 Mixed SSE/AVX Stalls Mixed SSE/AVX stalls.

This metric is in per thousand instructions (PTI).

1l IC(32B) Fetch Miss Ratio Instruction cache fetch miss ratio.

 DC Access All data cache (DC) accesses. This metric is in per

thousand instructions (PTI)

l2 L2 Access All L2 cache accesses. This metric is in per

thousand instructions (PTI)

AMD uProf User Guide

 31

[AMD Public Use]

 L2 Access from IC Miss L2 cache accesses from IC miss. This metric is in

per thousand instructions (PTI)

 L2 Access from DC Miss L2 cache accesses from DC miss. This metric is in

per thousand instructions (PTI)

 L2 Access from HWPF L2 cache accesses from L2 hardware prefetching.

This metric is in per thousand instructions (PTI)

 L2 Miss All L2 cache misses. This metric is in per thousand

instructions (PTI)

 L2 Miss from IC Miss L2 cache misses from IC miss. This metric is in per

thousand instructions (PTI)

 L2 Miss from DC Miss L2 cache misses from DC miss. This metric is in

per thousand instructions (PTI)

 L2 Miss from HWPF L2 cache misses from L2 hardware prefetching.

This metric is in per thousand instructions (PTI)

 L2 Hit All L2 cache hits. This metric is in per thousand

instructions (PTI)

 L2 Hit from IC Miss L2 cache hits from IC miss. This metric is in per

thousand instructions (PTI)

 L2 Hit from DC Miss L2 cache hits from DC miss. This metric is in per

thousand instructions (PTI)

 L2 Hit from HWPF L2 cache hits from L2 hardware prefetching. This

metric is in per thousand instructions (PTI)

tlb L1 ITLB Miss The instruction fetches that misses in the L1

Instruction Translation Lookaside Buffer(ITLB)

but hit in the L2-ITLB plus the ITLB reloads

originating from page table walker. The table walk

requests are made for L1-ITLB miss and L2-ITLB

misses.

This metric is in Per-Thousand-Instructions (PTI)

 L2 ITLB Miss Number of ITLB reloads from page table walker

due to L1-ITLB and L2-ITLB misses.

This metric is in Per-Thousand-Instructions (PTI)

AMD uProf User Guide

32

[AMD Public Use]

 L1 DTLB Miss The number of L1 Data Translation Lookaside

Buffer (DTLB) misses from load store micro-ops.

This event counts both L2-DTLB hit and L2-

DTLB miss.

This metric is in Per-Thousand-Instructions (PTI)

 L2 DTLB Miss The number of L2 Data Translation Lookaside

Buffer (DTLB) missed from load store micro-ops.

This metric is in Per-Thousand-Instructions (PTI)

l3 L3 Access L3 cache accesses. This metric is in per thousand

instructions (PTI)

 L3 Miss L3 cache miss. This metric is in per thousand

instructions (PTI)

 Ave L3 Miss Latency Average L3 miss latency in core cycles.

memory Mem Ch-A RdBw (GB/s)

Mem Ch-A WrBw (GB/s)

…

Memory Read and Write bandwidth in GB/s for all

the memory channels.

xgmi xGMI0 BW (GB/s)

xGMI1 BW (GB/s)

xGMI2 BW (GB/s)

xGMI3 BW (GB/s)

Approximate xGMI outbound data bytes in GB/s

for all the remote links.

pcie PCIe0 (GB/s)

PCIe1 (GB/s)

PCIe2 (GB/s)

PCIe3 (GB/s)

Approximate PCIe bandwidth in GB/s.

AMD uProf User Guide

 33

[AMD Public Use]

Following performance metrics are reported for AMD EPYC 3rd generation processors:

Metric group Metric Description

ipc Utilization (%) Percentage of time the Core was running – i.e.,

non-idle time

 Eff Freq Core Effective Frequency (CEF) Core Effective

Frequency (without halted cycles) over the

sampling period, reported in GHz. The metric is

based on APERF and MPERF MSRs. MPERF is

incremented by the core at the P0 state frequency

while the core is in C0 state. APERF is

incremented in proportion to the actual number of

core cycles while the core is in C0 state.

 IPC Instruction Per Cycle (IPC) is the average number

of instructions retired per cpu cycle. This is

measured using Core PMC events PMCx0C0

[Retired Instructions] and PMCx076 [CPU

Clocks not Halted]. These PMC events are

counted in both OS and User mode.

 CPI Cycles Per Instruction (CPI) is the multiplicative

inverse of IPC metric. This is one of the basic

performance metrics indicating how cache misses,

branch mis-predictions, memory latencies and

other bottlenecks are affecting the execution of an

application. Lower CPI value is better.

 Branch Misprediction

Ratio

The ration between mispredicted branches and

retired branch instructions.

fp Retired SSE/AVX

Flops(GFLOPs)

The number of retired SSE/AVX FLOPs.

 Mixed SSE/AVX Stalls Mixed SSE/AVX stalls.

This metric is in per thousand instructions (PTI).

1l IC(32B) Fetch Miss Ratio Instruction cache fetch miss ratio.

 Op Cache (64B) Fetch

Miss Ratio

Op Cache fetch miss ratio

AMD uProf User Guide

34

[AMD Public Use]

 IC Access All instruction cache accesses.

This metric is in per thousand instructions (PTI)

 IC Miss Instruction cache miss.

This metric is in per thousand instructions (PTI)

 DC Access All data cache (DC) accesses. This metric is in per

thousand instructions (PTI)

l2 L2 Access All L2 cache accesses. This metric is in per

thousand instructions (PTI)

 L2 Access from IC Miss L2 cache accesses from IC miss. This metric is in

per thousand instructions (PTI)

 L2 Access from DC Miss L2 cache accesses from DC miss. This metric is in

per thousand instructions (PTI)

 L2 Access from HWPF L2 cache accesses from L2 hardware prefetching.

This metric is in per thousand instructions (PTI)

 L2 Miss All L2 cache misses. This metric is in per thousand

instructions (PTI)

 L2 Miss from IC Miss L2 cache misses from IC miss. This metric is in per

thousand instructions (PTI)

 L2 Miss from DC Miss L2 cache misses from DC miss. This metric is in

per thousand instructions (PTI)

 L2 Miss from HWPF L2 cache misses from L2 hardware prefetching.

This metric is in per thousand instructions (PTI)

 L2 Hit All L2 cache hits. This metric is in per thousand

instructions (PTI)

 L2 Hit from IC Miss L2 cache hits from IC miss. This metric is in per

thousand instructions (PTI)

 L2 Hit from DC Miss L2 cache hits from DC miss. This metric is in per

thousand instructions (PTI)

 L2 Hit from HWPF L2 cache hits from L2 hardware prefetching. This

metric is in per thousand instructions (PTI)

AMD uProf User Guide

 35

[AMD Public Use]

tlb L1 ITLB Miss The instruction fetches that misses in the L1

Instruction Translation Lookaside Buffer(ITLB)

but hit in the L2-ITLB plus the ITLB reloads

originating from page table walker. The table walk

requests are made for L1-ITLB miss and L2-ITLB

misses.

This metric is in Per-Thousand-Instructions (PTI)

 L2 ITLB Miss Number of ITLB reloads from page table walker

due to L1-ITLB and L2-ITLB misses.

This metric is in Per-Thousand-Instructions (PTI)

 L1 DTLB Miss The number of L1 Data Translation Lookaside

Buffer (DTLB) misses from load store micro-ops.

This event counts both L2-DTLB hit and L2-

DTLB miss.

This metric is in Per-Thousand-Instructions (PTI)

 L2 DTLB Miss The number of L2 Data Translation Lookaside

Buffer (DTLB) missed from load store micro-ops.

This metric is in Per-Thousand-Instructions (PTI)

 All TLBs Flushed All TLBs flushed.

This metric is in Per-Thousand-Instructions (PTI).

dc DC Fills from Same CCX The number of Data Cache (DC) fills from local

L2 cache to the core or different L2 cache in the

same CCX or L3 cache that belongs to the CCX.

This metric is in Per-Thousand-Instructions (PTI)

 DC Fills from different

CCX in same node

The number of Data Cache (DC) fills from cache

of different CCX in the same package (node).

This metric is in Per-Thousand-Instructions (PTI)

 DC Fills from Local

Memory

The number of Data Cache (DC) fills from DRAM

or IO connected in the same package (node).

This metric is in Per-Thousand-Instructions (PTI)

AMD uProf User Guide

36

[AMD Public Use]

 DC Fills from Remote

CCX Cache

The number of Data Cache (DC) fills from cache

of CCX in the different package (node).

This metric is in Per-Thousand-Instructions (PTI)

 DC Fills from Remote

Memory

The number of Data Cache (DC) fills from DRAM

or IO connected in the different package (node).

This metric is in Per-Thousand-Instructions (PTI)

 All DC Fills The total number of Data Cache fills from all the

data sources.

This metric is in Per-Thousand-Instructions (PTI)

l3 L3 Access L3 cache accesses. This metric is in per thousand

instructions (PTI)

 L3 Miss L3 cache miss. This metric is in per thousand

instructions (PTI)

 Ave L3 Miss Latency Average L3 miss latency in core cycles.

Memory Mem Ch-A RdBw (GB/s)

Mem Ch-A WrBw (GB/s)

…

Memory Read and Write bandwidth in GB/s for all

the memory channels.

xgmi xGMI0 BW (GB/s)

xGMI1 BW (GB/s)

xGMI2 BW (GB/s)

xGMI3 BW (GB/s)

Approximate xGMI outbound data bytes in GB/s

for all the remote links.

Examples (Linux & FreeBSD)

• Collect IPC data from core 0 for the duration of 60 seconds:

./AMDuProfPcm -m ipc -c core=0 -d 60 -o /tmp/pcmdata.csv

• Collect IPC/L3 metrics for CCX=0 for the duration of 60 seconds:

./AMDuProfPcm -m ipc,l3 -c ccx=0 -d 60 -o /tmp/pcmdata.csv

AMD uProf User Guide

 37

[AMD Public Use]

• Collect only the memory bandwidth across all the UMCs for the duration of 60 seconds and save

the output in /tmp/pcmdata.csv file

./AMDuProfPcm -m memory -a -d 60 -o /tmp/pcmdata.csv

• Collect IPC data for 60 seconds from all the cores:

./AMDuProfPcm -m ipc -a -d 60 -o /tmp/pcmdata.csv

• Collect IPC data from core 0 and run the program in core 0:

./AMDuProfPcm -m ipc -c core=0 -o /tmp/pcmdata.csv -- /usr/bin/taskset -c

0 myapp.exe

• Collect IPC and data l2 data from core 0 and report the cumulative (not timeseries) and run the

program in core 0

./AMDuProfPcm -m ipc,l2 -c core=0 -o /tmp/pcmdata.csv -C --

/usr/bin/taskset -c 0 myapp.exe

• List the supported raw Core PMC events:

./AMDuProfPcm -l

• Print the name, description, and the available unit masks for the specified event:

./AMDuProfPcm -z pmcx03

Examples (Windows)

Core Metrics

• To get the list of supported metrics:

C:\> AMDuProfPcm.exe -h

• Collect IPC data from core 0 for the duration of 30 seconds:

C:\> AMDuProfPcm.exe -m ipc -c core=0 -d 30 -o c:\tmp\pcmdata.csv

• Collect IPC/L2 metrics for all the core in CCX=0 for the duration of 30 seconds:

C:\> AMDuProfPcm.exe -m ipc,l2 -c ccx=0 -d 30 -o c:\tmp\pcmdata.csv

• Collect IPC data for 30 seconds from all the cores in the system:

C:\> AMDuProfPcm.exe -m ipc -a -d 30 -o c:\tmp\pcmdata.csv

• Collect IPC data from core 0 and run the program:

C:\> AMDuProfPcm.exe -m ipc -c core=0 -o c:\tmp\pcmdata.csv myapp.exe

• Collect IPC and data l2 data from all the cores and report the aggregated data at the system and

package level

AMD uProf User Guide

38

[AMD Public Use]

C:\> AMDuProfPcm.exe -m ipc,l2 -a -o c:\tmp\pcmdata.csv -d 30 -A

system,package

• Collect IPC and data l2 data from all the cores in CCX=0 and report the cumulative (not

timeseries)

C:\> AMDuProfPcm.exe -m ipc,l2 -c ccx=0 -o c:\tmp\pcmdata.csv -C -d 30

• Collect IPC and data l2 data from all the cores and report the cumulative (not timeseries)

C:\> AMDuProfPcm.exe -m ipc,l2 -a -o c:\tmp\pcmdata.csv -C -d 30

• Collect IPC and data l2 data from all the cores and report the cumulative (not timeseries) and

aggregate at system and package level

C:\> AMDuProfPcm.exe -m ipc,l2 -a -o c:\tmp\pcmdata.csv -C -A system,package

-d 30

L3 Metrics

• Collect L3 data from ccx=0 for the duration of 30 seconds:

C:\> AMDuProfPcm.exe -m l3 -c ccx=0 -d 30 -o c:\tmp\pcmdata.csv

• Collect L3 data from all the CCXs and report for the duration of 30 seconds:

C:\> AMDuProfPcm.exe -m l3 -a -d 30 -o c:\tmp\pcmdata.csv

• Collect L3 data from all the CCXs and aggregate at system and package level and report for the

duration of 30 seconds:

C:\> AMDuProfPcm.exe -m l3 -a -d 30 -A system,package -o c:\tmp\pcmdata.csv

• Collect L3 data from all the CCXs and aggregate at system and package level and report for the

duration of 30 seconds: Also report for individual CCXs.

C:\> AMDuProfPcm.exe -m l3 -a -d 30 -A system,package,ccx -o

c:\tmp\pcmdata.csv

• Collect L3 data from all the CCXs for the duration of 30 seconds and report the cumulative data

(no timeseries data)

C:\> AMDuProfPcm.exe -m l3 -a -d 30 -C -o c:\tmp\pcmdata.csv

• Collect L3 data from all the CCXs and aggregate at system and package level and report

cumulative data (no timeseries data)

C:\> AMDuProfPcm.exe -m l3 -a -d 30 -A system,package -C -o

c:\tmp\pcmdata.csv

• Collect IPC data from core 0 for the duration of 30 seconds:

C:\> AMDuProfPcm.exe -m ipc -c core=0 -d 30 -o c:\tmp\pcmdata.csv

Memory Bandwidth:

AMD uProf User Guide

 39

[AMD Public Use]

• Report memory bandwidth for all the memory channels for the duration of 60 seconds and save

the output in c:\tmp\pcmdata.csv file

C:\> AMDuProfPcm.exe -m memory -a -d 60 -o c:\tmp\pcmdata.csv

• Report total memory bandwidth aggregated at the system level for the duration of 60 seconds

and save the output in c:\tmp\pcmdata.csv file

C:\> AMDuProfPcm.exe -m memory -a -d 60 -o c:\tmp\pcmdata.csv -A system

• Report total memory bandwidth aggregated at the system level and also report for every memory

channels

C:\> AMDuProfPcm.exe -m memory -a -d 60 -o c:\tmp\pcmdata.csv -A

system,package

• Report total memory bandwidth aggregated at the system level and also report for all the

available memory channels. To report cumulative metric value, instead of timeseries data:

C:\> AMDuProfPcm.exe -m memory -a -d 60 -o c:\tmp\pcmdata.csv -C -A

system,package

Raw event count dump:

• Monitor events from core 0 and dump the raw event counts for every sample in timeseries

manner. No metrics report will be generated

C:\> AMDuProfPcm.exe -m ipc -d 60 -D c:\tmp\pcmdata_dump.csv

• Monitor events from all the cores and dump the raw event counts for every sample in timeseries

manner. No metrics report will be generated

C:\> AMDuProfPcm.exe -m ipc -a -d 60 -D c:\tmp\pcmdata_dump.csv

Custom config file:

• A sample config XM file is available at <uprof-install-dir>\bin\Data\Config\SamplePcm-

core.conf. This file can be copied and modified to specific user-specific interesting events and

formula to compute metrics. All the metrics defined in that file, will be monitored, and reported.

C:\> AMDuProfPcm.exe -i SamplePcm-core.conf -a -d 60 -o c:\tmp\pcmdata.csv

C:\> AMDuProfPcm.exe -i SamplePcm-core-l3-df.conf -a -d 60 -o

c:\tmp\pcmdata.csv

Miscellaneous:

• List the supported raw Core PMC events:

C:\> AMDuProfPcm.exe -l

• Print the name, description, and the available unit masks for the specified event:

C:\> AMDuProfPcm.exe -z pmcx03

AMD uProf User Guide

40

[AMD Public Use]

Chapter 4 Getting started with AMDuProf

GUI

4.1 User Interface

AMDuProf GUI provides a visual interface to profile and analyze the performance data. It has

various pages, and each page has several sub windows. The pages can be navigated through the top

horizontal navigation bar. When a page is selected, its sub windows will be listed in the leftmost

vertical pane.

AMDuProf GUI – user interface

1. The menu names in the horizontal bar like HOME, PROFILE, SUMMARY, ANALYZE are

called pages

2. Each page will have its sub windows listed in the leftmost vertical pane. For example, HOME

page has various windows like Welcome, Recent Session(s), Import Session etc.,

AMD uProf User Guide

 41

[AMD Public Use]

3. Each window will have various sections. These sections are used to specify various inputs

required for a profile run, display the profile data for analyze, buttons and links to navigate to

associated sections. Here in the Welcome window, Quick Links section has two links that lets

you start a profile session with minimal configuration steps.

4.2 Launching GUI

To launch the AMDuProf GUI program:

Windows

Launch GUI from C:\Program Files\AMD\AMDuProf\bin\AMDuProf.exe or

from the Desktop shortcut.

Linux

Launch GUI from /opt/AMDuProf_X.Y-ZZZ/AMDuProf binary.

On launching the GUI, you will be greeted with the Welcome window. This window has many

sections – quick links to start a profile run, help links to configure a new profile and a list of recently

opened profiles.

AMDuProf Welcome window

AMD uProf User Guide

42

[AMD Public Use]

1. Start Here section provides quick links to start profile for the various profile targets.

2. Recently used profile configurations are listed in Recently Used Configuration(s) section. User

can click on this configuration to reuse that profile configuration for subsequent profiling.

3. Recently opened profile sessions are listed in Recently Opened Session(s) section. User can

click on any one of the sessions to load the corresponding profile data for further analysis.

4. Quick Links section contains two entries which lets you to start profiles with minimal

configuration.

a. Clicking See what’s keeping your System busy will start a system-wide time-based

profiling until stopped by you and then display the collected data.

b. Clicking See what’s guzzling power in your System will take you to a section where

various power and thermal related counters can be selected and will present a live view

of the data through graphs.

5. AMD uProf Resources section provides links to uProf user guide and power profiler API guide

and AMD server community forum for discussions on profiling and performance tuning.

4.3 Configure a profile

To perform a collect run, first you should configure the profile by specifying the:

1. Profile target

2. Profile type

a. What profile data should be collected (CPU or Power performance data)

b. Monitoring events - how the data should be collected

c. Additional profile data (if needed) - callstack samples, profile scheduling etc.,

This is called profile configuration - which identifies all the information used to perform a collect

measurement. Note: The additional profile data to be collected, depends on the selected profile type.

4.3.1 Select Profile Target

To start a profile, either click the PROFILE page at the top navigation bar or Profile an

Application? link in HOME page’s Welcome window. This will navigate to the Start Profiling

window. You will see Select Profile Target fragment in the Start Profiling window.

Different types of profile target can be selected from the Select Profile Target dropdown.

AMD uProf User Guide

 43

[AMD Public Use]

Start Profiling – Select Profile Target

Application: Select this target when you want to launch an application and profile it (or launch and

do a system-wide profile). The only compulsory option is a valid path to the executable. (By default,

the path to the executable becomes the working directory unless you specify a path).

System: Select this if you do not wish to launch any application but perform either a system-wide

profile or profile specific set of cores.

Process(es): Select this if you want to profile an application/process which is already running. This

will bring up a process table which can be refreshed. Selecting any one of the process from the table

is mandatory to start profile.

Once profile target is selected and configured with valid data, the Next button will be enabled to go

the next fragment of Start Profiling. Note that specifying any invalid option will disable the Next

button.

4.3.2 Select Profile Type

Once profile target is selected and configured, clicking Next button will take you to the Select

Profile Type fragment.

AMD uProf User Guide

44

[AMD Public Use]

Start Profiling – Select Profile Type

This fragment lets you to decide the type of profile data collected and how the data should be

collected. You can select the profile type based on the performance analysis that you intend to

perform. Refer this section for details on profile types. In the above figure:

1. Select Profile Type dropdown lists all the supported profile types

2. Once you select a profile type, the left vertical pane within this window, will list the options

corresponding to the selected profile type. Here, For CPU Profile type, all the available

predefined sampling configurations will be listed.

3. This section lists all the sampling events that are monitored in the selected predefined sampling

configuration. Each entry represents a sampling configuration (Unit mask, Sampling interval,

OS & User mode) for that event. You can modify these event attributes by clicking Modify

Events button and as well add new events and/or remove events

4. Clicking Advanced Options button will take you to the Advanced Options fragment to set

other options like the Call Stack Options, Profile Scheduling, Sources, and Symbols etc.,

5. This profile configuration details are persistent and saved by the tool with a name – here it is

AMDuProf-EBP-ScimarkStable. This name is user definable and the same configuration can be

AMD uProf User Guide

 45

[AMD Public Use]

reused later by clinking PROFILE → Saved Configurations and then selecting from the list

of saved configurations.

6. The Next and Previous buttons are available to navigate to various fragments within the Start

Profiling window.

4.3.3 Advanced Options

Advanced options

Clicking Advanced Options button in Select Profile Type fragment will take you to the Advanced

Options fragment to set the following options.

1. Enable Thread Concurrency Option to collect the profile data to show Thread Concurrency

Chart. (Windows only option)

2. Call Stack Options to enable callstack sample data collection. This profile data is used to show

Flame Graph and Call Graph views.

3. Profile Scheduling to schedule the profile data collection.

4. The Next and Previous buttons are available to navigate to various fragments within the Start

Profiling window.

5. Sources line-edit to specify the path(s) to locate the source files of the profiled application.

6. Symbols to specify the Symbols servers (Windows only) and to specify the path(s) to locate the

symbol files of the profiled application.

AMD uProf User Guide

46

[AMD Public Use]

Start Profiling – Advanced Options

Start Profiling – Advanced Options

AMD uProf User Guide

 47

[AMD Public Use]

4.3.4 Start Profile

Once all the options are set correctly, the Start Profile button at the bottom will be enabled and you

can click on it to start the profile to collect the profile data. After the profile initialization you will

see:

Profile data collection

1. The running timer displaying the number of seconds passed starting from zero.

2. When the profiling is in progress, the user can

▪ Stop the profiling by clicking Stop button.

▪ Cancel the profiling by clicking Cancel button, which will take you back to Select

Profile Target fragment of PROFILE.

▪ Pause the profiling by clicking Pause button. When the profile is paused, the profile data

will not be collected, and the user can resume profiling by clicking Resume button.

AMD uProf User Guide

48

[AMD Public Use]

4.4 Analyze the profile data

When the profiling stopped, the collected raw profile data will be processed automatically, and you

can analyze the profile data through various UI sections to identify the potential performance

bottlenecks:

• SUMMARY page to look at overview of the hotspots for the profile session.

• ANALYZE page to examine the profile data at various granularities.

• SOURCES page to examine the data at source line and assembly level.

• MEMORY page to examine the cache-line data for potential false cache sharing.

• HPC page to examine the OpenMP tracing data for potential load imbalance issue.

The sections available depends on the profile type. The CPU Profile and Power Application

Analysis types will have SUMMARY, ANALYZE, MEMORY, HPC and SOURCES pages to

analyze the data.

4.4.1 Overview of performance hotspots

Once the translation completes, the SUMMARY page will be populated with the profile data and

Hot Spots window will be presented. This SUMMARY page gives an overview of the hot spots for

the profile session through various windows like Hot Spots and Session Information.

In this Hot Spots window, hotspots will be shown for functions, modules, process, and threads.

Process and Threads will only be shown if there are more than one.

AMD uProf User Guide

 49

[AMD Public Use]

SUMMARY – Hot Spots window

In the above Hot Spots window:

1. Lists the top 5 hottest functions, Processes, Modules and Threads for the selected event.

2. The Hot Functions pie chart is interactive in nature - i.e., you can click on any section and the

corresponding function's source will open in a separate tab in SOURCES page

3. The hotspots are shown per event and the monitored event can be selected from dropdown in

top right corner. Changing it to any other event will update the hotspot data accordingly.

4.4.2 Thread Concurrency Graph

Clicking SUMMARY → Thread Concurrency will show the below graph to analyze the thread

concurrency of the profiled application. Note: This is Windows OS only feature.

AMD uProf User Guide

50

[AMD Public Use]

SUMMARY – Thread Concurrency Graph

4.4.3 Function Hotspots

Click on the ANALYZE button on the top horizontal navigation bar to go Function HotSpots

window, which displays the hot functions across all the profiled processes and load modules. This

window contains the following:

1. The Functions table lists the hot functions - the IP samples are aggregated and attributed at the

function-level granularity.

a) Double click on a function entry to navigate to the corresponding SOURCE view of that

function.

b) Right click will list the following context menu-items

▪ “Copy selected rows(s)” to copy the highlighted row to clipboard.

▪ “Copy all rows” to copy all the rows to clipboard.

2. Filters and Options pane lets you filter the profile data displayed by various controls.

• The View controls the counters that are displayed. The relevant counters and their derived

metrics are grouped in predefined views. The user can select the views from the View drop-

down. Refer this section for more details on predefined View configurations.

• The Show Values By dropdown can be used to display the counter values either as

AMD uProf User Guide

 51

[AMD Public Use]

▪ "Sample Count” is the number of samples attributed to a function.

▪ “Event Count” is the product of sample count and sampling interval.

▪ “Percentage” is the percentage of samples collected for a function.

• The System Modules option can be used to either exclude or include the profile data

attributed to system modules.

ANALYZE – Function HotSpots

3. The search text box lets you search a function name in the Functions table. Only the selected

function will be displayed in the Functions table.

a) Click Go Back button to go back to the Functions table that list all the functions.

b) Turn on Enable Regex Search switch to search with regular expression matching.

Not all entries will be loaded for a profile. To load more than the default number of entries, click

the Load more functions button on the top right corner to display more data. The columns can be

sorted as well by clicking on the column headers.

4.4.4 Process and Functions

Clicking ANALYZE → Metrics will display the profile data table at various program unit

granularities - Process, Load Modules, Threads and Functions. The window contains data in two

different formats:

AMD uProf User Guide

52

[AMD Public Use]

ANALYZE page - Metrics window

1. The upper tree represents samples grouped by Process. The tree can be expanded to see the child

entries for each parent (i.e., for a process). The Load Modules and Threads are child entries

for the selected process entry.

a) Right click will list the following context menu-items

▪ “Expand All Entries” to list the modules and threads of all the processes.

▪ “Collapse All Entries” to list only the top-level entries.

▪ “Copy selected rows(s)” to copy the highlighted row to clipboard.

▪ “Copy all rows” to copy all the rows to clipboard.

2. The lower Functions table contains samples attributed to corresponding functions. The function

entries depend on what is selected in the upper tree. For more specific data, you can select a

child entry from the upper tree and the corresponding function data will be updated in the lower

tree.

a) Double click on a function entry to navigate to the corresponding SOURCE view of that

function.

b) Right click will list the following context menu-items

▪ “Copy selected rows(s)” to copy the highlighted row to clipboard.

AMD uProf User Guide

 53

[AMD Public Use]

▪ “Copy all rows” to copy all the rows to clipboard.

▪ “Open Call Graph” to navigate to the corresponding function entry in Call

Graph section.

3. The search text box lets you search a function name in the Functions table. Only the selected

function will be displayed in the Functions table.

a) Click Reset button to clear the search text box.

b) Click Go Back button to go back to the Functions table that list all the functions.

4. Filters and Options pane lets you filter the profile data displayed by various controls.

• The View controls the counters that are displayed. The relevant counters and their derived

metrics are grouped in predefined views. The user can select the views from the View drop-

down. Refer this section for more details on predefined View configurations.

• The Group By dropdown is used to group the data by Process, Module and Thread. By

default, the sample data is grouped-by Process

• The Show Values By dropdown can be used to display the counter values either as

▪ "Sample Count” is the number of samples attributed to a function.

▪ “Event Count” is the product of sample count and sampling interval.

▪ “Percentage” is the percentage of samples collected for a function.

• The System Modules option can be used to either exclude or include the profile data

attributed to system modules.

5. Confidence level - The metrics that cannot be calculated reliably due to low number of samples

collected for a program unit will be greyed out.

Not all entries will be loaded for a profile. To load more than the default number of entries, click

the Load more functions or Load more profile data buttons on the top right corner to fetch more

data. The columns can be sorted as well by clicking on the column headers.

4.4.5 Source and Assembly

Double-clicking any entry on the Functions table in Metrics window will load the source tab for

that function in SOURCES page. If the GUI can find the path to the source file for that function,

then it will try to open the file, failing which you will be prompted to locate it.

Following section are there in the source tab:

1. The source lines of the selected function are listed, and the corresponding metrics are populated

in various columns against each source line. If no samples are collected when a source line was

executed, the metrics column will be empty.

AMD uProf User Guide

54

[AMD Public Use]

2. The assembly instruction of the corresponding highlighted source line. The tree will also show

the offset for each assembly instruction along with metrics.

3. Heatmap – overview of the hotspots at source level.

SOURCES – source and assembly window

4. Filters pane lets you filter the profile data by providing the following options.

• The View controls the counters that are displayed. The relevant counters and their derived

metrics are grouped in predefined views. The user can select it from the View drop-down.

Refer this section for more details on predefined View configurations.

• The PID drop-down lists all the processes on which this selected function is executed and

has samples

• The TID drop-down lists all the threads on which this selected function is executed and has

samples

• The Show Values By dropdown can be used to display the counter values either as

▪ "Sample Count” is the number of samples attributed to a function.

▪ “Event Count” is the product of sample count and sampling interval.

▪ “Percentage” is the percentage of samples collected for a function.

AMD uProf User Guide

 55

[AMD Public Use]

For multi-threaded or multi-process applications, if a function has been executed from multiple

threads or processes, then each of them will be listed in the PID and TID dropdowns in Filters

pane. Changing them will update the profile data for that selection. By default, profile data for the

selected function, aggregated across all processes and all threads will be shown.

Note: If the source file cannot be located or opened, only disassembly will be displayed.

4.4.6 Flame Graph

Flame graph is a visualization of sampled callstack traces to quickly identify the hottest code

execution paths. Clicking ANALYZE → Flame Graph will navigate to this window.

Flame graph window

The Flamegraph section has:

1. The x-axis of the Flamegraph shows the callstack profile and the y-axis shows the stack depth.

It is not plotted based on passage of time. Each cell represents a stack frame and if a frame were

present more often in the callstack samples, the cell would be wider.

a) Module wise coloring of the cells.

b) Clicking on a cell will zoom only that cell and its children. Use Reset Zoom button

visualize the entire graph.

c) Right click on a cell will list the following context menu-items

AMD uProf User Guide

56

[AMD Public Use]

▪ “Copy Function Data” to copy the function names and its metrics to clipboard.

▪ “Open Source View” to navigate to the source tab of that function.

d) Hovering the mouse over a cell will display the tooltip showing the inclusive and

exclusive number of samples of that function.

2. Following options are available at the top of this section.

• Click Zoom Entire Graph button for better zooming experience.

• Searching for particular function will highlight that function cells in all the Flamegraph.

• The Process IDs dropdown lists all the processes for which callstack samples are collected.

Changing the process will plot the Flamegraph for that particular process.

• The Counters dropdown lists all the counters for which callstack samples are collected.

Changing the counter will plot the Flamegraph for that particular counter.

4.4.7 Callgraph

Clicking ANALYZE → Call Graph will navigate to the callgraph windows. This is constructed

using the callstack samples and offers a butterfly view to analyze the hot call-paths.

ANALYZE – Call graph window

AMD uProf User Guide

 57

[AMD Public Use]

1. The Function table lists all the functions with inclusive and excusive samples.

a) Double clicking on a function entry having exclusive samples will navigate to the

corresponding function source view.

b) Right click on an entry will list the following context menu-items

▪ “Copy Rows(s)” to copy the highlighted row to clipboard.

▪ “Copy All Rows” to copy all the rows to clipboard.

c) Clicking on function will show its Caller and Callee functions in the butterfly view.

2. Lists all the parents of the function selected in the Function table.

a) Right click on an entry will list the following context menu-items

▪ “Go to Caller/Callee” to show the parent and children of this function.

▪ “Copy Current Rows” to copy the highlighted row to clipboard.

▪ “Copy All Row(s)” to copy all the rows to clipboard.

3. Lists all the children of the function selected in the Function table.

a) Right click on an entry will list the following context menu-items

▪ “Go to Caller/Callee” to show the parent and children of that function.

▪ “Copy Current Rows” to copy the highlighted row to clipboard.

▪ “Copy All Row(s)” to copy all the rows to clipboard.

4. Options

• The Process IDs dropdown lists all the processes for which callstack samples are collected.

Changing the process will show the callgraph for that particular process.

• The Counters dropdown lists all the counters for which callstack samples are collected.

Changing the counter will show the callgraph for that particular counter.

4.5 Importing Profile Databases

To analyze a profile database generated using CLI, clicking HOME → Import Session will

navigate to Import Profile Session window and you will see the following window.

This can be used to import a raw profile data file collected using the CLI or the processed data saved

in the profile database as well.

• The path should be specified in the Profile Data File input text box.

• Binary Path: If the profile run is performed in a system and the corresponding raw profile data

is imported in another system, then you may need to specify the path(s) in which binary files

can be located.

• Source Path: Specify the source path(s) from where the sources files can be located.

AMD uProf User Guide

58

[AMD Public Use]

• Symbols: Specify the symbol path(s) from where the debug info files (On Windows, PDB files)

can be located.

Import Session – importing profile database

4.6 Analyzing saved Profile Session

Once you have a created new profile session or opened(imported) profile database, the history is

updated and the last 50 opened profile databases’ records are stored (i.e., where they are located).

Such a list will come up in the HOME → Recent Session(s) as well.

In the below screenshot:

1. History of profile sessions opened for analysis in the GUI.

a) Clicking on an entry will load the corresponding profile db for analysis.

b) See Details button will show details about this profile session like profiled application,

monitored events list etc.,

c) Clicking Edit Options will automatically fill the Import Profile Session for this db and

let you update any of the line-edits before opening the session.

d) Remove Entry button will delete this profile session from the history.

2. Details of the selected profile session.

AMD uProf User Guide

 59

[AMD Public Use]

PROFILE – Recent Sessions

4.7 Using saved Profile Configuration

When a profile configuration is created (when you set the options and start profiling), if it generates

at least one valid profile session, the profile configuration details will be stored with the options set

and can be loaded again in future. Such a list is available in PROFILE → Saved Configurations

window.

In the below screenshot:

1. History of profile configurations used to collect profile data using GUI.

a) Clicking on an entry will load the corresponding profile configuration for data collection.

b) See Details button will show details about this profile session like profiled application,

monitored events list etc.,

c) Remove Entry button will delete this profile session from the history.

2. Details of the selected profile session.

3. History of generated sessions using this profile configuration.

a) Clicking on an entry will load the profile session db for analysis.

AMD uProf User Guide

60

[AMD Public Use]

Saved Configurations

Note that by default the profile configuration name is generated by the application and if you want

to reuse it, you should ideally name it so that it is easy to locate. This can be done by providing a

config name in the bottom left corner (Config Name line-edit) in PROFILE → Start Profiling.

4.8 Settings

There are certain application-wide settings to customize the experience. The SETTINGS page is in

top-right corner and is divided into three sections – Preferences, Symbols and Source Data each

having a short description of what it contains.

Preferences: use this section to set the global path and data reporting preferences.

AMD uProf User Guide

 61

[AMD Public Use]

SETTINGS – Preference

• The settings once changed can be applied by clicking the Apply Changes button. There are

settings which are common with profile data filters and hence any change in them when applied

through Apply Changes button will only get applied to such views which do not have local

filters set.

• In case you want to override them, you can click on the Apply & Override Local Filters button.

You will lose all local filters applied

• You can always reset the settings by clicking Reset button or Cancel to cancel any changes that

you don't want to apply.

Symbols: use this section to configure the Symbol Paths and Symbol Server locations. The Symbol

server is a Windows only option.

Source Data: use this section to set the Source view preferences.

AMD uProf User Guide

62

[AMD Public Use]

SETTINGS – Symbols section

SETTINGS – Source data

AMD uProf User Guide

 63

[AMD Public Use]

Chapter 5 Getting started with

AMDuProfCLI

AMD uProf’s command-line-interface AMDuProfCLI provides options to collect and generate

report for analyzing the profile data.

AMDuProfCLI [--version] [--help] COMMAND [<options>] [<PROGRAM>] [<ARGS>]

Following COMMANDs are supported:

Command Description

collect Run the given program and collects the profile samples

translate Process the raw profile datafile and generates the profile db

report Process the raw profile datafile and generates profile report

timechart Power Profiling - collects and reports system characteristics like

power, thermal and frequency metrics

info Displays generic information about system, topology

Refer this section for the workflow. To run the command line interface AMDuProfCLI:

Windows:

Run C:\Program Files\AMD\AMDuProf\bin\AMDuProfCLI.exe binary.

Linux:

Run /opt/AMDuProf_X.Y-ZZZ/AMDuProfCLI binary, or

/tmp/AMDuProf_Linux_x64_X.Y.ZZZ/bin/AMDuProfCLI (if installed using tarfile)

FreeBSD:

Run /tmp/AMDuProf_FreeBSD_x64_X.Y.ZZZ/bin/AMDuProfCLI binary.

AMD uProf User Guide

64

[AMD Public Use]

5.1 How to start CPU profile?

To profile and analyze the performance of a native (C/C++) application, you need to follow these

steps:

1. Prepare the application. Refer section on how to prepare an application for profiling

2. Collect the samples for the application using AMDuProfCLI’s collect command

3. Generate the report using AMDuProfCLI’s report command, in readable format for analysis

Preparing the application is to build the launch application with debug information as debug info is

needed to correlate the samples to functions and source lines.

The collect command will launch the application (if given) and collect the profile data for the given

profile type and sampling configuration. It will generate raw data file (.prd on Windows and .caperf

on Linux) and other miscellaneous files.

The report command translates the collected raw profile data to aggregate and attribute to the

respective processes, threads, load modules, functions and instructions and writes them into a DB

and then generate a report in CSV format.

AMDuProfCLI – collect and report command invocations

This above screenshot shows how to run time-based profile and generate a report for the launch

application AMDTClassicMatMul.exe.

AMD uProf User Guide

 65

[AMD Public Use]

Note: On Linux, AMDuProfCLI collect command will generate a caperf file which will be passed

as input file to report command.

List of predefined sampling configurations

To get the list of supported predefined sampling configurations that can be used with collect

command’s --config option run the below command.

C:\> AMDuProfCLI.exe info --list collect-configs

And the output will look like:

AMDuProfCLI - list supported predefined configurations

Profile report

The profile report, which is CSV format, contains the following section:

• EXECUTION – information about the target launch application

• PROFILE DETAILS – details about this session - profile type, scope, sampling events, etc.,

• 5 HOTTEST Functions – List of top 5 hot functions and the metrics attributed to them

• PROFILE REPORT FOR PROCESS – For the profiled process, the metrics attributed. This

section contains other sub-sections like:

▪ THREAD SUMMARY – list of threads that belongs to this process with metrics

attributed to them

AMD uProf User Guide

66

[AMD Public Use]

▪ MODULE SUMMARY – list of load modules that belongs to this process with metrics

attributed to them

▪ FUNCTION SUMMARY – list of functions that belongs to this process for which

samples are collected, with metrics attributed to them

▪ Function Detail Data – Source level attribution for the top functions for which samples

are collected

▪ CALLGRAPH – Call graph, if callstack samples are collected

AMD uProf User Guide

 67

[AMD Public Use]

5.2 How to start Power profile?

System-wide Power Profiling (Live)

To collect power profile counter values, you need to follow these steps:

1. Get the list of supported counter categories by running AMDuProfCLI’s timechart

command with --list option

2. Collect and the report the required counters using AMDuProfCLI’s timechart command by

specifying the interesting counters with --event option

The timechart run to list the supported counter categories:

AMDuProfCLI timechart --list command’s output

The timechart to collect the profile samples and write into a file:

AMDuProfCLI timechart run

AMD uProf User Guide

68

[AMD Public Use]

The above run will collect the energy and frequency counters on all the devices on which these

counters are supported and writes them in the output file specified with -o option. Before the

profiling begins, the given application will be launched, and the data will be collected till the

application terminates.

AMD uProf User Guide

 69

[AMD Public Use]

5.3 Collect command

This collect command runs the given program and collects the performance profile data and writes

into specified raw profile data file. This file can then be analyzed using AMDuProfCLI’s report

command or AMDuProf GUI.

Synopsis:

AMDuProfCLI collect [--help] [<options>] [<PROGRAM>] [<ARGS>]

<PROGRAM> - Denotes a launch application to be profiled

<ARGS> - Denotes the list of arguments for the launch application

Common usages:

$ AMDuProfCLI collect <PROGRAM> [<ARGS>]

$ AMDuProfCLI collect [--config <config> | -e <event>] [-a] [-d <duration>]

[<PROGRAM>]

Options:

Option Description

-h | --help Displays this help information on the console/terminal.

--config <config> Predefined sampling configuration to be used to collect samples.

Use the command info --list collect-configs to get the list of

supported configs.

-e | --event

<predefined-event>

-e | --event <EVENT>

A <predefined event> is the symbolic name of a core PMC event

that can be directly used with -e, --event.

Use command 'info --list predefined-events' for the list of

supported predefined events.

Specify a sampling event to monitor in the form of the comma

separated key=value pair. Supported keys are:

event=<timer | ibs-fetch | ibs-op | pmcxNNN> where NNN is

hexadecimal Core PMC event id.

umask=<unit-mask>

user=<0 | 1>

AMD uProf User Guide

70

[AMD Public Use]

os=<0 | 1>

interval=<sampling interval>

ibsop-count-control=<0 | 1>

call-graph

loadstore

Ex: -e event=pmcx76,interval=250000

Use command info --list pmu-events for the list of supported PMC

events.

Details about the arguments:

umask - Applicable to PMU events. It can be in decimal or

hexadecimal. Default is 0.

user, os - Applicable to PMU events. Default is 1;

interval - Applicable to all events. For timer, the interval is in

milliseconds. For PMU event, if the interval is not set or 0, then the

event will be monitored in count mode. For timer, ibs-fetch and ibs-

op events valid sampling interval is required. Default is 0.

ibsop-count-control - Applicable only to ibs-op event. When set to

0, count clock cycles, otherwise count dispatched micro-ops.

Default is 0.

call-graph – To enable callstack data collection for this event.

loadstore – To collect only the load and store IBS OP samples on

Windows.

Multiple occurrences of --event (-e) are allowed.

-p | --pid <PID...> Profile existing processes (processes to attach to). Process IDs are

separated by comma.

--tid <TID...> Profile existing threads (threads to attach to). Threads IDs are

separated by comma. This is a Linux only option.

-a | --system-wide System Wide Profile (SWP). If this flag is not set, then the

command line tool will profile only the launched application, or the

Process IDs attached with -p option.

AMD uProf User Guide

 71

[AMD Public Use]

-c | --cpu <core...> Comma separated list of CPUs to profile. Ranges of CPUs also be

specified with ‘-’, e.g., 0-3. Use info --cpu-topology command to

get list of available core-ids.

NOTE: On Windows, the selected cores should belong to only one

processor group, e.g., 0-63, 64-127 and so on.

--interval <count> Sampling interval for PMC events. Note: This interval will override

the sampling interval specified with individual events.

-d | --duration <n> Profile only for the specified duration n in seconds.

--affinity <core...> Set the core affinity of the launched application to be profiled.

Comma separated list of core-ids. Ranges of core-ids also be

specified, e.g., 0-3. Default affinity is all the available cores.

--no-inherit Do not profile the children of the launched application (i.e.,

processes launched by the profiled application).

-b | --terminate Terminate the launched application after profile data collection

ends. Only the launched application process will be killed. Its

children, if any, may continue to execute.

--start-delay <n> Start Delay n in seconds. Start profiling after the specified duration.

When n is 0, it has no impact.

--start-paused Profiling paused indefinitely. The target application resumes the

profiling using the profile control APIs. This option is expected to

be used only when the launched application is instrumented to

control the profile data collection using the resume and pause APIs

defined in AMDProfileControl library.

-w | --working-dir

<path>
Specify the working directory. Default will be the directory of the

launch application.

-o | --output <file> Base name of the output file. If this option is skipped, default path

will be used. The default file will be

(Windows) %Temp%\AMDuProf-<timestamp>.prd

(Linux) /tmp/AMDuProf-<timestamp>.caperf

-v | --verbose <n> Specify debug log messaging level. Valid values of (n) are:

1: INFO, 2: DEBUG, 3: EXTENSIVE

AMD uProf User Guide

72

[AMD Public Use]

--ip <IP Addr> IP address of the target system.

Note: To perform remote profiling on a target system, remote agent

AMDRemoteAgent should be launched first on the target system.

--port <port> The port on which the remote agent AMDRemoteAgent is listening

on the target system.

Note: To perform remote profiling on a target system, remote agent

AMDRemoteAgent should be launched first on the target system.

Windows specific options:

Option Description

--call-graph

<I:D:S:F>
Enable callstack Sampling. Specify the Unwind Interval (I) in

milliseconds and Unwind Depth (D) value. Specify the Scope (S) by

choosing one of the following:

user : Collect only for user space code.

kernel : Collect only for kernel space code.

all : Collect for code executed in user and kernel space code.

Specify to collect missing frames due to Frame Pointer Omission

(F) by compiler:

fpo : Collect missing callstack frames.

nofpo : Ignore missing callstack frames.

-g
Same as passing --call-graph 1:128:user:nofpo

--data-buffer-count

<count>
To specify the number of data buffers to be used by the Windows

uProf driver. This will help to reduce the missing samples.

Linux specific options:

Option Description

AMD uProf User Guide

 73

[AMD Public Use]

--call-graph <F:N> Enable Callstack sampling. Specify (F) to collect/ignore missing

frames due to omission of frame pointers by compiler:

fpo : Collect missing callstack frames.

nofpo : Ignore missing callstack frames.

When F = fpo, (N) specifies the max stack-size in bytes to collect

per sample collection. Valid range to stack size: 16 - 8192. If (N) is

not multiple of 8, then it is aligned down to the nearest value

multiple of 8. The default value is 1024 bytes.

NOTE: Passing a large N value will generate a very large raw data

file.

When F = nofpo, the value for N is ignored, hence no need to pass

it.

-g Same as passing --call-graph nofpo

--tid <TID,..> Profile existing threads(threads to attach to). Thread IDs are

separated by comma.

-m, --mmap-pages

<size>
Set kernel memory mapped data buffer to size. Size can be specified

in pages or with a suffix Bytes(B/b), Kilo bytes(K/k),

Megabytes(M/m), Gigabytes(G/g).

--omp Profile OpenMP application.

Note:

1. Applicable to per process and attach process profiling.

2. Not applicable to:

a. System wide profiling

b. Java app profiling

3. Compile the OpenMP application with LLVM/Clang 8.0 or

later. Supported base languages: C, C++, Fortran

--mpi Use this option to get the MPI profiling information.

-O, --output-dir

<directory name>
Name of the output directory. This option should be used with –mpi

option where the multiple raw data files are saved in a single

directory.

AMD uProf User Guide

74

[AMD Public Use]

Examples

Windows:

• Launch application AMDTClassicMatMul.exe and collect samples for

CYCLES_NOT_IN_HALT and RETIRED_INST events:

C:\> AMDuProfCLI.exe collect -e cycles-not-in-halt -e retired-inst

--interval 1000000 -o c:\Temp\cpuprof-custom AMDTClassicMatMul.exe

C:\> AMDuProfCLI.exe collect -e event=cycles-not-in-halt,interval=250000

-e event=retired-inst,interval=500000 -o c:\Temp\cpuprof-custom

 AMDTClassicMatMul.exe

• Launch application AMDTClassicMatMul.exe and collect Time-based profile (TBP) samples:

C:\> AMDuProfCLI.exe collect -o c:\Temp\cpuprof-tbp AMDTClassicMatMul.exe

• Launch AMDTClassicMatMul.exe and do ‘Assess Performance’ profile for 10 seconds:

C:\> AMDuProfCLI.exe collect --config assess -o c:\Temp\cpuprof-assess -d 10

AMDTClassicMatMul.exe

• Launch AMDTClassicMatMul.exe and collect ‘IBS’ samples in SWP mode:

C:\> AMDuProfCLI.exe collect --config ibs -a -o c:\Temp\cpuprof-ibs-swp

AMDTClassicMatMul.exe

• Collect ‘TBP’ samples in SWP mode for 10 seconds:

C:\> AMDuProfCLI.exe collect -a -o c:\Temp\cpuprof-tbp-swp -d 10

• Launch AMDTClassicMatMul.exe and collect ‘TBP’ with Callstack sampling:

C:\> AMDuProfCLI.exe collect --config tbp -g -o c:\Temp\cpuprof-tbp

AMDTClassicMatMul.exe

• Launch AMDTClassicMatMul.exe and collect ‘TBP’ with callstack sampling (unwind FPO

optimized stack):

C:\> AMDuProfCLI.exe collect --config tbp --call-graph 1:64:user:fpo -o

c:\Temp\cpuprof-tbp AMDTClassicMatMul.exe

• Launch AMDTClassicMatMul.exe and collect samples for PMCx076 and PMCx0C0:

C:\> AMDuProfCLI.exe collect -e event=pmcx76,interval=250000 -e

event=pmcxc0,user=1,os=0,interval=250000 -o c:\Temp\cpuprof-tbp

AMDTClassicMatMul.exe

• Launch AMDTClassicMatMul.exe and collect samples for IBS OP with interval 50000:

C:\> AMDuProfCLI.exe collect -e event=ibs-op,interval=50000 -o

c:\Temp\cpuprof-tbp AMDTClassicMatMul.exe

AMD uProf User Guide

 75

[AMD Public Use]

Linux:

• Launch application AMDTClassicMatMul.exe and collect samples for

CYCLES_NOT_IN_HALT and RETIRED_INST events:

$./AMDuProfCLI collect -e cycles-not-in-halt -e retired-inst

--interval 1000000 -o /tmp/cpuprof-custom AMDTClassicMatMul-bin

C:\> AMDuProfCLI.exe collect -e event=cycles-not-in-halt,interval=250000

-e event=retired-inst,interval=500000 -o /tmp/cpuprof-custom

 AMDTClassicMatMul-bin

• Launch the application AMDTClassicMatMul-bin and collect Time-based profile (TBP)

samples:

$./AMDuProfCLI collect -o /tmp/cpuprof-tbp AMDTClassicMatMul-bin

• Launch AMDTClassicMatMul-bin and do ‘Assess Performance’ profile for 10 seconds:

$./AMDuProfCLI collect --config assess -o /tmp/cpuprof-assess -d 10

AMDTClassicMatMul-bin

• Launch AMDTClassicMatMul-bin and collect ‘IBS’ samples in SWP mode:

$./AMDuProfCLI collect --config ibs -a -o /tmp/cpuprof-ibs-swp

AMDTClassicMatMul-bin

• Collect ‘TBP’ samples in SWP mode for 10 seconds:

$./AMDuProfCLI collect -a -o /tmp/cpuprof-tbp-swp -d 10

• Launch AMDTClassicMatMul-bin and collect ‘TBP’ with Callstack sampling:

$./AMDuProfCLI collect --config tbp -g -o /tmp/cpuprof-tbp

AMDTClassicMatMul-bin

• Launch AMDTClassicMatMul-bin and collect ‘TBP’ with callstack sampling (unwind FPO

optimized stack):

$./AMDuProfCLI collect --config tbp --call-graph fpo:512 -o /tmp/uprof-

tbp AMDTClassicMatMul-bin

• Launch AMDTClassicMatMul-bin and collect samples for PMCx076 and PMCx0C0:

$./AMDuProfCLI collect -e event=pmcx76,interval=250000 -e

event=pmcxc0,user=1,os=0,interval=250000 -o /tmp/cpuprof-tbp

AMDTClassicMatMul-bin

• Launch AMDTClassicMatMul-bin and collect samples for IBS OP with interval 50000:

$./AMDuProfCLI collect -e event=ibs-op,interval=50000 -o /tmp/cpuprof-tbp

AMDTClassicMatMul-bin

AMD uProf User Guide

76

[AMD Public Use]

5.4 Report command

This report command processes the raw profile data (.prd on Windows or .caperf on Linux) or the

processed file (.db) and generate a profile report. The profile report can also be generated from the

DB file also.

Synopsis:

AMDuProfCLI report [--help] [<options>]

Common usages:

$ AMDuProfCLI report -i <profile data file>

Options

Option Description

-h | --help Displays this help information on the console/terminal.

-i | --input <file> Input file name. Either the raw profile data file (.prd on Windows and

.caperf on Linux) or the processed data file (.db) can be specified.

-o | --output

<output dir>
Output directory in which the processed data file (.db) and the report

file (.csv) will be created.

The default output dir <base-name-of-input-file>, will be created in

the directory in which the input file resides.

--detail Generate detailed report.

--group-by

<section>
Specify the report to be generated. Supported report options are:

process: Report process details

module: Report module details

thread: Report thread details

This option is applicable only with --detail option.

-p, --pid <PID,..> Generate report for the specified PIDs. Process IDs are separated by

comma.

-g Print callgraph. Use with options --detail or --pid (-p). With --pid

option, callgraph will be generated only if the callstack samples were

collected for specified PIDs.

AMD uProf User Guide

 77

[AMD Public Use]

--cutoff <n> Cutoff to limit the number of process, threads, modules, and functions

to be reported. n is the minimum number of entries to be reported in

various report sections. Default value is 10.

--view <config> Report only the events present in the given view file. Use the

command info --list view-configs to get the list of supported view-

configs.

--inline Show inline functions for C, C++ executables.

Note: Using this option will increase the time taken to generate the

report.

--show-sys-src Generate detailed function report of the system module functions (if

debug info is available) with source statements.

--src-path

<path1;...>
Source file directories. (Semicolon separated paths.)

--ascii event-dump To generate ASCII dump of IBS OP sample records from the given

raw profile file.

--disasm Generate detailed function report with assembly instructions.

-s | --sort-

by <EVENT>
Specify the Timer, PMU, or IBS event on which the reported profile

data will be sorted with arguments in the form of comma separated

key=value pairs. Supported keys are:

event=<timer | ibs-fetch | ibs-op | pmcxNNN> where NNN is

hexadecimal Core PMC event id.

umask=<unit-mask>

user=<0 | 1>

os=<0 | 1>

Use command info --list pmu-events for the list of supported PMC

events.

Details about the arguments:

umask - Unit mask in decimal or hexadecimal. Applicable only to

PMU events.

user, os - User, OS mode. Applicable only to PMU events.

AMD uProf User Guide

78

[AMD Public Use]

Multiple occurrences of –sort-by (-s) are not allowed.

--imix Generate Instruction MIX report.

--ignore-system-

module
Ignore samples from system modules.

--show-percentage Show percentage of samples, instead of actual samples.

--show-sample-count Show the number of samples. This option is enabled by default.

--show-event-count Show number of events occurred

--bin-path <path> Binary file path. Multiple use of --bin-path is allowed.

--symbol-path

<path1;...>
Debug Symbol paths. (Semicolon separated paths.)

-v | --verbose <n> Specify debug log messaging level. Valid values are:

1 : INFO

2 : DEBUG

3 : EXTENSIVE

--ip <IP Addr> IP address of the target system.

Note: To perform remote profiling on a target system, remote agent

AMDRemoteAgent should be launched first on the target system.

--port <port> The port on which the remote agent AMDRemoteAgent is listening

on the target system.

Note: To perform remote profiling on a target system, remote agent

AMDRemoteAgent should be launched first on the target system.

Windows specific options

Option Description

--symbol-server

<path1;...>
Symbol Server directories. (Semicolon separated paths.)

--symbol-cache-dir

<path>
Path to store the symbol files downloaded from the Symbol Servers.

AMD uProf User Guide

 79

[AMD Public Use]

Linux specific options

Option Description

-I, --input-dir

<directory name>
Input directory name. This is used to specify the data collected using -

--mpi option and the directory specified should be the one specified

with –output-dir option.

--host <hostname> This option is used along with the --input-dir option. Generate report

belonging to a specific host. Supported options are:

<hostname>: Report process belonging to a specific host.

all: Report all processes

Note: If --host is not used then only the processes belonging to the

system from which report is generated is reported.

--limit-cacheinfo

<n>
Cut-off limit for entries in the cache line analysis report sections.

Default value is 10.

Examples

Windows

• Generate report from the raw datafile:

C:\> AMDuProfCLI.exe report -i c:\Temp\cpuprof-tbp.prd -o c:\Temp\tbp-out

• Generate IMIX report from the raw datafile:

C:\> AMDuProfCLI.exe report --imix -i c:\Temp\cpuprof-tbp.prd -o

c:\Temp\cpuprof-tbp-out

• Generate report with Symbol Server paths:

C:\> AMDuProfCLI.exe report --symbol-path C:\Temp\Symbols –symbol-

server http://msdl.microsoft.com/download/symbols --cache-dir C:\symbols -

i c:\Temp\cpuprof-tbp.prd -o c:\Temp\cpuprof-tbp-out

AMD uProf User Guide

80

[AMD Public Use]

Linux

• Generate report from the raw datafile:

$./AMDuProfCLI report -i /tmp/cpuprof-tbp.caperf -o /tmp/cpuprof-tbp-out

• Generate IMIX report from the raw datafile:

$./AMDuProfCLI report --imix -i /tmp/cpuprof-tbp.caperf -o /tmp/cpuprof-

tbp-out

5.5 Timechart command

This timechart command collects and reports system characteristics like power, thermal and

frequency metrics and generates a text or CSV report.

Synopsis:

AMDuProfCLI timechart [--help] [--list] [<options>] [<PROGRAM>] [<ARGS>]

<PROGRAM> - Denotes the application to be launch before start collecting the power metrics

<ARGS> - Denotes the list of arguments for the launch application

Common usages:

$ AMDuProfCLI timechart --list

$ AMDuProfCLI timechart -e <event> -d <duration> [<PROGRAM>] [<ARGS>]

Options:

Option Description

-h | --help Displays this help information.

--list Display all the supported devices and categories.

-e | --event

<type...>
Collect counters for specified type or comma separated list of types,

where type can be a device or a category.

Supported device list:

socket: Collect profile data from socket.

die: Collect profile data from die.

core: Collect profile data from core.

AMD uProf User Guide

 81

[AMD Public Use]

thread: Collect profile data from thread.

Supported category list:

Refer this section for family specific supported categories.

power: Collect all available power counters.

frequency: Collect all available frequency counters.

temperature: Collect all available temperature counters.

voltage: Collect all available voltage counters.

current: Collect all available current counters.

dvfs: Collect all available Dynamic Voltage and Frequency

Scaling (DVFS) counters.

energy: Collect all available energy counters.

cac: Collect all available cac counters.

controllers: Collect all available controllers counters.

Note: Multiple occurrences of -e is allowed.

-t | --interval <n> Sampling interval n in milliseconds. The minimum value is 10ms.

-d | --duration <n> Profile duration n in seconds.

--affinity

<core...>
Core affinity. Comma separated list of core-ids. Ranges of core-ids

also be specified, e.g., 0-3. Default affinity is all the available cores.

Affinity is set for the launched application.

-w | --working-dir

<dir>
Set the working directory for the launched target application.

-f | --format <fmt> Output file format. Supported formats are:

txt: Text (.txt) format.

csv: Comma Separated Value (.csv) format.

Default file format is CSV.

-o | --output

<file>
Output file path.

AMD uProf User Guide

82

[AMD Public Use]

--ip <IP Addr> IP address of the target system.

Note: To perform remote profiling on a target system, remote agent

AMDRemoteAgent should be launched first on the target system.

--port <port> The port on which the remote agent AMDRemoteAgent is listening

on the target system.

Note: To perform remote profiling on a target system, remote agent

AMDRemoteAgent should be launched first on the target system.

Examples:

Windows

• Collect all the power counter values for the duration of 10 seconds with sampling interval of

100 milliseconds:

C:\> AMDuProfCLI.exe timechart --event power --interval 100 --duration 10

• Collect all frequency counter values for 10 seconds, sampling them every 500 milliseconds and

dumping the results to a csv file:

C:\> AMDuProfCLI.exe timechart --event frequency -o C:\Temp\output.txt --

interval 500 --duration 10

• Collect all frequency counter values at core 0 to 3 for 10 seconds, sampling them every 500

milliseconds and dumping the results to a text file:

C:\> AMDuProfCLI.exe timechart --event core=0-3,frequency --output

C:\Temp\PowerOutput.txt --interval 500 -duration 10 --format txt

Linux

• Collect all the power counter values for the duration of 10 seconds with sampling interval of

100 milliseconds:

$./AMDuProfCLI timechart --event power --interval 100 --duration 10

• Collect all frequency counter values for 10 seconds, sampling them every 500 milliseconds and

dumping the results to a csv file:

$./AMDuProfCLI timechart --event frequency -o /tmp/PowerOutput.csv --

interval 500 --duration 10

• Collect all frequency counter values at core 0 to 3 for 10 seconds, sampling them every 500

milliseconds and dumping the results to a text file:

$./AMDuProfCLI timechart --event core=0-3,frequency --output

/tmp/PowerOutput.txt --interval 500 --duration 10 --format txt

AMD uProf User Guide

 83

[AMD Public Use]

5.6 Info command

This info command helps to get generic information about the system, CPU topology, disassembly

of a binary etc.

Synopsis:

AMDuProfCLI info [--help] [<options>]

Common usages:

$ AMDuProfCLI info --system

$ AMDuProfCLI info --cpu-topology

Options:

Option Description

-h | --help Displays the help information.

--list <type> Lists the supported items for the following types:

collect-configs: Predefined profile configurations that can be

used with collect command’s --config option.

predefined-events: List of the supported predefined events that

can be used with 'collect --event' option

view-configs: List the supported data view configurations that

can be used with report command’s --view option.

pmu-events: Raw PMC events that can be used with collect

command’s --event option.

cacheline-events: List of event aliases to be used with 'report --

sort-by' option for cache analysis.

--collect-config <name> Displays details of the given profile configuration used with

collect --config <name> option.

Use info --list collect-configs command for details about the

supported profile configurations.

--view-config <name> Displays details of the given view configuration used in report

generation option report --view <name>.

AMD uProf User Guide

84

[AMD Public Use]

Use info --list view-configs command for details about the

supported data view configurations.

--pmu-event <event> Displays details of the given pmu event. Use command info --list

pmu-events for the list of supported PMC events.

--system Displays processor information of this system.

--cpu-topology Displays CPU topology information of this system.

--disasm <binary> Disassembles the given binary file.

--show-uid Displays the UID of the user.

--disasm <binary-path> Displays disassembly of the given binary file.

Examples:

• Print system details:

C:\> AMDuProfCLI.exe info --system

• Print CPU topology details:

C:\> AMDuProfCLI.exe info --cpu-topology

• To disassemble AMDTClassicMatMul.exe into classic-disasm.txt file:

C:\> AMDuProfCLI.exe info --disasm AMDTClassicMatMul.exe > classic_asm.txt

• To print system info:

C:\> AMDuProfCLI.exe info --system

• To print list of predefined events:

C:\> AMDuProfCLI.exe info --list predefined-events

• To print list of predefined profiles:

C:\> AMDuProfCLI.exe info --list collect-configs

• To print list of PMU events:

C:\> AMDuProfCLI.exe info --list pmu-events

• To print list of predefined report views:

C:\> AMDuProfCLI.exe info --list view-configs

• To print details of predefined profile like “assess_ext”:

AMD uProf User Guide

 85

[AMD Public Use]

C:\> AMDuProfCLI.exe info --collect-config assess_ext

• To print details of the pmu-event like PMCx076:

C:\> AMDuProfCLI.exe info --pmu-event pmcx76

• To print details of view configuration like ibs_op_overall:

C:\> AMDuProfCLI.exe info --view-config ibs_op_overall

AMD uProf User Guide

86

[AMD Public Use]

Chapter 6 Performance Analysis

CPU Profiling

AMD uProf profiler follows a statistical sampling-based approach to collect profile data to identify

the performance bottlenecks in the application.

• Profile data is collected using any of the following approaches:

▪ Timer Based Profiling (TBP) - to identify the hotspots in the profiled applications

▪ Event Based Profiling (EBP) - sampling based on Core PMC events to identify micro-

architecture related performance issues in the profiled applications

▪ Instruction based Sampling (IBS) - precise instruction-based sampling

• Call-stack Sampling

• Secondary profile data (Windows only)

▪ Thread concurrency

▪ Thread Names

• Profile scope

▪ Per-Process: Launch an application and profile that process its children

▪ System-wide: Profile all the running processes and/or kernel

▪ Attach to an existing application (Native applications only)

• Profile mode

▪ Profile data is collected when the application is running in User and/or Kernel mode

• Profiles

▪ C, C++, Java, .NET, FORTRAN, Assembly applications

▪ Various software components – Applications, dynamically linked/loaded modules,

Driver, OS Kernel modules

• Profile data is attributed at various granularities

▪ Process / Thread / Load Module / Function / Source line / Disassembly

▪ To correlate the profile data to Function and Source line, debug information emitted

by the compiler is required

▪ C++ & Java in-lined functions

• Processed profile data is stored in databases, which can be used to generate reports later.

• Profile reports are available in comma-separated-value (CSV) format to use with spreadsheets.

AMD uProf User Guide

 87

[AMD Public Use]

• AMDuProfCLI, the command-line-interface can be used to configure a profile run, collect

the profile data, and generate the profile report.

▪ collect option to configure and collect the profile data

▪ report option to process the profile data and to generate the profile report

• AMDuProf GUI can be used to:

▪ Configure a profile run

▪ Start the profile run to collect the performance data

▪ Analyze the performance data to identify potential bottlenecks

• AMDuProf GUI has various UIs to analyze and view the profile data at various granularities

▪ Hot spots summary

▪ Thread concurrency graph (Windows only and requires admin privileges)

▪ Process and function analysis

▪ Source and disassembly analysis

▪ Flame Graph - a stack visualizer based on collected call-stack samples

▪ Call Graph - butterfly view of callgraph based on call-stack samples

▪ HPC - to analyze OpenMP profile data

▪ Cache Analysis - to analyze the hot cache lines that are false shared

• Profile Control API to selectively enable and disable profiling from the target application by

instrumenting it, to limit the scope of the profiling

6.1 Analysis with Time-based profiling

In this analysis, the profile data is periodically collected based on the specified OS timer interval. It

is used to identify the hotspots of the profiled applications that are consuming the most time. These

hotspots are good candidates for further investigation and optimization. Follow these steps:

To configure and start profile:

1. Clicking PROFILE → Start Profiling will navigate to the Select Profile Target window. After

selecting the appropriate profile target, clicking Next button will take you to Select Profile Type

fragment.

2. In Select Profile Type fragment, selecting CPU Profile from the drop-down list, will take you

to the below screenshot.

3. Select Time-based Sampling in the left vertical pane as shown in the below screenshot.

AMD uProf User Guide

88

[AMD Public Use]

Time based profile – configure

4. Click Advanced Options to enable Callstack, set symbol paths (if the debug files are in different

locations) and other options. Refer this section for more information on this window.

5. Once all the options are set, the Start Profile button at the bottom will be enabled and you can

click on it to start the profile. After the profile initialization you will see this profile data

collection screen.

To Analyze the profile data

6. When the profiling stopped, the collected raw profile data will be processed automatically, and

you will see the Hot Spots window of Summary page. The hotspots are shown for Timer

samples. Refer this section for more information on this window.

7. Clicking ANALYZE button on the top horizontal navigation bar will go to Function HotSpots

window. Refer this section for more information on this window.

8. Clicking ANALYZE → Metrics will display the profile data table at various granularities -

Process, Load Modules, Threads and Functions. Refer this section for more information on this

window.

AMD uProf User Guide

 89

[AMD Public Use]

9. Double-clicking any entry on the Functions table in Metrics window will make the GUI load

the source tab for that function in SOURCES page. Refer this section for more information on

this window.

6.2 Analysis with Event based profiling

In this profile, the uProf uses the PMCs to monitor the various micro-architectural events supported

by the AMD x86-based processor. It helps to identify the CPU and memory related performance

issues in profiled applications. Steps to follow:

To configure and start profile:

1. Clicking PROFILE → Start Profiling will navigate to the Select Profile Target window. After

selecting the appropriate profile target, clicking Next button will take you to Select Profile Type

fragment.

2. In Select Profile Type fragment, selecting CPU Profile from the drop-down list, will take you

to the below screenshot.

Event based profile - configure

3. Select Assess Performance in the left vertical pane as shown in the below screenshot. Refer

this section for EBP based predefined sampling configurations.

AMD uProf User Guide

90

[AMD Public Use]

4. Click Advanced Options to enable Callstack, set symbol paths (if the debug files are in different

locations) and other options. Refer this section for more information on this window.

5. Once all the options are set, the Start Profile button at the bottom will be enabled and you can

click on it to start the profile. After the profile initialization you will see this profile data

collection screen.

To Analyze the profile data

6. When the profiling stopped, the collected raw profile data will be processed automatically, and

you will the Hot spots window of Summary page. Refer this section for more information on

this window.

7. Clicking ANALYZE button on the top horizontal navigation bar will go to Function HotSpots

window. Refer this section for more information on this window.

8. Clicking ANALYZE → Metrics will display the profile data table at various granularities -

Process, Load Modules, Threads and Functions. Refer this section for more information on this

window.

9. Double-clicking any entry on the Functions table in Metrics window will make the GUI load

the source tab for that function in SOURCES page. Refer this section for more information on

this window.

6.3 Analysis with Instruction based sampling

In this profile, the uProf uses the IBS supported by the AMD x86-based processor to diagnose the

performance issues in hot spots. It collects data on how instructions behave on the processor and in

the memory subsystem.

To configure and start profile:

1. Clicking PROFILE → Start Profiling will navigate to the Select Profile Target window. After

selecting the appropriate profile target, clicking Next button will take you to Select Profile Type

fragment.

2. In Select Profile Type fragment, select CPU Profile from the dropdown and then select

Instruction-Based Sampling in the left vertical pane. Refer this section for predefined sampling

configurations.

3. Click Advanced Options to enable Callstack, set symbol paths (if the debug files are in different

locations) and other options. Refer this section for more information on this window.

AMD uProf User Guide

 91

[AMD Public Use]

4. Once all the options are set, the Start Profile button at the bottom will be enabled and you can

click on it to start the profile. After the profile initialization you will see this profile data

collection screen.

To Analyze the profile data

5. When the profiling stopped, the collected raw profile data will be processed automatically, and

you will the Hot spots window of Summary page. Refer this section for more information on

this window.

6. Clicking ANALYZE button on the top horizontal navigation bar will go to Function HotSpots

window. Refer this section for more information on this window.

7. Clicking ANALYZE → Metrics will display the profile data table at various granularities -

Process, Load Modules, Threads and Functions. Refer this section for more information on this

window.

8. Double-clicking any entry on the Functions table in Metrics window will make the GUI load

the source tab for that function in SOURCES page. Refer this section for more information on

this window.

6.4 Analysis with Callstack samples

The callstack samples too can be collected for C, C++, and Java applications with all the CPU profile

types. These samples will be used to provide Flame Graph and Call Graph window.

To enable call-stack sampling, after selecting profile target and profile type, click on Advanced

Options button to turn on the Enable CSS option in Call Stack Options pane, as seen in the below

screen. Refer this section for more information on this window.

Note:

1. If the application is compiled with higher optimization levels and frame pointers are not emitted,

then Enable FPO option can be enables. On Linux, this will increase the size of the raw profile

file size.

AMD uProf User Guide

92

[AMD Public Use]

Start Profiling – Advanced Options

6.4.1 Flame graph

Flame Graph provides a stack visualizer based on call-stack samples. The Flame Graph window

will be available in ANALYZE page to analyze the call-stack samples to identify hot call-paths. It

can be navigated by clicking ANALYZE → Flame Graph in the left vertical pane.

Refer this section for more information on this window.

AMD uProf User Guide

 93

[AMD Public Use]

ANALYZE – Flame graph window

The Flamegraph can be displayed based on Process IDs and Counters dropdowns. It also has the

function search box to search and highlight the given function name.

6.4.2 Call graph

Call Graph provides a butterfly view of callgraph based on call-stack samples The Call Graph

window will be available in ANALYZE page to analyze the call-stack samples to identify hot call-

paths. It can be navigated by clicking ANALYZE → Call Graph in the left vertical pane.

Refer this section for more information on this window.

AMD uProf User Guide

94

[AMD Public Use]

ANALYZE – Call graph window

The data can be browsed based on Process IDs and Counters drop-downs. The top central table

displays call-stack samples for each function. Clicking on any function updates the bottom two

Caller(s) and Callee(s) tables. These tables display the callers and callees respectively of the

selected function.

6.5 Profiling a Java Application

AMD uProf supports Java application profiling running on JVM. To support this, it uses JVM Tool

Interface (JVMTI).

AMDuProf provides JVMTI Agent libraries: AMDJvmtiAgent.dll on Windows and

libAMDJvmtiAgent.so on Linux. This JvmtiAgent library needs to be loaded during start-up

of the target JVM process.

Launching a Java application

If the Java application is launched by uProf, then the tool would take care of passing the

AMDJvmtiAgent library to JVM using Java’s -agentpath option. AMDuProf would be able to

collect the profile data and attribute the samples to interpreted Java functions.

https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html

AMD uProf User Guide

 95

[AMD Public Use]

To profile a Java application, you may use the following sample command:

$./AMDuProfCLI collect --config tbp -w <java-app-dir> <path-to-java.exe>

<java-app-main>

To generate report, you may need to pass source file path:

$./AMDuProfCLI report --src-path <path-to-java-app-source-dir> -i <raw-

data-file>

Attaching a Java process to profile

AMD uProf can’t attach JvmtiAgent dynamically to an already running JVM. Hence any JVM

process profiled by attach-process mechanism, uProf can’t capture any class information, unless the

JvmtiAgent library is loaded during JVM process start-up.

If you want to profile an already running Java process, then you must pass -agentpath <path to agent

lib> option while launching Java application. So that, later uProf can attach to the Java PID to collect

profile data.

For a 64-bit JVM on Linux:

$ java

-agentpath:<AMDuProf-install-dir/bin/ProfileAgents/x64/libAMDJvmtiAgent.so>

<java-app-launch-options>

For a 64-bit JVM on Windows:

C:\> java -agentpath:

<C:\ProgramFiles\AMD\AMDuProf\bin\ProfileAgents\x64\AMDJvmtiAgent.dll>

<java-app-launch-options>

Keep a note of the process id (PID) of the above JVM instance. Then launch AMDuProf GUI or

AMDuProfCLI to attach to this process and profile.

Java source view

AMD uProf, will attribute the profile samples to Java methods and the source tab will show and the

Java source lines with the corresponding samples attributed to them.

Refer this section for more information on source window.

AMD uProf User Guide

96

[AMD Public Use]

Java method – Source view

Java callstack profile

To collect callstack for profile java application, use the following command:

$./AMDuProfCLI collect --config tbp -g -w <java-app-dir> <path-to-java.exe>

<java-app-main>

AMD uProf User Guide

 97

[AMD Public Use]

Java application – Flamegraph

Refer this section for more information on using Flamegraph window.

6.6 Cache Analysis

The Cache Analysis uses IBS OP samples to detect the hot false sharing cache lines in

multithreaded and multi-process with shared memory applications.

At high level, this will feature will report

• The cache lines where there is a potential false sharing

• Offsets where those accesses occur and readers and writers to those offsets

• PID, TID, Function Name, Source file, Line number for those reader and writers

• Load latency for the loads to those cache lines

6.6.1.1 Supported Metrics

Following IBS OP derived metrics are used to generate false cache sharing report:

Metric Description

LOAD_STORE_COUNT Total Loads and stores sampled

AMD uProf User Guide

98

[AMD Public Use]

LOAD_COUNT Total Loads

STORE_COUNT Total Stores

LOAD_LATENCY Accumulated load latencies for the loads to cache lines

DC_L2_HIT Load operations hit in data cache or L2 cache

LCL_CACHE_HIT (M) Loads that was serviced from the local cache (L3) and the cache

hit state was Modified.

LCL_CACHE_HIT (O) Loads that was serviced from the local cache (L3) and the cache

hit state was Owned.

LCL_CACHE_MISS Loads that are missed in local cache (L3) and serviced by remote

cache, local or remote DRAM.

RMT_CACHE_HIT (M) Loads that was serviced from the remote cache (L3) and the cache

hit state was Modified.

RMT_CACHE_HIT (O) Loads that was serviced from the remote cache (L3) and the cache

hit state was Owned.

DRAM_HIT_LCL Loads that hit in local memory (Memory channels attached to

local socket or local CCD)

DRAM_HIT_RMT Loads that hit in remote memory (Memory channels attached to

remote socket or other CCDs in the local socket)

STORE_DC_MISS Store operations missed in data cache

6.6.2 Cache Analysis using GUI

To configure and start profile:

To perform cache analysis, after selecting profile target select Cache Analysis profile type in Select

Profile Type page and start the profile.

Analyzing the report:

After the profile completion, navigate to Cache Analysis page in MEMORY tab to analyze the

profile data. This page shows the cache-lines, and it offsets with the associated metric values.

AMD uProf User Guide

 99

[AMD Public Use]

Cache Analysis

• Double clicking on the function will navigate to source view of that function.

• Show only shared cache lines switch can be turned off to show all the cache-lines for which

samples were collected.

• Address Mask can be used to filters samples shown based on the mask provided.

• Sort Data By lists the metrics based on which the entries can be sorted. By default, it is

based on Load Latency metric.

• Group By dropdown option decides how the cache-line samples are grouped in the detailed

table. It has the following options:

o Cache Line Offset

o Threads and Processes

• Show Values By dropdown will let you either show the value as sample count or in

percentage.

6.6.3 Cache Analysis using CLI

Data Collection:

The CLI has a config type called "memory" to cache analysis data. Run the following command to

collect the profile data:

$ AMDuProfCLI collect --config memory -o /tmp/cache_analysis <target app>

AMD uProf User Guide

100

[AMD Public Use]

This command will launch the program and collect the profile data required to generate the cache

analysis report. The data file /tmp/cache_analysis.caperf will contain raw profile data.

Report generation and Analysis:

Use the following CLI command to generate the cache analysis report

$ AMDuProfCLI report -i /tmp/cache_analysis.caperf

This will generate a CSV report at /tmp/cache_analysis/cache_analysis.csv and this report

will have the following sections:

• SHARED DATA CACHELINE SUMMARY: Lists the summary values of all the metrics.

• SHARED DATA CACHELINE REPORT: Lists the cache lines and the associated summary

values of the metrics.

• SHARED DATA CACHELINE DETAIL REPORT: Lists

• The cache lines where there is a potential false sharing

• Offsets where those accesses occur and readers & writers to those offsets

• PID, TID, Function Name, Source file, Line number for those reader and writers

• Load latency for the loads to those cache lines

• Supported metrics

By default, the generated report will have a cutoff limit of 10 entries for each of the above-mentioned

sections. To include more entries, use option --limit-cacheinfo <cutoff-value> with report

command:

$ AMDuProfCLI report --limit-cacheinfo <cutoff-value> -i /tmp/cache_analysis.caperf

AMD uProf User Guide

 101

[AMD Public Use]

Cache Analysis - Summary sections

Cache Analysis – detailed report

By default, the metrics are sorted by Cache Hit (M) metric. Use any of the following metric with

the --sort-by option to changes the sorting by order:

Sort-by metric Description

ldst-count Total Loads and stores sampled

AMD uProf User Guide

102

[AMD Public Use]

ld-count Total Loads

st-count Total Stores

cache-hitm Loads that was serviced either from the local or remote cache (L3)

and the cache hit state was Modified.

lcl-cache-hitm Loads that was serviced from the local cache (L3) and the cache hit

state was Modified.

rmt-cache-hitm Loads that was serviced from the remote cache (L3) and the cache

hit state was Modified.

lcl-dram-hit Loads that hit in local memory (Memory channels attached to local

socket or local CCD)

rmt-dram-hit Loads that hit in remote memory (Memory channels attached to

remote socket or other CCDs in the local socket)

l3-miss Loads that are missed in local cache (L3) and serviced by remote

cache, local or remote DRAM.

st-dc-miss Store operations missed in data cache

6.7 Custom Profile

Apart the predefine configurations, the user can choose the interesting events to profile. To

perform the custom profile, follow the steps mentioned here:

To configure and start profile:

1. Clicking PROFILE → Start Profiling will navigate to the Select Profile Target window. After

selecting the appropriate profile target, clicking Next button will take you to Select Profile Type

fragment.

2. In Select Profile Type fragment, selecting CPU Profile from the drop-down list, will take you

to the below screenshot.

3. Select Custom Profile in the left vertical pane as shown in the below screenshot.

AMD uProf User Guide

 103

[AMD Public Use]

Custom Profile

4. Click Advanced Options to enable Callstack, set symbol paths (if the debug files are in different

locations) and other options. Refer this section for more information on this window.

5. Once all the options are set, the Start Profile button at the bottom will be enabled and you can

click on it to start the profile. After the profile initialization you will see this profile data

collection screen.

To Analyze the profile data

6. When the profiling stopped, the collected raw profile data will be processed automatically, and

you will the Hot spots window of Summary page. Refer this section for more information on

this window.

7. Clicking ANALYZE button on the top horizontal navigation bar will go to Function HotSpots

window. Refer this section for more information on this window.

8. Clicking ANALYZE → Metrics will display the profile data table at various granularities -

Process, Load Modules, Threads and Functions. Refer this section for more information on this

window.

9. Double-clicking any entry on the Functions table in Metrics window will make the GUI load

the source tab for that function in SOURCES page. Refer this section for more information on

this window.

AMD uProf User Guide

104

[AMD Public Use]

6.8 Advisory

Confidence Threshold

The metric with low number of samples collected for a program unit either due to multiplexing or

statical sampling will be greyed out.

• This is applicable to SW Timer and Core PMC based metrics.

• This confidence threshold value can be set through Preferences section in SETTINGS page.

Confidence level of metrics – low confidence samples are greyed out

Issue Threshold

Highlight the CPI metric’s cells exceeding the specific threshold value (>1.0). Those cells will be

highlighted in pink to show them as potential performance problem.

AMD uProf User Guide

 105

[AMD Public Use]

CPI metric - threshold based performance issue

6.9 ASCII dump of IBS samples

For some usage scenarios, it would be useful to analyze the ascii dump of IBS OP profile samples

- perform follow the below mentioned steps:

1. To collect the IBS OP samples, run

C:\> AMDuProfCLI.exe collect -e event=ibs-op,interval=100000,loadstore,ibsop-count-

control=1 -a --data-buffer-count 20480 -d 250 -o C:\temp\cpuprof-ibs

2. Once the raw file is generated, run the following command to translate and get the ascii dump

of IBS OP samples:

C:\> AMDuProfCLI.exe translate --ascii event-dump -i C:\temp\cpuprof-ibs.prd

3. This will generate the text file that contains ascii dump of the IBS OP samples -

C:\temp\cpuprof-ibs\IbsOpDump.csv

4. During collection following control knobs are available:

• -e event=ibs-op,interval=100000,loadstore,ibsop-count-control=1

o interval → sampling interval

o loadstore → collect only the load & store ops (Windows only option)

AMD uProf User Guide

106

[AMD Public Use]

o ibsop-count-control=1 → count dispatched micro-ops (0 for “count clock cycles”)

o --data-buffer-count 1024 → number of per-core data buffers to allocate

In case if there are too many missing records then try any of the following:

• Increase the sampling interval

• Increase the data buffer count

• Reduce the number of cores profiled

6.10 Limitations

• CPU Profiling expects the profiled application executable binaries must not be compressed

or obfuscated by any software protector tools, e.g., VMProtect.

• Thread concurrency graph is Windows only feature and requires admin privileges.

• In case of AMD EPYC 1st generation B1 parts, only one PMC register is used at a time for

Core PMC event-based profiling (EBP).

AMD uProf User Guide

 107

[AMD Public Use]

Chapter 7 Performance Analysis (Linux only)

This chapter explains the Linux specific performance analysis models and for the common

Performance analysis refer this chapter.

7.1 OpenMP Analysis

The OpenMP API uses the fork-join model of parallel execution. The program starts with a single

master thread to run the serial code and when a parallel region is encountered multiple threads

perform the implicit or explicit tasks defined by the OpenMP directives. At the end of that parallel

region, the threads join at the barrier and only the master thread continues to execute.

When the threads execute the parallel region code, they should utilize all the available CPU cores

and the CPU utilization should be maximized. But due to several reasons the threads wait without

doing useful work:

• Idle: A thread finishes it task within the parallel region and waits at the barrier for the other

threads to complete.

• Sync: If locks are used inside the parallel region, threads can wait on synchronization locks

to acquire the shared resource.

• Overhead: Thread management overhead.

The OpenMP Analysis helps to trace the activities performed by OpenMP threads and their states

and provide the thread state timeline for parallel regions to analyze the performance issues.

Support matrix:

Component Supported Versions Languages

OpenMP Spec OpenMP v5.0

Compiler LLVM 8, 9, 10, 11 C, C++

AOCC 2.1, 2.2, 2.3, 3.0 C, C++, Fortran

ICC 19.1 C, C++, Fortran

OS Ubuntu 18.04 LTS, 20.04 LTS

RHEL 8

CentOS 8

AMD uProf User Guide

108

[AMD Public Use]

Prerequisites

• Compile the OpenMP application using a supported compiler (on a supported platform) with

the required compiler options to enable OpenMP.

7.1.1 Profiling OpenMP Application using GUI

To configure and start profile:

To enable OpenMP profiling, after selecting profile target and profile type, click on Advanced

Options button to turn on the Enable OpenMP Tracing option in Enable OpenMP Tracing pane,

as seen in the below screen

Advanced Options – Enable OpenMP Tracing

Analyzing the OpenMP report:

After the profile completion, navigate to HPC page to analyze the OpenMP tracing data. This page

has the following views that can be navigated through the left vertical pane.

• Overview that shows the quick details about the runtime.

• Parallel Regions that show the summary of all the parallel regions. This tab is useful to quickly

understand which parallel region might be load imbalanced. Double click on the region names

to open the ‘Regions Detailed Analysis’ page.

• Regions Detailed Analysis that shows the activity of the threads in a parallel region. If a thread

spends too much time on non-work activity, it should be further investigated and optimized to

reduce the non-work activity time.

AMD uProf User Guide

 109

[AMD Public Use]

HPC – Overview page

HPC – Parallel Regions view

AMD uProf User Guide

110

[AMD Public Use]

HPC – Regions Detailed Analysis view

7.1.2 Profiling OpenMP Application using CLI

Collect profile data:

Use the following command to profile OpenMP application using uProf CLI

 $./AMDuProfCLI collect --omp --config tbp -o /tmp/myapp_perf <openmp-app>

While performing the regular profiling, add option ‘--omp’ to enable OpenMP profiling. This

command will launch the program and collect the profile data required to generate the OpenMP

analysis report. The data file /tmp/myapp_perf.caperf will contain raw profile data.

Generate profile report:

Generate CSV report using the AMDuProfCLI report command. No additional option needed for

OpenMP report generation. uProf checks for availability of any OpenMP profiling data and includes

it in the report if available.

 $./AMDuProfCLI report -i /tmp/myapp_perf.caperf

This will generate a CSV report at /tmp/myapp_perf/myapp_perf.csv and this report will have

the following sections:

AMD uProf User Guide

 111

[AMD Public Use]

An example of OpenMP report section in the CSV file shown below.

It has following sub-sections:

• OpenMP Overview

• OpenMP PARALLEL-REGION METRIC: This helps in understanding the imbalanced

region, i.e., a region with less total work time with respect to its total time

• OpenMP THREAD METRIC: This helps in understanding how each thread spent its time in

the parallel region. If a thread spends too much time on non-work activity, then the parallel

region should be optimized further to improve the work time of each thread in that region

7.1.3 Environment variables

• AMDUPROF_MAX_PR_INSTANCES – Set the max number of unique parallel regions to be

traced. The default value is set to 512.

• AMDUPROF_MAX_PR_INSTANCE_COUNT – Set the max number of times one unique

parallel region to be traced. The default it is set to 512.

AMD uProf User Guide

112

[AMD Public Use]

7.1.4 Limitations

The following features not yet supported in this release.

• OpenMP profiling with System-wide profiling scope.

• Loop chunk size and Schedule type when these parameters are specified using schedule

clause. It shows the default values (i.e., ‘1’ & ‘Static’) in this case.

• Nested parallel regions.

• GPU offloading and related constructs.

• Callstack for individual OpenMP threads.

• OpenMP profiling on Windows and FreeBSD platforms.

• Applications with static linkage of OpenMP libraries.

AMD uProf User Guide

 113

[AMD Public Use]

7.2 MPI Profiling

The MPI programs that are launched through mpirun or mpiexec launcher programs can be profiled

by uProf. To profile the MPI applications and analyze the data, perform the following the steps:

1. Collect the profile data using CLI collect command.

2. Process the profile data using CLI’s translate command which will generate the profile DB.

3. Import the profile DB in GUI or generate the CSV report using CLI’s report command.

Support matrix:

Component Supported Versions

MPI Spec MPI-3.1

MPI Libraries Open MPI v4.1.0

MPICH 3.4.1

ParaStation MPI 5.4.8

Intel MPI 2019

OS Ubuntu 18.04 LTS, 20.04 LTS

RHEL 8

CentOS 8

7.2.1 Data Collection using CLI

Usually, MPI jobs are launched using MPI launchers like mpirun, mpiexec, etc., We need to use

AMDuProfCLI to collect profile data for an MPI application.

MPI job launch using mpirun uses the following syntax:

$ mpirun [options] <program> [<args>]

AMDuProfCLI is launched using<program>and the application is launched using the

AMDuProfCLI's arguments. So, profiling an MPI application using AMDuProfCLI uses the

following syntax:

$ mpirun [options] AMDuProfCLI [options] <program> [<args>]

AMD uProf User Guide

114

[AMD Public Use]

The MPI profiling specific AMDuProfCLI options:

• --mpi option is to denote that is to profile MPI application. The AMDuProfCLI will collect

some additional meta data from MPI processes

• --output-dir <output dir> specifies the path to a directory in which the profile

files are saved. For each MPI process a corresponding raw profile file will be created with

the following naming convention "AMDuProf-<hostname>-<TS>-<PID>.caperf"

A typical command uses the following syntax:

$ mpirun -np <n> /tmp/AMDuProf/bin/AMDuProfCLI collect

--config <config-type> --mpi --output-dir <outpit_dir> [mpi_app]

[<mpi_app_options>]

If an MPI application is launched on multiple nodes, AMDuProfCLI will profile all the MPI rank

processes running on all the nodes and the user can either analyze the data for processes ran on

one/many/all nodes.

Method 1 - Profile all the ranks on single or multiple nodes

To collect profile data for all the ranks running on a single node:

$ mpirun -np 16 /tmp/AMDuProf/bin/AMDuProfCLI collect --config tbp

--mpi --output-dir /tmp/myapp-perf myapp.exe

To collect profile data for all the ranks in multiple nodes, use -H / --host mpirun options or specify

-hostfile <hostfile>

$ mpirun -np 16 -H host1,host2 /tmp/AMDuProf/bin/AMDuProfCLI collect

--config tbp --mpi --output-dir /tmp/myapp-perf myapp.exe

Method 2 - Profiling a specific rank(s)

To profile only a specify rank running on a host2:

$ export AMDUPROFCLI_CMD=/tmp/AMDuProf/bin/AMDuProfCLI collect --config tbp

--mpi --output-dir /tmp/myapp-perf

$ mpirun -np 4 -host host1 myapp.exe : -host host2 -np 2

$AMDUPROFCLI_CMD myapp.exe

Method 3 – Using MPI config file

The mpirun also takes config file as an input and the AMDuProfCLI can also be used with the config

file to profile the MPI application

AMD uProf User Guide

 115

[AMD Public Use]

config file (myapp_config):

#MPI - myapp config file

-host host1 -n 4 myapp.exe

-host host2 -n 2 /tmp/AMDuProf/bin/AMDuProfCLI collect --config tbp --mpi \

--output-dir /tmp/myapp-perf myapp.exe

To run this config to collect data only for the MPI processes running on host2

$ mpirun --app myapp_config

7.2.2 Analyze the data using CLI

The data collected for MPI processes can either be analyzed using the CSV reported by the

AMDuProfCLI’s report command.

For CLI, following reporting options are possible

• Generating report for a specific MPI process (using the -i option)

$ AMDuProfCLI report \

-i /tmp/myapp-perf/AMDuProf-<hostname>-<Timestamp>-<PID>.caperf

• Generating report for all the MPI processes ran on the localhost (ex: host1) in which the

MPI launcher was launched (using new option --input-dir)

$ AMDuProfCLI report --input-dir /tmp/myapp-perf/ --host host1

This will create an output dir /tmp/myapp-perf/AMDuProf-Summary-host1/ and under

that dir result files AMDuProf-Summary-host1.db and AMDuProf-Summary-host1.csv

Option --host is not mandatory to create the report file for localhost.

• Generating report for all the MPI processes ran on another host (ex: host2) in which the

MPI launcher was not launched

$ AMDuProfCLI report --input-dir /tmp/myapp-perf/ --host host2

This will create an output dir /tmp/myapp-perf/AMDuProf-Summary-host2/ and under

that dir result files AMDuProf-Summary-host2.db and AMDuProf-Summary-host2.csv

• Generating report for all the MPI processes ran on all the hosts

$ AMDuProfCLI report --input-dir /tmp/myapp-perf/ --host all

AMD uProf User Guide

116

[AMD Public Use]

This will create an output dir /tmp/myapp-perf/AMDuProf-Summary-all/ and under

that dir result files AMDuProf-Summary-all.db and AMDuProf-Summary-all.csv

7.2.3 Analyze the data using GUI

To analyze the profile data in the GUI, run the following steps:

• Generate the profile DB as specified in this section

• Import the profile DB as specified in this section

After importing, profile data all the profiled ranks will be available for analysis as shown in the

below screenshot.

MPI – Profile data for all ranks

7.2.4 Limitations

• MPI environment parameters like ‘Total number of ranks’ and ‘Number of ranks running

on each node’ are currently supported only for OpenMPI.

AMD uProf User Guide

 117

[AMD Public Use]

7.3 Profiling Linux System Modules

To attribute the samples to system modules (e.g., glibc, libm, etc.), uProf uses the corresponding

debug info files. Usually, the Linux distros does not come with the debug info files, but most of the

popular distros provide options to download the debug info files.

Refer the below links to understand how to download the debug info files.

• Ubuntu: https://wiki.ubuntu.com/Debug%20Symbol%20Packages

• SLES/OpenSUSE: https://www.suse.com/support/kb/doc/?id=3074997

• RHEL/CentOS: https://access.redhat.com/documentation/en-

US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/intro.debuginfo.html

Make sure to download the debug info files for the required system modules for the required Linux

distros before starting the profiling.

https://wiki.ubuntu.com/Debug%20Symbol%20Packages
https://www.suse.com/support/kb/doc/?id=3074997
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/intro.debuginfo.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/intro.debuginfo.html

AMD uProf User Guide

118

[AMD Public Use]

7.4 Profiling Linux Kernel

To profile and analyze the Linux kernel modules and functions, you need to do the following:

1. Enable kernel symbol resolution

2. Download and install kernel debug symbol packages and source

(or)

3. Build Linux kernel with debug symbols

Once the kernel debug info is available in the default path, uProf automatically locates and utilizes

that debug info to show the kernel sources lines and assembly in the source view.

Supported OS Ubuntu 18.04 LTS, Ubuntu 20.04 LTS, RHEL 7, RHEL 8

7.4.1 Enable kernel symbol resolution

To attribute the kernel samples to appropriate kernel functions, uProf extracts required information

from /proc/kallsyms file. Exposing kernel symbol addresses through /proc/kallsyms requires

setting of the appropriate value to /proc/sys/kernel/kptr_restrict file.

• Set /proc/sys/kernel/perf_event_paranoid config is to -1

• Set /proc/sys/kernel/kptr_restrict to appropriate value

▪ 0 → kernel addresses are available without limitations

▪ 1 → kernel addresses are available if the current user has a CAP_SYSLOG capability

▪ 2 → kernel addresses are hidden

Set the perf_event_paranoid value either by

$ sudo echo -1 > /proc/sys/kernel/perf_event_paranoid

 or

$ sudo sysctl -w kernel.perf_event_paranoid=-1

Set the kptr_restrict value either by

$ sudo echo 0 > /proc/sys/kernel/kptr_restrict

 or

$ sudo sysctl -w kernel.kptr_restrict=0

7.4.2 Download and install kernel debug symbol packages

On a Linux system, the /boot dir either contains the compressed vmlinuz or uncompressed vmlinux

image. These kernel files are stripped and has no symbol and debug information. If there is no debug

AMD uProf User Guide

 119

[AMD Public Use]

info AMDuProf will not be able to attribute samples to kernel functions and hence by default uProf

cannot report kernel functions.

Some Linux distros provide debug symbol files for their kernel which can be used for profiling

purposes.

Ubuntu:

Follow the below mentioned steps to download kernel debug info and source code on Ubuntu

systems. Verified on Ubuntu 18.04.03 LTS.

1. Trust the debug symbol signing key

$ sudo apt install ubuntu-dbgsym-keyring // Ubuntu 18.04 LTS and newer:

$ sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys

F2EDC64DC5AEE1F6B9C621F0C8CAB6595FDFF622 // Earlier releases of Ubuntu use:

2. Add the debug symbol repository

$ echo "deb http://ddebs.ubuntu.com $(lsb_release -cs) main restricted

universe multiverse

deb http://ddebs.ubuntu.com $(lsb_release -cs)-security main restricted

universe multiverse

deb http://ddebs.ubuntu.com $(lsb_release -cs)-updates main restricted

universe multiverse

deb http://ddebs.ubuntu.com $(lsb_release -cs)-proposed main restricted

universe multiverse" | \

sudo tee -a /etc/apt/sources.list.d/ddebs.list

3. Retrieve the list of available debug symbol packages

$ sudo apt update

4. Install the debug symbols for the current kernel version

$ sudo apt install --yes linux-image-$(uname -r)-dbgsym

5. Download the kernel source

$ sudo apt source linux-image-unsigned-$(uname -r)

or

$ sudo apt source linux-image-$(uname -r)

Once the kernel debug info file gets downloaded, it can be found at the default path:

 $ /usr/lib/debug/boot/vmlinux-`uname -r`

http://ddebs.ubuntu.com/
http://ddebs.ubuntu.com/
http://ddebs.ubuntu.com/
http://ddebs.ubuntu.com/

AMD uProf User Guide

120

[AMD Public Use]

RHEL:

Follow the steps mentioned at the page https://access.redhat.com/solutions/9907 to download the

RHEL kernel debug info.

Once the kernel debug info file gets downloaded, it can be found at the default path:

 $ /usr/lib/debug/lib/modules/`uname -r`/vmlinux

7.4.3 Build Linux kernel with debug symbols

If the debug symbol packages are not available for pre-built kernel images, then to analyze kernel

functions at source level requires recompilation of the Linux kernel with debug flag enabled.

7.4.4 How to analyze hotspots in kernel functions:

If the debug info for kernel modules is available, any subsequent CPU performance analysis will

attribute the kernel space samples appropriately to [vmlinux] module and display the hot kernel

functions. Otherwise, kernel samples will be attributed to [kernel.kallsyms]_text module.

1. If you see [vmlinux] module, then you should be able to analyze the performance data for kernel

functions in the Source view and IMIX view on GUI. The CLI should also be able to generate

source level report and IMIX report for the kernel.

2. If the source is downloaded and the Source Path is set while importing the db or in Sources

section in Advanced Options, then you should be able to see the kernel source lines in GUI.

3. Passing of kernel debug file path, passing of kernel source path is not recommended as that

might lead to performance issues.

Below screenshot is the source view of a kernel function.

https://access.redhat.com/solutions/9907

AMD uProf User Guide

 121

[AMD Public Use]

Linux Kernel function – Source view

7.4.5 Linux kernel callstack sampling

In System-wide profile callstack samples too can be collected for kernel functions. For example, the

below command will collect the kernel callstack:

AMDuProfCLI collect -a -g /usr/bin/stress-ng --cpu 8 --io 4 --vm 2 --vm-bytes

128M --fork 4 --timeout 20s

Below is the screenshot of Flamegraph constructed for the kernel-space callstack samples:

AMD uProf User Guide

122

[AMD Public Use]

Kernel callstack - Flamegraph

7.4.6 Constraints

1. Do not move the downloaded kernel debug info from its default path.

2. If the kernel version gets upgraded, then download the kernel debug info for the latest kernel

version. uProf would fail to show correct source and assembly if there is any mismatch of kernel

debug info and kernel version.

3. While profiling or analyzing kernel samples, do not reboot the system in between. Rebooting

the system, causes the kernel to load at a different virtual address due to KASLR feature of

Linux kernel.

4. The settings in the /proc/sys/kernel/kptr_restrict file enable uProf to resolve kernel symbols and

attribute samples to kernel functions. It does not enable the source and assembly level analysis,

call-graph analysis.

AMD uProf User Guide

 123

[AMD Public Use]

Chapter 8 Performance Analysis (Windows)

8.1 Thread Concurrency

Thread concurrency graph shows the number of threads of a process, running concurrently for the

time elapsed (in seconds). It uses Windows ETL records to generate this graph. It is:

• A Windows OS only feature that requires Admin privileges

• Available only with CPU Profile types

To enable this, after selecting profile target and profile type, click on Advanced Options button to

turn on the Enable Thread Concurrency switch in Enable Thread Concurrency Option pane,

as seen in the below screen.

Start Profiling – Advanced Options

After the profile completion, clicking SUMMARY → Thread Concurrency will take you to the

following window to analyze the thread concurrency of the application.

AMD uProf User Guide

124

[AMD Public Use]

SUMMARY – Thread Concurrency

AMD uProf User Guide

 125

[AMD Public Use]

Chapter 9 Power Profile

System-wide Power Profile

AMD uProf profiler offers live power profiling to monitor the behavior of the systems based on

AMD CPUs, APUs and dGPUs. It provides various counters to monitor power and thermal

characteristics.

These counters are collected from various resources like RAPL, SMU and MSRs. These are

periodically collected at regular timer interval and either reported as text file or plotted as line graphs

and can also be saved into DB for future analysis.

Features

• AMDuProf GUI can be used to configure and monitor the supported energy metrics

• AMDuProf GUI’s TIMECHART page helps to monitor and analyze:

▪ Logical Core level metrics - Core Effective Frequency, P-State

▪ Physical Core level metrics – RAPL based Core Energy, Temperature

▪ Package level metrics – RAPL based Package Energy

▪ GPU metrics – power, temperature, frequency

▪ SMU based APU metrics – CPU Core power, package power

• AMDuProfCLI’s timechart command to collect the system metrics and write into a text file

or comma-separated-value (CSV) file

• AMDPowerProfileApi library provides APIs to configure and collect the supported system

level performance, thermal and energy metrics of AMD CPU/APUs and dGPUs.

• Collected live profile data can be stored in database for future analysis

9.1 Metrics

The metrics that are supported depends on the processor family and model and they are broadly

grouped under various categories. Following are supported counter categories for various processor

families:

AMD uProf User Guide

126

[AMD Public Use]

Family 17h Model 00h – 0Fh (Ryzen, ThreadRipper, EPYC 7001)

Power Counter Category Description

Power Average Power for the sampling period, reported in Watts. This is

an estimated consumption value based on platform activity levels.

Available for Core and Package.

Frequency Core Effective Frequency for the sampling period, reported in MHz

Temperature Average temperature for the sampling period, reported in Celsius.

Temperature reported is with reference to Tctl. Available for

Package.

P-State CPU Core P-State at the time when sampling was performed.

Family 17h Model 10h – 2Fh (Ryzen APU, Ryzen PRO APU)

Power Counter Category Description

Power Average Power for the sampling period, reported in Watts. This is

an estimated consumption value based on platform activity levels.

Available for Core and Package.

Frequency Core Effective Frequency for the sampling period, reported in MHz

Temperature Average temperature for the sampling period, reported in Celsius.

Temperature reported is with reference to Tctl. Available for

Package.

P-State CPU Core P-State at the time when sampling was performed.

Family 17h Model 70h – 7Fh (3rd Gen Ryzen)

Power Counter Category Description

Power Average Power for the sampling period, reported in Watts. This is

an estimated consumption value based on platform activity levels.

Available for Core and Package.

Frequency Core Effective Frequency for the sampling period, reported in MHz

P-State CPU Core P-State at the time when sampling was performed.

AMD uProf User Guide

 127

[AMD Public Use]

Temperature Average temperature for the sampling period, reported in Celsius.

Temperature reported is with reference to Tctl. Available for

Package.

Family 17h Model 30h – 3Fh (EPYC 7002)

Power Counter Category Description

Power Average Power for the sampling period, reported in Watts. This is

an estimated consumption value based on platform activity levels.

Available for Core and Package.

Frequency Core Effective Frequency for the sampling period, reported in MHz

P-State CPU Core P-State at the time when sampling was performed.

Temperature Average temperature for the sampling period, reported in Celsius.

Temperature reported is with reference to Tctl. Available for

Package.

AMD EPYC 3rd generation processors

Power Counter Category Description

Power Average Power for the sampling period, reported in Watts. This is

an estimated consumption value based on platform activity levels.

Available for Core and Package.

Frequency Core Effective Frequency for the sampling period, reported in MHz

P-State CPU Core P-State at the time when sampling was performed.

Temperature Average temperature for the sampling period, reported in Celsius.

Temperature reported is with reference to Tctl. Available for

Package.

Supported Counter categories for older APU families

Power Counter Category Description

AMD uProf User Guide

128

[AMD Public Use]

Power Average Power for the sampling period, reported in Watts. This is

an estimated consumption value based on platform activity levels.

Available for APU, ComputeUnit, iGPU, PCIe Controller, Memory

Controller, Display Controller and VDDCR_SOC

Frequency Effective Frequency for the sampling period, reported in MHz

Available for Core and iGPU

Temperature Average estimated temperature for the sampling period, reported in

Celsius. Calculated based socket activity levels, normalized, and

scaled, relative to the specific processor's maximum operating

temperature. Available for CPU ComputeUnit and iGPU

P-State CPU Core P-State at the time when sampling was performed

Controllers Socket PPT Limit and Power

CorrelatedPower Correlated Average Power for the sampling period, reported in

Watts. This is an estimated consumption value based on platform

activity levels. Available for APU, CPU ComputeUnit, VDDGFX,

VDDIO, VDDNB, VDDP, UVD, VCE, ACP, UNB, SMU, RoC

Supported Counter categories for dGPUs

Power Counter Category Description

Power Average estimated dGPU power for the sampling period, reported

in Watts. Calculated based on dGPU activity levels.

Frequency Average dGPU frequency for the sampling period, reported in MHz

Temperature Average estimated dGPU temperature for the sampling period,

reported in Celsius.

Voltage CPU Core P-State at the time when sampling was performed

Current Socket PPT Limit and Power

9.2 Profile using GUI

System-wide Power Profile (Live): This profile type is used to perform the power analysis where

the metrics are plotted in a live timeline graph and/or saved in a DB. Here are the steps to configure

and start the profile:

AMD uProf User Guide

 129

[AMD Public Use]

9.2.1 Configure

• Either click the PROFILE page at the top navigation bar or Create a new profile? link in

HOME page’s Welcome window. This will navigate to the Start Profiling window.

• You will see Select Profile Target fragment in the Start Profiling window. After selecting

the appropriate profile target, clicking Next button will take you to Select Profile Type

fragment.

• In Select Profile Type fragment selecting System-wide Power Profile (Live) from the drop-

down list, will take you to the below screenshot.

You can also navigate to this page by clicking See what’s guzzling power in your System link in

the Welcome page.

Once this type is selected, on the left pane, various supported counter categories and the components

for which that category is available will be listed. The user can select the interesting counters to

monitor.

Start Profiling – Select Profile Type (Live Power Profile)

1. Select profile type as System-wide Power Profile (Live) from the drop-down list. This will list

all the supported counter categories.

AMD uProf User Guide

130

[AMD Public Use]

2. Clicking on an interesting counter category, will list the components for which this counter is

selected as a tree selection.

3. Enable the interesting counters from this counter tree. Multiple counter categories can be

configured

4. Options lets you render the graphs live during profiling or save the data in database (.db file)

during profiling and render the graphs after the profile data collection completed.

Once all the options are set correctly and clicking the Start Profile button will start the profile data

collection. In this profile type, the profile data will be reported as line graphs in the TIMECHART

page for further analysis.

9.2.2 Analyze

Once the interesting counters are selected and the profile data collection started, the TIMECHART

page will open and the metrics will be plotted in the live timeline graphs.

TIMECHART page – timeline graphs

1. In the TIMECHART page the metrics will be plotted in the live timeline graphs. Line graphs

are grouped together and plotted based on the category.

AMD uProf User Guide

 131

[AMD Public Use]

2. There is also a corresponding data table adjacent to each graph to display the current value of

the counters.

3. Graph Visibility pane on the left vertical pane will let you choose the graph to display.

4. When plotting is in progress various buttons are available, to let you

▪ Pause the graphs without pausing the data collection by clicking Pause Graphs button,

later graphs can be resumed by clicking Play Graphs button.

▪ Stop the profiling without closing the view by clicking the Stop Profiling button. This

will stop collecting the profile data.

▪ Stop the profiling and close the view by clicking Close View button

9.3 Profile using CLI

AMDuProfCLI’s timechart command lets you collect the system metrics and write them into a text

file or comma-separated-value (CSV) file. To collect power profile counter values, you need to

follow these steps:

1. Get the list of supported counter categories by running AMDuProfCLI’s timechart

command with --list option

2. Collect and the report the required counters using AMDuProfCLI’s timechart command by

specifying the interesting counters with -e or --event option

The timechart run to list the supported counter categories:

AMDuProfCLI timechart --list command’s output

The timechart run to collect the profile samples and write into a file:

AMD uProf User Guide

132

[AMD Public Use]

AMDuProfCLI timechart run

The above run will collect the energy and frequency counters on all the devices on which these

counters are supported and writes them in the output file specified with -o option. Before the

profiling begins, the given application will be launched, and the data will be collected till the

application terminates.

9.3.1 Examples

Windows

• Collect all the power counter values for the duration of 10 seconds with sampling interval of

100 milliseconds:

C:\> AMDuProfCLI.exe timechart --event power --interval 100 --duration 10

• Collect all frequency counter values for 10 seconds, sampling them every 500 milliseconds and

dumping the results to a csv file:

C:\> AMDuProfCLI.exe timechart --event frequency -o C:\Temp\Poweroutput --

interval 500 --duration 10

• Collect all frequency counter values at core 0 to 3 for 10 seconds, sampling them every 500

milliseconds and dumping the results to a text file:

C:\> AMDuProfCLI.exe timechart --event core=0-3,frequency –output

C:\Temp\Poweroutput.txt --interval 500 -duration 10 --format txt

Linux

• Collect all the power counter values for the duration of 10 seconds with sampling interval of

100 milliseconds:

$./AMDuProfCLI timechart --event power --interval 100 --duration 10

• Collect all frequency counter values for 10 seconds, sampling them every 500 milliseconds and

dumping the results to a csv file:

$./AMDuProfCLI timechart --event frequency -o /tmp/PowerOutput.csv

--interval 500 --duration 10

AMD uProf User Guide

 133

[AMD Public Use]

• Collect all frequency counter values at core 0 to 3 for 10 seconds, sampling them every 500

milliseconds and dumping the results to a text file:

$./AMDuProfCLI timechart --event core=0-3,frequency

--output /tmp/PowerOutput.txt --interval 500 --duration 10 --format txt

9.4 AMDPowerProfileAPI Library

AMDPowerProfileApi library provides APIs to configure and collect the supported power profiling

counters on various AMD platforms. The AMDPowerProfileAPI library is used to analyze the

energy efficiency of systems based on AMD CPUs, APUs and dGPUs (Discrete GPU).

These APIs provide interface to read the power, thermal and frequency characteristics of AMD APU

& dGPU and their subcomponents. These APIs are targeted for software developers who want to

write their own application to sample the power counters based on their specific use case.

For detailed information on these APIs refer AMDPowerProfilerAPI.pdf

9.4.1 How to use the APIs?

Refer the example program CollectAllCounters.cpp on how to use these APIs. The program must

be linked with AMDPowerProfileAPI library while compiling. The power profiling driver must be

installed and running.

A sample program CollectAllCounters.cpp that uses these APIs, is available at <AMDuProf-

install-dir>/Examples/CollectAllCounters/ dir. To build and execute the example

application, following steps should be performed:

Windows

• A Visual Studio 2015 solution file CollectAllCounters.sln is available at /C:/Program

Files/AMD/AMDuProf/Examples/CollectAllCounters/ folder to build the example

program.

Linux

• To build

$ cd <AMDuProf-install-dir>/Examples/CollectAllCounters

$ g++ -O -std=c++11 CollectAllCounters.cpp -I<AMDuProf-install-

dir>/include -l AMDPowerProfileAPI -L<AMDuProf-install-dir>/bin -Wl,-rpath

<AMDuProf-install-dir>/bin -o CollectAllCounters

• To execute

$ export LD_LIBRARY_PATH=<AMDuProf-install-dir>/bin

AMD uProf User Guide

134

[AMD Public Use]

$./CollectAllCounters

9.5 Limitations

• Only one Power profile session can run at a time.

• Minimum supported sampling period in CLI is 100ms. It is recommended to use large

sampling period to reduce the sampling and rendering overhead.

• Make sure latest Radeon driver is installed before running power profiler. Newer version of

dGPU may go to sleep (low power) state frequently if there is no activity in dGPU. In that

case, power profiler may emit a warning AMDT_WARN_SMU_DISABLED. Counters may

not be accessible in this state. Before running the power profiler, it is advisable to bring the

dGPU to active state.

• ICELAND dGPU (Topaz-XT, Topaz PRO, Topaz XTL, Topaz LE) series is not supported.

• If SMU becomes in-accessible while profiling is in progress, the behavior will be undefined.

AMD uProf User Guide

 135

[AMD Public Use]

Chapter 10 Energy Analysis

Power Application Analysis

AMD uProf profiler offers Power Application Analysis to identify energy hotspots in the

application. This is Windows OS only functionality. This profile type is used to analyze the energy

consumption of an application or processes running in the system.

Features

• Profile data

▪ Periodically RAPL core energy values are sampled using OS timer as sampling event

• Profile mode

▪ Profile data is collected when the application is running in user and kernel mode

• Profiles

▪ C, C++, FORTRAN, Assembly applications

▪ Various software components – Applications, dynamically linked/loaded modules, and

OS kernel modules

• Profile data is attributed at various granularities

▪ Process / Thread / Load Module / Function / Source line

▪ To correlate the profile data to Function and Source line, debug information emitted

by the compiler is required

• Processed profile data is stored in databases, which can be used to generate reports later.

• Profile reports are available in comma-separated-value (CSV) format to use with spreadsheets.

• AMDuProf GUI has various UIs to analyze and view the profile data at various granularities

▪ Hot spots summary

▪ Process and function analysis

▪ Source and disassembly analysis

AMD uProf User Guide

136

[AMD Public Use]

10.1 Profile using GUI

Here are the steps to configure and analyze the profile data:

To configure and start profile:

1. Clicking PROFILE → Start Profiling will navigate to the Select Profile Target window. After

selecting the appropriate profile target, clicking Next button will take you to Select Profile Type

fragment.

2. In Select Profile Type fragment selecting Power App Analysis from the drop-down list, will

take you to the below screenshot.

Power App Analysis - Configure

3. Click Advanced Options to set symbol paths (if the debug files are in different locations) and

other options. Refer this section for more information on this window. Callstack is not supported

for this profile type.

4. Once all the options are set, the Start Profile button at the bottom will be enabled and you can

click on it to start the profile. After the profile initialization you will see this profile data

collection screen.

AMD uProf User Guide

 137

[AMD Public Use]

To Analyze the profile data

5. When the profiling stopped, the collected raw profile data will be processed automatically, and

you will the Hot spots window of Summary page. Refer this section for more information on

this window.

6. Clicking ANALYZE button on the top horizontal navigation bar will go to Function HotSpots

window. Refer this section for more information on this window.

7. Clicking ANALYZE → Metrics will display the profile data table at various granularities -

Process, Load Modules, Threads and Functions. Refer this section for more information on this

window.

8. Double-clicking any entry on the Functions table in Metrics window will make the GUI load

the source tab for that function in SOURCES page. Refer this section for more information on

this window.

10.2 Profile using CLI

To profile and analyze the performance of a native (C/C++) application, you need to follow these

steps:

1. Prepare the application. Refer section on how to prepare an application for profiling

2. Collect the samples for the application using AMDuProfCLI’s collect command

3. Generate the report using AMDuProfCLI’s report command, in readable format for analysis

Preparing the application is to build the launch application with debug information as debug info is

needed to correlate the samples to functions and source lines.

The collect command will launch the application (if given) and collect the profile data and will

generate raw data file (.pdata on Windows) and other miscellaneous files.

The report command translates the collected raw profile data to aggregate and attribute to the

respective processes, threads, load modules, functions and instructions and writes them into a DB

and then generate a report in CSV format.

Example

• Launch classic.exe and collect energy samples for that launch application:

C:\> AMDuProfCLI.exe collect --config power -o c:\Temp\pwrprof classic.exe

• Generate report from the raw .pdata datafile:

AMD uProf User Guide

138

[AMD Public Use]

C:\> AMDuProfCLI.exe report -i c:\Temp\pwrprof.pdata -o c:\Temp\pwrprof-out

• Generate report from raw .pdata file and use Symbol Server paths to resolve symbols:

C:\> AMDuProfCLI.exe report --symbol-path C:\AppSymbols;C:\DriverSymbols

--symbol-server http://msdl.microsoft.com/download/symbols
--cache-dir C:\symbols -i c:\Temp\pwrprof.pdata -o c:\Temp\pwrprof-out

10.3 Limitations

• Only one energy analysis profile session can run at a time.

• This is Windows OS only feature

http://msdl.microsoft.com/download/symbols

AMD uProf User Guide

 139

[AMD Public Use]

Chapter 11 Remote Profiling

AMD uProf provides remote profiling capabilities to profile of applications running on a remote

target system. This is useful for working with headless server units. It is supported for all the profile

types. The data collection will be triggered from the AMDuProfCLI and the data will be collected

and processed by the AMDRemoteAgent running in the target system.

Supported configurations:

▪ Host OS: Windows, Linux

▪ Target OS: Windows, Linux

11.1 Profile remote targets using CLI

Following steps are to be followed to collect profile data from a remote target system

11.1.1 Adding user-id in the remote target system

Before establishing a connection with the remote agent, the user must add the unique UID generated

in the host client system. The UID can be generated by using AMDuProfCLI.

To generate unique uid using AMDuProfCLI
C:\> AMDuProfCLI.exe info --show-uid

UID : 10976441267198678299

Add this uid to remote agent running on the remote target system

C:\> AMDRemoteAgent.exe –add-user 10976441267198678299

11.1.2 Launching Remote Agent

The uProf remote agent AMDRemoteAgent runs on the remote target system allows AMD uProf

clients installed on other machines to connect to that remote system and execute Performance and

Power profiling sessions of applications running on that remote system.

When remote agent AMDRemoteAgent.exe is launched, it will output to the console a message in

the following format:

c:\Program Files\AMD\AMDuProf\bin> AMDRemoteAgent.exe --ip 127.0.0.1 --port

20716

Local connection: IP: 127.0.0.1, port 27016

Waiting for a remote connection...

AMD uProf User Guide

140

[AMD Public Use]

11.1.3 Collect data and generate report

Run AMDuProfCLI commands from the client system using --ip and --port option to profile on that

remote target system

C:\> AMDuProfCLI.exe collect --config assess -o c:\Temp\cpuprof-assess --ip

127.0.0.1 –port 27016 AMDTClassicMatMul.exe

C:\> AMDuProfCLI.exe report -i c:\Temp\cpuprof-assess -o c:\Temp\cpuprof-

assess\ --ip 127.0.0.1 –port 27016

C:\> AMDuProfCLI.exe timechart --event core=0-3,frequency --output

C:\Temp\power_output.txt --duration 10 --format txt --ip 127.0.0.1 –port

27016

11.2 Limitations

• Only one instance of CLI client process for a user (having unique client id) can establish

connection with AMDRemoteAgent process running on the target system.

• Multiple CLI client processes with different unique client ids (from same or different host

client systems), can establish connection with the AMDRemoteAgent process running on the

target system.

• The AMDRemoteAgent process can entertain either CPU or Power profile session at a time

from a client process.

• The AMDRemoteAgent process can entertain CPU profile request from one client process and

Power profile request from another client process simultaneously.

AMD uProf User Guide

 141

[AMD Public Use]

Chapter 12 Profile Control APIs

12.1 AMDProfileControl APIs

The AMDProfileControl APIs allow you to limit the profiling scope to a specific portion of the code

within the target application.

Usually while profiling an application, samples for the entire control flow of the application

execution will be collected - i.e., from the start of execution till end of the application execution.

The control APIs can be used to enable the profiler to collect data only for a specific part of

application, e.g., a CPU intensive loop, a hot function, etc.

The target application needs to be recompiled after instrumenting the application to enable/disable

profiling of the interesting code regions only.

Header files

The application should include the header file AMDProfileController.h which declares the

required APIs. This file is available at include directory under AMD uProf’s install path.

Static Library

The instrumented application should link with the AMDProfileController static library. This

is available at:

Windows:

<AMDuProf-install-dir>\lib\x86\AMDProfileController.lib

<AMDuProf-install-dir>\lib\x64\AMDProfileController.lib

Linux:

<AMDuProf-install-dir>/lib/x64\libAMDProfileController.a

12.1.1 Profile Control APIs

These profile control APIs are available to pause and resume the profile data collection.

amdProfileResume

When the instrumented target application is launched through AMDuProf / AMDuProfCLI, the

profiling will be in the paused state and no profile data will be collected till the application calls this

resume API

bool amdProfileResume (AMD_PRPOFILE_CPU);

AMD uProf User Guide

142

[AMD Public Use]

amdProfilePause

When the instrumented target application wants to pause the profile data collection, this API must

be called:

These APIs can be called multiple times within the application. Nested Resume - Pause calls are not

supported. AMD uProf profiles the code within each Resume-Pause APIs pair. After adding these

APIs, the target application should be compiled before initiating a profile session.

12.1.2 How to use the APIs?

Include the header file AMDProfileController.h and call the resume and pause APIs within the code.

The code encapsulated within resume-pause API pair will be profiled by CPU Profiler.

• These APIs can be called multiple times to profile different parts of the code.

• These API calls can be spread across multiple functions - i.e., resume called from one function

and stop called from another function.

• These APIs can be spread across threads, i.e., resume called from one thread and stop called

from another thread of the same target application.

In the below code snippet, the CPU Profiling data collection is restricted to the execution of

multiply_matrices() function.

#include <AMDProfileController.h>

int main (int argc, char* argv[])

{

 // Initialize the matrices

 initialize_matrices ();

 // Resume the CPU profile data collection

 amdProfileResume (AMD_PROFILE_CPU);

 // Multiply the matrices

 multiply_matrices ();

 // Stop the CPU Profile data collection

 amdProfilePause (AMD_PROFILE_CPU);

 return 0;

}

bool amdProfilePause (AMD_PRPOFILE_CPU);

AMD uProf User Guide

 143

[AMD Public Use]

12.1.3 Compiling instrumented target application

Windows

To compile the application on Microsoft Visual Studio, update the configuration properties to

include the path of header file and link with AMDProfileController.lib library.

Linux

To compile a C++ application on Linux using g++, use the following command:

$ g++ -std=c++11 <sourcefile.cpp> -I <AMDuProf-install-dir>/include

-L<AMDuProf-install-dir>/lib/x64/ -lAMDProfileController -lrt -pthread

Note:

• Do not use -static option while compiling with g++.

12.1.4 Profiling instrumented target application

AMDuProf GUI

After compiling the target application, create a profile configuration in AMDuProf using it, set the

desired CPU profile session options. While setting the CPU profile session options, in the Profile

Scheduling section, select Are you using Profile Instrumentation API?

Once all the settings done, start the CPU profiling. The profiling will begin in the paused state and

the target application execution begins. When the resume API gets called from target application,

CPU Profile starts profiling till pause API gets called from target application or the application gets

terminated. As soon as pause API is called in target application, profiler stops profiling and waits

for next control API call.

AMDuProfCLI

To profile from CLI, option --start-paused should be used to start the profiler in pause state.

Windows:

C:\> AMDuProfCLI.exe collect --config tbp --start-paused -o C:\Temp\prof-tbp

ClassicCpuProfileCtrl.exe

Linux:

$./AMDuProfCLI collect --config tbp --start-paused -o /tmp/cpuprof-tbp

/tmp/AMDuProf/Examples/ClassicCpuProfileCtrl/ClassicCpuProfileCtrl

AMD uProf User Guide

144

[AMD Public Use]

Chapter 13 Reference

13.1 Preparing an application for profiling

The AMD uProf uses the debug information generated by the compiler to show the correct function

names in various analysis views and to correlate the collected samples to source statements in Source

page. Otherwise, the results of the CPU Profiler would be less descriptive, displaying only the

assembly code.

13.1.1 Generate debug information on Windows:

When using Microsoft Visual C++ to compile the application in release mode, set the following

options before compiling the application to ensure that the debug information is generated and saved

in a program database file (with a .pdb extension). To set the compiler option to generate the debug

information for a x64 application in release mode:

1. Right click on the project and select Properties menu item.

AMD uProf User Guide

 145

[AMD Public Use]

2. In the Configuration list, select Active(Release).

3. In the Platform list, select Active(Win32) or Active(x64).

4. In the project pane, expand the Configuration Properties item, then expand the C/C++

item and select General.

5. In the work pane, select Debug Information Format, and from the drop-down list select

Program Database (/Zi) or Program Database for Edit & Continue (/ZI).

6. In the project pane, expand the ‘Linker’ item; then select the ‘Debugging’ item.

7. In the ‘Generate Debug Info’ list, select (/DEBUG).

13.1.2 Generate debug information on Linux:

The application must be compiled with the -g option to enable the compiler to generate debug

information. Modify either the Makefile or the respective build scripts accordingly.

AMD uProf User Guide

146

[AMD Public Use]

13.2 CPU Profiling

The AMD uProf CPU Performance Profiling follows a sampling-based approach to gather the

profile data periodically. It uses a variety of SW and HW resources available in AMD x86 based

processor families. CPU Profiling uses the OS timer, HW Performance Monitor Counters (PMC),

and HW IBS feature.

This section explains various key concepts related to CPU Profiling.

13.2.1 Hardware Sources

Performance Monitor Counters (PMC)

AMD’s x86-based processors have Performance Monitor Counters (PMC) that let them monitor

various micro-architectural events in a CPU core. The PMC counters are used in two modes:

▪ In counting mode, these counters are used to count the specific events that occur in a CPU

core.

▪ In sampling mode, these counters are programmed to count a specific number of events.

Once the count is reached the appropriate number of times (called sampling interval), an

interrupt is triggered. During the interrupt handling, the CPU Profiler collects profile data.

The number of hardware performance event counters available in each processor is implementation-

dependent (see the BIOS and Kernel Developer’s Guide [BKDG] of the specific processor for the

exact number of hardware performance counters). The operating system and/or BIOS can reserve

one or more counters for internal use. Thus, the actual number of available hardware counters may

be less than the number of hardware counters. The CPU Profiler uses all available counters for

profiling.

Instruction-Based Sampling (IBS)

IBS is a code profiling mechanism that enables the processor to select a random instruction fetch or

micro-Op after a programmed time interval has expired and record specific performance information

about the operation. An interrupt is generated when the operation is complete as specified by IBS

Control MSR. An interrupt handler can then read the performance information that was logged for

the operation.

The IBS mechanism is split into two parts:

▪ Instruction Fetch performance

▪ Instruction Execution Performance

Instruction fetch sampling provides information about instruction TLB and instruction cache

behavior for fetched instructions.

Instruction execution sampling provides information about micro-Op execution behavior.

AMD uProf User Guide

 147

[AMD Public Use]

The data collected for instruction fetch performance is independent from the data collected for

instruction execution performance. Support for the IBS feature is indicated by the

Core::X86::Cpuid::FeatureExtIdEcx[IBS].

Instruction execution performance is profiled by tagging one micro-Op associated with an

instruction. Instructions that decode to more than one micro-Op return different performance data

depending upon which micro-Op associated with the instruction is tagged. These micro-Ops are

associated with the RIP of the next instruction.

In this mode, the CPU Profiler uses the IBS HW supported by the AMD x86-based processor to

observe the effect of instructions on the processor and on the memory subsystem. In IBS, HW events

are linked with the instruction that caused them. Also, HW events are being used by the CPU Profiler

to derive various metrics, such as data cache latency.

IBS is supported starting from the AMD processor family 10h.

L3 Cache Performance Monitor Counters (L3PMC)

A Core Complex (CCX) is a group of CPU cores which share L3 cache resources. All the cores in

a CCX share a single L3 cache. In family 17, 8MB of L3 cache shared across all cores within the

CCX. Family 17 processors support L3PMCs to monitor the performance of L3 resources. Refer

processor family and model specific PPR for more details.

Data Fabric Performance Monitor Counters (DFPMC)

Family 17 processors support DFPMCs to monitor the performance of Data Fabric resources. Refer

processor family and model specific PPR for more details.

13.2.2 Profiling Concepts

Sampling

Sampling profilers works based on the logic that the part of a program that consumes most of the

time (or that triggers the most occurrence of the sampling event) have a larger number of samples.

This is because they have a higher probability of being executed while samples are being taken by

the CPU Profiler.

Sampling Interval

The time between the collection of every two samples is the Sampling Interval. For example, in

TBP, if the time interval is 1 millisecond, then roughly 1,000 TBP samples are being collected every

second for each processor core.

The meaning of sampling interval depends on the resource used as the sampling event.

AMD uProf User Guide

148

[AMD Public Use]

▪ OS timer - the sampling interval is in milliseconds.

▪ PMC events - the sampling interval is the number of occurrences of that sampling event

▪ IBS - the number of processed instructions after which it will be tagged.

Smaller sampling interval increases the number of samples collected and as well the data collection

overhead. Since profile data is collected on the same system in which the workload is running, more

frequent sampling increases the intrusiveness of profiling. Very small sampling interval also can

cause system instability.

Sampling point: When a sampling-point occurs upon the expiry of the sampling-interval for a

sampling-event, various profile data like Instruction Pointer, Process Id, Thread Id, Call-stack will

be collected by the interrupt handler.

Event-Counter Multiplexing

If the number of monitored PMC events is less than, or equal to, the number of available

performance counters, then each event can be assigned to a counter, and each event can be monitored

100% of the time. In a single-profile measurement, if the number of monitored events is larger than

the number of available counters, the CPU Profiler time-shares the available HW PMC counters.

(This is called event counter multiplexing.) It helps monitor more events and decreases the actual

number of samples for each event, thus reducing data accuracy. The CPU Profiler auto-scales the

sample counts to compensate for this event counter multiplexing. For example, if an event is

monitored 50% of the time, the CPU Profiler scales the number of event samples by factor of 2.

13.2.3 Profile Types

Profile types are classified based on the HW or SW sampling events used to collect the profile data.

Time-Based Profile (TBP)

In this profile, the profile data is periodically collected based on the specified OS timer interval. It

is used to identify the hotspots of the profiled applications.

Event-Based Profile (EBP)

In this profile, the CPU Profiler uses the PMCs to monitor the various micro-architectural events

supported by the AMD x86-based processor. It helps to identify the CPU and memory related

performance issues in profiled applications. The CPU Profiler provides several predefined EBP

profile configurations. To analyze an aspect of the profiled application (or system), a specific set of

relevant events are grouped and monitored together. The CPU Profiler provides a list of predefined

event configurations, such as Assess Performance and Investigate Branching, etc. You can select

any of these predefined configurations to profile and analyze the runtime characteristics of your

application. You also can create their custom configurations of events to profile.

AMD uProf User Guide

 149

[AMD Public Use]

In this profile mode, a delay called skid occurs between the time at which the sampling interrupt

occurs and the time at which the sampled instruction address is collected. This skid distributes the

samples in the neighborhood near the actual instruction that triggered a sampling interrupt. This

produces an inaccurate distribution of samples and events are often attributed to the wrong

instructions.

Instruction-Based Sampling (IBS)

In this profile, the CPU Profiler uses the IBS HW supported by the AMD x86-based processor to

observe the effect of instructions on the processor and on the memory subsystem. In IBS, HW events

are linked with the instruction that caused them. Also, HW events are being used by the CPU Profiler

to derive various metrics, such as data cache latency.

Custom Profile

This profile allows a combination of HW PMC events, OS timer, and IBS sampling events.

13.2.4 Predefined Core PMC Events

Some of the interesting Core Performance events of AMD Zen processor models are listed here.

Predefined Core PMC Events – EPYC 2nd generation

Event Id,

Unit-mask

Event Abbrev Name & Description

0x76, 0x00 CYCLES_NOT_IN_HALT CPU clock cycles not halted

The number of cpu cycles when the thread is not in halt state.

0xC0, 0x00 RETIRED_INST Retired Instructions

The number of instructions retired from execution. This count

includes exceptions and interrupts. Each exception or

interrupt is counted as one instruction.

0xC1, 0x00 RETIRED_MICRO_OPS Retired Macro Operations

The number of macro-ops retired. This count includes all

processor activity - instructions, exceptions, interrupts,

microcode assists, etc.

0xC2, 0x00 RETIRED_BR_INST Retired Branch Instructions

The number of branch instructions retired. This includes all

types of architectural control flow changes, including

exceptions and interrupts

AMD uProf User Guide

150

[AMD Public Use]

0xC3, 0x00 RETIRED_BR_INST_MISP Retired Branch Instructions Mispredicted

The number of retired branch instructions, that were

mispredicted. Note that only EX direct mispredicts and

indirect target mispredicts are counted.

0x03, 0x08 RETIRED_SSE_AVX_FLOPS Retired SSE/AVX Flops

The number of retired SSE/AVX flops. The number of events
logged per cycle can vary from 0 to 64. This is large

increment per cycle event, since it can count more than 15

events per cycle. This count both single precision and double

precision FP events.

0x29, 0x07 L1_DC_ACCESSES.ALL All Data cache accesses

The number of load and store ops dispatched to LS unit. This

counts the dispatch of single op that performs a memory load,

dispatch of single op that performs a memory store, dispatch

of a single op that performs a load from and store to the same

memory address.

0x60, 0x10 L2_CACHE_ACCESS.FROM_L1_

IC_MISS

L2 cache access from L1 IC miss

The L2 cache access requests due to L1 instruction cache

misses.

0x60, 0xC8 L2_CACHE_ACCESS.FROM_L1_

DC_MISS

L2 cache access from L1 DC miss

The L2 cache access requests due to L1 data cache misses.

This also counts hardware and software prefetches.

0x64, 0x01 L2_CACHE_MISS.FROM_L1_IC_

MISS

L2 cache miss from L1 IC miss

Count all the Instruction cache fill requests that misses in L2

cache

0x64, 0x08 L2_CACHE_MISS.FROM_L1_DC

_MISS

L2 cache miss from L1 DC miss

Count all the Data cache fill requests that misses in L2 cache

0x71, 0x1F L2_HWPF_HIT_IN_L3 L2 Prefetcher Hits in L3

Counts all L2 prefetches accepted by the L2 pipeline which

miss the L2 cache and hit the L3.

0x72, 0x1F L2_HWPF_MISS_IN_L2_L3 L2 Prefetcher Misses in L3

Counts all L2 prefetches accepted by the L2 pipeline which

miss the L2 and the L3 caches

0x64, 0x06 L2_CACHE_HIT.FROM_L1_IC_

MISS

L2 cache hit from L1 IC miss

AMD uProf User Guide

 151

[AMD Public Use]

Counts all the Instruction cache fill requests that hits in L2

cache.

0x64, 0x70 L2_CACHE_HIT.FROM_L1_DC_

MISS

L2 cache hit from L1 DC miss

Counts all the Data cache fill requests that hits in L2 cache.

0x70, 0x1F L2_HWPF_HIT_IN_L2 L2 cache hit from L2 HW Prefetch

Counts all L2 prefetches accepted by L2 pipeline which hit in

the L2 cache

0x43, 0x01 L1_DEMAND_DC_REFILLS.LOC

AL_L2

L1 demand DC fills from L2

The demand Data Cache (DC) fills from local L2 cache to the

core.

0x43, 0x02 L1_DEMAND_DC_REFILLS.LOC

AL_CACHE

L1 demand DC fills from local CCX

The demand Data Cache (DC) fills from same the cache of

same CCX or cache of different CCX in the same package

(node).

0x43, 0x08 L1_DEMAND_DC_REFILLS.LOC

AL_DRAM

L1 demand DC fills from local Memory

The demand Data Cache (DC) fills from DRAM or IO

connected in the same package (node).

0x43, 0x10 L1_DEMAND_DC_REFILLS.REMOTE
_CACHE

L1 demand DC fills from remote cache

The demand Data Cache (DC) fills from cache of CCX in the

different package (node).

0x43, 0x40 L1_DEMAND_DC_REFILLS.RE

MOTE_DRAM

L1 demand DC fills from remote Memory

The demand Data Cache (DC) fills from DRAM or IO

connected in the different package (node).

0x43, 0x5B L1_DEMAND_DC_REFILLS.ALL L1 demand DC refills from all data sources.

The demand Data Cache (DC) fills from all the data sources.

0x60, 0xFF L2_REQUESTS.ALL All L2 cache requests.

0x87, 0x01 STALLED_CYCLES.BACKEND Instruction pipe stall

The Instruction Cache pipeline was stalled during this cycle

due to back-pressure.

0x87, 0x02 STALLED_CYCLES.FRONTEND Instruction pipe stall

AMD uProf User Guide

152

[AMD Public Use]

Predefined Core PMC Events – EPYC 3rd generation

The Instruction Cache pipeline was stalled during this cycle

due to upstream queues not providing fetch addresses quickly.

0x84, 0x00 L1_ITLB_MISSES_L2_HITS L1 TLB miss L2 TLB hit

The instruction fetches that misses in the L1 Instruction

Translation Lookaside Buffer (ITLB) but hit in the L2-ITLB.

0x85, 0x07 L2_ITLB_MISSES L1 TLB miss L2 TLB miss

The ITLB reloads originating from page table walker. The
table walk requests are made for L1-ITLB miss and L2-ITLB

misses.

0x45, 0xFF L1_DTLB_MISSES L1 DTLB miss

The L1 Data Translation Lookaside Buffer (DTLB) misses

from load store micro-ops. This event counts both L2-DTLB

hit and L2-DTLB miss

0x45, 0xF0 L2_DTLB_MISSES L1 DTLB miss

The L2 Data Translation Lookaside Buffer (DTLB) missed

from load store micro-ops

0x47, 0x00 MISALIGNED_LOADS Misaligned Loads

The number of misaligned loads. On Zen3, this event counts

the 64B (cache-line crossing) and 4K (page crossing)

misaligned loads.

0x52, 0x03 INEFFECTIVE_SW_PF Ineffective Software Prefetches

The number of software prefetches that did not fetch data
outside of the processor core. This event counts the Software

PREFETCH instruction that saw a match on an already -

allocated miss request buffer. Also counts the Software

PREFETCH instruction that saw a DC hit.

Event Id,

Unit-mask
Event Abbrev Name & Description

0x76, 0x00 CYCLES_NOT_IN_HALT CPU clock cycles not halted

The number of cpu cycles when the thread is not in halt state.

0xC0, 0x00 RETIRED_INST Retired Instructions

AMD uProf User Guide

 153

[AMD Public Use]

The number of instructions retired from execution. This count

includes exceptions and interrupts. Each exception or interrupt

is counted as one instruction.

0xC1, 0x00 RETIRED_MACRO_OPS Retired Macro Operations

The number of macro-ops retired. This count includes all

processor activity - instructions, exceptions, interrupts,

microcode assists, etc.

0xC2, 0x00 RETIRED_BR_INST Retired Branch Instructions

The number of branch instructions retired. This includes all

types of architectural control flow changes, including

exceptions and interrupts

0xC3, 0x00 RETIRED_BR_INST_MISP Retired Branch Instructions Mispredicted

The number of retired branch instructions, that were

mispredicted. Note that only EX direct mispredicts and indirect

target mispredicts are counted.

0x03, 0x08 RETIRED_SSE_AVX_FLOPS Retired SSE/AVX Flops

The number of retired SSE/AVX flops. The number of events

logged per cycle can vary from 0 to 64. This is large increment

per cycle event, since it can count more than 15 events per

cycle. This count both single precision and double precision FP

events.

0x29, 0x07 L1_DC_ACCESSES.ALL All Data cache accesses

The number of load and store ops dispatched to LS unit. This

counts the dispatch of single op that performs a memory load,

dispatch of single op that performs a memory store, dispatch of

a single op that performs a load from and store to the same

memory address.

0x60, 0x10 L2_CACHE_ACCESS.FROM_L1

_IC_MISS

L2 cache access from L1 IC miss

The L2 cache access requests due to L1 instruction cache

misses.

0x60, 0xE8 L2_CACHE_ACCESS.FROM_L1

_DC_MISS

L2 cache access from L1 DC miss

The L2 cache access requests due to L1 data cache misses.

This also counts hardware and software prefetches.

0x64, 0x01 L2_CACHE_MISS.FROM_L1_IC

_MISS

L2 cache miss from L1 IC miss

Count all the Instruction cache fill requests that misses in L2

cache

AMD uProf User Guide

154

[AMD Public Use]

0x64, 0x08 L2_CACHE_MISS.FROM_L1_D

C_MISS

L2 cache miss from L1 DC miss

Count all the Data cache fill requests that misses in L2 cache

0x71, 0xFF L2_HWPF_HIT_IN_L3 L2 Prefetcher Hits in L3

Counts all L2 prefetches accepted by the L2 pipeline which

miss the L2 cache and hit the L3.

0x72, 0xFF L2_HWPF_MISS_IN_L2_L3 L2 Prefetcher Misses in L3

Counts all L2 prefetches accepted by the L2 pipeline which

miss the L2 and the L3 caches

0x64, 0x06 L2_CACHE_HIT.FROM_L1_IC_

MISS
L2 cache hit from L1 IC miss

Counts all the Instruction cache fill requests that hits in L2

cache.

0x64, 0xF0 L2_CACHE_HIT.FROM_L1_DC

_MISS

L2 cache hit from L1 DC miss

Counts all the Data cache fill requests that hits in L2 cache.

0x70, 0xFF L2_HWPF_HIT_IN_L2 L2 cache hit from L2 HW Prefetch

Counts all L2 prefetches accepted by L2 pipeline which hit in

the L2 cache

0x43, 0x01 L1_DEMAND_DC_REFILLS.LO

CAL_L2

L1 demand DC fills from L2

The demand Data Cache (DC) fills from local L2 cache to the

core.

0x43, 0x02 L1_DEMAND_DC_REFILLS.LO

CAL_CACHE

L1 demand DC fills from local CCX

The demand Data Cache (DC) fills from the L3 cache or L2 in

the same CCX.

0x43, 0x04 L1_DC_REFILLS.EXTERNAL_C

ACHE_LOCAL

L1 DC fills from local external CCX caches

The Data Cache (DC) fills from cache of different CCX in the

same package (node).

0x43, 0x08 L1_DEMAND_DC_REFILLS.LO

CAL_DRAM
L1 demand DC fills from local Memory

The demand Data Cache (DC) fills from DRAM or IO

connected in the same package (node).

0x43, 0x10 L1_DEMAND_DC_REFILLS.EXTERN
AL_CACHE_REMOTE

L1 demand DC fills from remote external cache

The demand Data Cache (DC) fills from cache of CCX in the

different package (node).

AMD uProf User Guide

 155

[AMD Public Use]

0x43, 0x40 L1_DEMAND_DC_REFILLS.RE

MOTE_DRAM

L1 demand DC fills from remote Memory

The demand Data Cache (DC) fills from DRAM or IO

connected in the different package (node).

0x43, 0x14 L1_DEMAND_DC_REFILLS.EX

TENAL_CACHE

L1 demand DC fills from external caches

The demand Data Cache (DC) fills from cache of different

CCX in the same or different package (node).

0x43, 0x5F L1_DEMAND_DC_REFILLS.AL

L

L1 demand DC refills from all data sources.

The demand Data Cache (DC) fills from all the data sources.

0x44, 0x01 L1_DC_REFILLS.LOCAL_L2 L1 DC fills from local L2

The Data Cache (DC) fills from local L2 cache to the core.

0x44, 0x02 L1_DC_REFILLS.LOCAL_CAC

HE
L1 DC fills from local CCX cache

The Data Cache (DC) fills from different L2 cache in the same

CCX or L3 cache that belongs to the same CCX.

0x44, 0x08 L1_DC_REFILLS.LOCAL_DRA

M
L1 DC fills from local Memory

The Data Cache (DC) fills from DRAM or IO connected in the

same package (node).

0x44, 0x04 L1_DC_REFILLS.EXTERNAL_C

ACHE_LOCAL
L1 DC fills from local external CCX caches

The Data Cache (DC) fills from cache of different CCX in the

same package (node).

0x44, 0x10 L1_DC_REFILLS.EXTERNAL_C

ACHE_REMOTE
L1 DC fills from remote external CCX caches

The Data Cache (DC) fills from cache of CCX in the different

package (node).

0x44, 0x40 L1_DC_REFILLS.REMOTE_DR

AM
L1 DC fills from remote Memory

The Data Cache (DC) fills from DRAM or IO connected in the

different package (node).

0x44, 0x14 L1_DC_REFILLS.EXTENAL_CA

CHE
L1 DC fills from local external CCX caches

The Data Cache (DC) fills from cache of different CCX in the

same or different package (node).

0x44, 0x48 L1_DC_REFILLS.DRAM L1 DC fills from local Memory

The Data Cache (DC) fills from DRAM or IO connected in the

same or different package (node).

AMD uProf User Guide

156

[AMD Public Use]

0x44, 0x50 L1_DC_REFILLS.REMOTE_NO

DE
L1 DC fills from remote node

The Data Cache (DC) fills from cache of CCX in the different

package (node) or the DRAM / IO connected in the different

package (node).

0x44, 0x03 L1_DC_REFILLS.LOCAL_CAC

HE_L2_L3
L1 DC fills from same CCX

The Data Cache (DC) fills from local L2 cache to the core or
different L2 cache in the same CCX or L3 cache that belongs

to the same CCX

0x44, 0x5F L1_DC_REFILLS.ALL L1 DC fills from all the data sources

The Data Cache fills from all the data sources

0x60, 0xFF L2_REQUESTS.ALL All L2 cache requests.

0x87, 0x01 STALLED_CYCLES.BACKEND Instruction pipe stall

The Instruction Cache pipeline was stalled during this cycle

due to back-pressure.

0x87, 0x02 STALLED_CYCLES.FRONTEN

D
Instruction pipe stall

The Instruction Cache pipeline was stalled during this cycle

due to upstream queues not providing fetch addresses quickly.

0x84, 0x00 L1_ITLB_MISSES_L2_HITS L1 TLB miss L2 TLB hit

The instruction fetches that misses in the L1 Instruction

Translation Lookaside Buffer (ITLB) but hit in the L2-ITLB.

0x85, 0x07 L2_ITLB_MISSES L1 TLB miss L2 TLB miss

The ITLB reloads originating from page table walker. The

table walk requests are made for L1-ITLB miss and L2-ITLB

misses.

0x45, 0xFF L1_DTLB_MISSES L1 DTLB miss

The L1 Data Translation Lookaside Buffer (DTLB) misses

from load store micro-ops. This event counts both L2-DTLB

hit and L2-DTLB miss

0x45, 0xF0 L2_DTLB_MISSES L1 DTLB miss

The L2 Data Translation Lookaside Buffer (DTLB) missed

from load store micro-ops

0x78, 0xFF ALL_TLB_FLUSHES All TLB flushes

AMD uProf User Guide

 157

[AMD Public Use]

CPU Performance Metrics

CPU Metric Description

Core Effective Frequency Core Effective Frequency (without halted cycles) over the

sampling period, reported in GHz. The metric is based on

APERF and MPERF MSRs. MPERF is incremented by the core

at the P0 state frequency while the core is in C0 state. APERF is

incremented in proportion to the actual number of core cycles

while the core is in C0 state.

IPC Instruction Retired Per Cycle (IPC) is the average number of

instructions retired per cycle. This is measured using Core PMC

events PMCx0C0 [Retired Instructions] and PMCx076 [CPU

Clocks not Halted]. These PMC events are counted in both OS

and User mode.

CPI Cycles Per Instruction Retired (CPI) is the multiplicative inverse

of IPC metric. This is one of the basic performance metrics

indicating how cache misses, branch mis-predictions, memory

latencies and other bottlenecks are affecting the execution of an

application. Lower CPI value is better.

L1_DC_REFILLS.ALL

(PTI)

The number of demand data cache (DC) fills per thousand

retired instructions. These demand DC fills are from all the data

sources like Local L2/L3 cache, remote caches, local memory,

and remote memory.

L1_DC_MISSES (PTI) The number of L2 cache access requests due to L1 data cache

misses, per thousand retired instructions. This L2 cache access

requests also includes the hardware and software prefetches.

0x47, 0x03 MISALIGNED_LOADS Misaligned Loads

The number of misaligned loads. On Zen3, this event counts

the 64B (cache-line crossing) and 4K (page crossing)

misaligned loads.

0x52, 0x03 INEFFECTIVE_SW_PF Ineffective Software Prefetches

The number of software prefetches that did not fetch data
outside of the processor core. This event counts the Software

PREFETCH instruction that saw a match on an already -

allocated miss request buffer. Also counts the Software

PREFETCH instruction that saw a DC hit.

AMD uProf User Guide

158

[AMD Public Use]

L1_DC_ACCESS_RATE The DC access rate is the number of DC accesses divided by the

total number of retired instructions

L1_DC_MISS_RATE The DC miss rate is the number of DC misses divided by the

total number of retired instructions.

L1_DC_MISS_RATIO The DC miss ratio is the number of DC misses divided by the

total number of DC accesses.

13.2.5 IBS Derived Events

AMD uProf translates the IBS information produced by the hardware into derived event sample

counts that resemble EBP sample counts. All IBS-derived events have “IBS” in the event name and

abbreviation. Although IBS-derived events and sample counts look similar to EBP events and

sample counts, the source and sampling basis for the IBS event information are different.

Arithmetic should never be performed between IBS derived event sample counts and EBP event

sample counts. It is not meaningful to directly compare the number of samples taken for events that

represent the same hardware condition. For example, fewer IBS DC miss samples is not necessarily

better than a larger quantity of EBP DC miss samples.

IBS Fetch events

IBS Fetch Event Description

All IBS fetch samples The number of all IBS fetch samples. This derived event counts the

number of all IBS fetch samples that were collected including IBS-

killed fetch samples

IBS fetch killed The number of IBS sampled fetches that were killed fetches. A fetch

operation is killed if the fetch did not reach ITLB or IC access. The

number of killed fetch samples is not generally useful for analysis and

are filtered out in other derived IBS fetch events (except Event Select

0xF000 which counts all IBS fetch samples including IBS killed fetch

samples.)

IBS fetch attempted The number of IBS sampled fetches that were not killed fetch

attempts. This derived event measures the number of useful fetch

attempts and does not include the number of IBS killed fetch samples.

This event should be used to compute ratios such as the ratio of IBS

fetch IC misses to attempted fetches. The number of attempted fetches

should equal the sum of the number of completed fetches and the

number of aborted fetches.

AMD uProf User Guide

 159

[AMD Public Use]

IBS fetch completed The number of IBS sampled fetches that completed. A fetch is

completed if the attempted fetch delivers instruction data to the

instruction decoder. Although the instruction data was delivered, it

may still not be used (e.g., the instruction data may have been on the

“wrong path” of an incorrectly predicted branch.)

IBS fetch aborted The number of IBS sampled fetches that aborted. An attempted fetch

is aborted if it did not complete and deliver instruction data to the

decoder. An attempted fetch may abort at any point in the process of

fetching instruction data. An abort may be due to a branch redirection

as the result of a mispredicted branch. The number of IBS aborted

fetch samples is a lower bound on the amount of unsuccessful,

speculative fetch activity. It is a lower bound since the instruction data

delivered by completed fetches may not be used.

IBS ITLB hit The number of IBS attempted fetch samples where the fetch operation

initially hit in the L1 ITLB (Instruction Translation Lookaside

Buffer).

IBS L1 ITLB misses

(and L2 ITLB hits)

The number of IBS attempted fetch samples where the fetch operation

initially missed in the L1 ITLB and hit in the L2 ITLB.

IBS L1 L2 ITLB miss The number of IBS attempted fetch samples where the fetch operation

initially missed in both the L1 ITLB and the L2 ITLB.

IBS instruction cache

misses

The number of IBS attempted fetch samples where the fetch operation

initially missed in the IC (instruction cache).

IBS instruction cache

hit

The number of IBS attempted fetch samples where the fetch operation

initially hit in the IC.

IBS 4K page

translation

The number of IBS attempted fetch samples where the fetch operation

produced a valid physical address (i.e., address translation completed

successfully) and used a 4-KByte page entry in the L1 ITLB.

IBS 2M page

translation

The number of IBS attempted fetch samples where the fetch operation

produced a valid physical address (i.e., address translation completed

successfully) and used a 2-MByte page entry in the L1 ITLB.

IBS fetch latency The total latency of all IBS attempted fetch samples. Divide the total

IBS fetch latency by the number of IBS attempted fetch samples to

obtain the average latency of the attempted fetches that were sampled.

IBS fetch L2 cache

miss

The instruction fetch missed in the L2 Cache.

AMD uProf User Guide

160

[AMD Public Use]

IBS ITLB refill

latency

The number of cycles when the fetch engine is stalled for an ITLB

reload for the sampled fetch. If there is no reload, the latency will be

0.

IBS Op events

IBS Op Event Description

All IBS op samples The number of all IBS op samples that were collected. These op

samples may be branch ops, resync ops, ops that perform load/store

operations, or undifferentiated ops (e.g., those ops that perform

arithmetic operations, logical operations, etc.). IBS collects data for

retired ops. No data is collected for ops that are aborted due to

pipeline flushes, etc. Thus, all sampled ops are architecturally

significant and contribute to the successful forward progress of

executing programs.

IBS tag-to-retire cycles The total number of tag-to-retire cycles across all IBS op samples.

The tag-to-retire time of an op is the number of cycles from when the

op was tagged (selected for sampling) to when the op retired.

IBS completion-to-

retire cycles

The total number of completion-to-retire cycles across all IBS op

samples. The completion-to-retire time of an op is the number of

cycles from when the op completed to when the op retired.

IBS branch op The number of IBS retired branch op samples. A branch operation is

a change in program control flow and includes unconditional and

conditional branches, subroutine calls and subroutine returns. Branch

ops are used to implement AMD64 branch semantics.

IBS mispredicted

branch op

The number of IBS samples for retired branch operations that were

mispredicted. This event should be used to compute the ratio of

mispredicted branch operations to all branch operations.

IBS taken branch op The number of IBS samples for retired branch operations that were

taken branches.

IBS mispredicted

taken branch op

The number of IBS samples for retired branch operations that were

mispredicted taken branches.

IBS return op The number of IBS retired branch op samples where the operation

was a subroutine return. These samples are a subset of all IBS retired

branch op samples.

AMD uProf User Guide

 161

[AMD Public Use]

IBS mispredicted

return op

The number of IBS retired branch op samples where the operation

was a mispredicted subroutine return. This event should be used to

compute the ratio of mispredicted returns to all subroutine returns.

IBS resync op The number of IBS resync op samples. A resync op is only found in

certain micro-coded AMD64 instructions and causes a complete

pipeline flush.

IBS all load store ops The number of IBS op samples for ops that perform either a load

and/or store operation. An AMD64 instruction may be translated into

one (“single fast path”), two (“double fast path”), or several (“vector

path”) ops. Each op may perform a load operation, a store operation

or both a load and store operation (each to the same address). Some

op samples attributed to an AMD64 instruction may perform a

load/store operation while other op samples attributed to the same

instruction may not. Further, some branch instructions perform

load/store operations. Thus, a mix of op sample types may be

attributed to a single AMD64 instruction depending upon the ops that

are issued from the AMD64 instruction and the op types.

IBS load ops The number of IBS op samples for ops that perform a load operation.

IBS store ops The number of IBS op samples for ops that perform a store

operation.

IBS L1 DTLB hit The number of IBS op samples where either a load or store operation

initially hit in the L1 DTLB (data translation lookaside buffer).

IBS L1 DTLB misses

L2 hits

The number of IBS op samples where either a load or store operation

initially missed in the L1 DTLB and hit in the L2 DTLB.

IBS L1 and L2 DTLB

misses

The number of IBS op samples where either a load or store operation

initially missed in both the L1 DTLB and the L2 DTLB.

IBS data cache misses The number of IBS op samples where either a load or store operation

initially missed in the data cache (DC).

IBS data cache hits The number of IBS op samples where either a load or store operation

initially hit in the data cache (DC).

IBS misaligned data

access

The number of IBS op samples where either a load or store operation

caused a misaligned access (i.e., the load or store operation crossed a

128-bit boundary).

IBS bank conflict on

load op

The number of IBS op samples where either a load or store operation

caused a bank conflict with a load operation.

AMD uProf User Guide

162

[AMD Public Use]

IBS bank conflict on

store op

The number of IBS op samples where either a load or store operation

caused a bank conflict with a store operation.

IBS store-to-load

forwarded

The number of IBS op samples where data for a load operation was

forwarded from a store operation.

IBS store-to-load

cancelled

The number of IBS op samples where data forwarding to a load

operation from a store was cancelled.

IBS UC memory

access

The number of IBS op samples where a load or store operation

accessed uncacheable (UC) memory.

IBS WC memory

access

The number of IBS op samples where a load or store operation

accessed write combining (WC) memory.

IBS locked operation The number of IBS op samples where a load or store operation was a

locked operation.

IBS MAB hit The number of IBS op samples where a load or store operation hit an

already allocated entry in the Miss Address Buffer (MAB).

IBS L1 DTLB 4K page The number of IBS op samples where a load or store operation

produced a valid linear (virtual) address and a 4-KByte page entry in

the L1 DTLB was used for address translation.

IBS L1 DTLB 2M page The number of IBS op samples where a load or store operation

produced a valid linear (virtual) address and a 2-MByte page entry in

the L1 DTLB was used for address translation.

IBS L1 DTLB 1G page The number of IBS op samples where a load or store operation

produced a valid linear (virtual) address and a 1-GByte page entry in

the L1 DTLB was used for address translation.

IBS L2 DTLB 4K page The number of IBS op samples where a load or store operation

produced a valid linear (virtual) address, hit the L2 DTLB, and used

a 4 KB page entry for address translation.

IBS L2 DTLB 2M page The number of IBS op samples where a load or store operation

produced a valid linear (virtual) address, hit the L2 DTLB, and used

a 2-MByte page entry for address translation.

IBS L2 DTLB 1G page The number of IBS op samples where a load or store operation

produced a valid linear (virtual) address, hit the L2 DTLB, and used

a 1-GByte page entry for address translation.

AMD uProf User Guide

 163

[AMD Public Use]

IBS data cache miss

load latency

The total DC miss load latency (in processor cycles) across all IBS

op samples that performed a load operation and missed in the data

cache. The miss latency is the number of clock cycles from when the

data cache miss was detected to when data was delivered to the core.

Divide the total DC miss load latency by the number of data cache

misses to obtain the average DC miss load latency.

IBS load resync Load Resync.

IBS Northbridge local The number of IBS op samples where a load operation was serviced

from the local processor. Northbridge IBS data is only valid for load

operations that miss in both the L1 data cache and the L2 data cache.

If a load operation crosses a cache line boundary, then the IBS data

reflects the access to the lower cache line.

IBS Northbridge

remote

The number of IBS op samples where a load operation was serviced

from a remote processor.

IBS Northbridge local

L3

The number of IBS op samples where a load operation was serviced

by the local L3 cache.

IBS Northbridge local

core L1 or L2 cache

The number of IBS op samples where a load operation was serviced

by a cache (L1 data cache or L2 cache) belonging to a local core

which is a sibling of the core making the memory request.

IBS Northbridge local

core L1, L2, L3 cache

The number of IBS op samples where a load operation was serviced

by a remote L1 data cache, L2 cache or L3 cache after traversing one

or more coherent HyperTransport links.

IBS Northbridge local

DRAM

The number of IBS op samples where a load operation was serviced

by local system memory (local DRAM via the memory controller).

IBS Northbridge

remote DRAM

The number of IBS op samples where a load operation was serviced

by remote system memory (after traversing one or more coherent

HyperTransport links and through a remote memory controller).

IBS Northbridge local

APIC MMIO Config

PCI

The number of IBS op samples where a load operation was serviced

from local MMIO, configuration or PCI space, or from the local

APIC.

IBS Northbridge

remote APIC MMIO

Config PCI

The number of IBS op samples where a load operation was serviced

from remote MMIO, configuration or PCI space.

AMD uProf User Guide

164

[AMD Public Use]

IBS Northbridge cache

modified state

The number of IBS op samples where a load operation was serviced

from local or remote cache, and the cache hit state was the Modified

(M) state.

IBS Northbridge cache

owned state

The number of IBS op samples where a load operation was serviced

from local or remote cache, and the cache hit state was the Owned

(O) state.

IBS Northbridge local

cache latency

The total data cache miss latency (in processor cycles) for load

operations that were serviced by the local processor.

IBS Northbridge

remote cache latency

The total data cache miss latency (in processor cycles) for load

operations that were serviced by a remote processor.

13.3 Useful links

For the processor specific PMC events and their descriptions, refer AMD developer documents.

Processor Programming Reference (PPR) for AMD Family 17h Processors:

https://developer.amd.com/resources/developer-guides-manuals/

Software Optimization Guide for AMD Family 17h Processors:

https://developer.amd.com/wordpress/media/2013/12/55723_3_00.ZIP

Software Optimization Guide for AMD Family 19h Processors:

https://www.amd.com/system/files/TechDocs/56665.zip

https://developer.amd.com/resources/developer-guides-manuals/
https://developer.amd.com/wordpress/media/2013/12/55723_3_00.ZIP
https://www.amd.com/system/files/TechDocs/56665.zip

