[AMD Public Use]

AMD 1

AMD uProf User Guide

Version 3.4

Advanced Micro Devices &\

AMD uProf User Guide AMDA1

[AMD Public Use]

© 2021 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice. While
every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions
and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced
Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,
merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software
or other products described herein. No license, including implied or arising by estoppel, to any intellectual property
rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are
as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.
Microsoft, Windows, Windows 10 are registered trademarks of Microsoft Corporation.

MMX is a trademark of Intel Corporation.

PCle is a registered trademark of PCI-Special Interest Group (PCI-SIG).

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

AMD uProf User Guide AMDA1

[AMD Public Use]

Contents
ADOUL ThiS HOCUMEBNTeiiiiiie et e et e et e e e e s ree e e snbeeeanteeeanreeeas 7
Chapter 1 INTrOQUCTIONc..oiiiiiiiiiiie ettt 10
0 O O 1Y = oY 1= RS SPR 10
1.2 SPECITICALIONS ...ttt ettt ettt et 11
1.3 INSEAIING UPTOT ... 12
131 LAY T [0TSR SPRTPR 12
1.3.2 0 11 USRS SPR SRS 12
1.3.3 FIEEBSD ... 14
1.4 SAMPIE PrOGIAMIS .. ettt ettt ettt e bttt e b e beeenees 14
1L0 SUPPOIT ottt 15
Chapter 2 CPU Profiling - workflow and Key CONCEPLSccovviiiiiiieiiiiiie e 16
2.1 CPU PIOTHING ...ttt 16
2.2 WOIKFIOW ...ttt ettt 17
2.2.1 O] 1= ot o] - TS USSR 18
2.2.2 TranSIate PRASEvveeiiiie e 19
2.2.3 ANAIYZE PRASE ..ot 20
2.3 Predefined Sampling Configurationccouveiiiiiiiiie e 20
2.4 Predefined View Configuration..........ccccocuveiiiie e s cies s e e sane e 21
Chapter 3 Getting started with AMDuProfPcm — System AnalysiS...........cccccvevviveiiinnnne, 26
Chapter 4 Getting started with AMDUPTOf GUIL..........cccoviiiiiiee e 40
A1 USEE INTEITACE ...ttt ettt et e et ae e 40
4.2 LauNChING GUI...c.ooiiiiiii et e e e ae e e s e e aaee e 41
4.3 Configure a Profile........coceee i 42
4.3.1 Select Profile Target. ... 42
4.3.2 SeleCt Profile TYPe. ..o 43
4.3.3 AAVANCEA OPLIONS......eiiiie ettt e e e e e e aaee e 45
4.3.4 SEArt PrOTIlE. ... e 47
4.4 Analyze the profile data............cccuveiiiii i 48
4.4.1 Overview of performance NOtSPOLS.........uvvieiiiiiie et 48

AMD uProf User Guide AMDZ1

[AMD Public Use]

4.4.2 Thread ConcurrenCy Graphc.oooveiieiii e 49
4.4.3 FUNCLION HOLSPOLS ...t 50
4.4.4 Process and FUNCLIONSc.uiiiiiieiiiieesiie e eiie et see e tee e e srae e e eeaneeee s 51
4.4.5 SOUrCe and ASSEMDIYiiiiiiiie e 53
4.4.6 FIAME Graph......oo i 55
4.4.7 CaAlIGraPD. .. 56
4.5 IMporting Profile Databasesccueiiiiiiieiie s 57
4.6 Analyzing saved Profile SESSIONccoiiiiiiiiiiiiiest e 58
4.7 Using saved Profile CONfIQUIAtIoNcooiiiiiiiiiiiiii e 59
A8 SBHLINGS .ottt ettt be e 60
Chapter 5 Getting started with AMDUPTOfCLIccooiiiiiiiiiie e 63
51 How to start CPU Profile?.......coei i s 64
5.2 How to start POWEr Profile?..........ooiiiiiiiiie s 67
5.3 COlleCt COMMEANGoiiiiieiiie ettt e e e e a e e sneeeeanseeeenes 69
5.4 REPOIt COMIMANG.coiiiiiiiiiieitieeitie sttt e ettt e bttt e bbb e et eabeesbn e e nteeenees 76
55 Timechart COMMANGoiiuiiiiiiiieiiie ittt 80
5.6 INTO COMMENT......ooiiiiiiiii et 83
Chapter 6 Performance ANAIYSIScooiiieiiiie ettt e e e e 86
6.1 Analysis with Time-based profiling...........ccccoveiiir i 87
6.2 Analysis with Event based profiling..........cccovveiiiiiiii e 89
6.3 Analysis with Instruction based sSampling...........cccooviiiiiii i 90
6.4 Analysis With Callstack SAMPIESoeeiiieeiiiic e 91
6.4.1 FIAME Graph .o 92
6.4.2 Call GrapN......oeeecee s 93
6.5 Profiling aJava APPliCAtIONcooiiiiiiie e 94
T O Yol [AN -1] PSSP 97
6.6.2 Cache Analysis USING GUI.........ccoiiiiiiei e 98
6.6.3 Cache AnalysSis USING CLIoooiiiiiiic e 99
6.7 CUSIOM PrOfIle.. .o 102
8.8 AUVISOIY ottt et e e a e e e e a it e e a e e e aaaa e 104
6.9 ASCIH dump Of IBS SAMPIESvveieieiieeciee ettt 105
6.10 LEMITALIONS. ...eeiitiieiiiie ettt ettt ettt ettt ettt et b e e e bt e e snbe e e nnnee e 106

AMD uProf User Guide AMDA1

[AMD Public Use]

Chapter 7 Performance Analysis (LINUX ONIY) ... 107
7.1 OPENIMP ANAIYSIS.. ..ottt 107
7.1.1 Profiling OpenMP Application using GUI............ccooiiiiiiiiinic 108
7.1.2 Profiling OpenMP Application using CLIccccoooiiiiiiiiiieee e 110
7.1.3 Environment variablesoooiiiiiiiie s 111
7.1.4 T4 gL o] PR TR 112

7.2 MPIEPIOTHIING. ..ot 113
7.2.1 Data Collection USING CLI......c..oiiiiiiei s 113
7.2.2 Analyze the data USING CLIoooviiiiiiiiei e 115
7.2.3 Analyze the data USING GUIooiiiiiiii e 116
7.2.4 T a e UA o] PSSR 116

7.3 Profiling Linux SyStem MOGUIEScoouiiiiiiiiieiii et 117
7.4 Profiling LINUX KEIMEL........ooiiiiiiie e 118
74.1 Enable kernel symbol reSOIULION...........cocooiiiiiiii e 118
74.2 Download and install kernel debug symbol packagescccccovvviiiiiiciinnnnn, 118
7.4.3 Build Linux kernel with debug symbolS...........cccooveiiiiiiii e, 120
7.4.4 How to analyze hotspots in kernel functions:.............ccccoviveevie v 120
7.4.5 Linux kernel callstack Samplingcooiuviiiiieeiiie e 121
7.4.6 CONSEIAINTS ...ttt ettt ettt ettt enees 122
Chapter 8 Performance Analysis (WINAOWS)cooiiiiiiiiieiiiie e see e svee e 123
8.1 Thread CONCUITEINCY ...ecccueeeeiieeeciieeesieeeette e e tte e e stte e e st e e st e e st e e e snaaeesnaeeesneeeennseeennneas 123
Chapter 9 POWEE Profile........ooo e 125
TR R |V =11 (o1 PP P TP UUROPRURRTS 125
9.2 Profile USING GUIoooiiiecee e 128
9.2.1 (000]) 1o U =PTSRS 129
9.2.2 ANGIYZE......ooeeee e raa e 130

0.3 Profile USING CLI....cveiiieee e e e e 131
9.3.1 EXAMPIES ... 132

9.4 AMDPOWErProfileAPT LiDraryccoveoiiiiiiic e 133
94.1 HOW t0 USE the APIS? ...t 133

0.5 LIMITALIONS .ttt ettt e et naeenree s 134
Chapter 10 ENErgy ANAIYSIS......ccoiiiiiiie ittt a e ae e nnees 135

AMD uProf User Guide AMDZ1

[AMD Public Use]

10.1 Profile USING GUI......oooiiiiiiiii ettt e s anee s 136
10.2 Profile USING CLI ...uveiiiiiee ettt e e snee e 137
10.3 LIMITAIIONS. ..eteitiiieiiiie ettt e e et e e et e e et e e et eeanbe e e e nreeeesnteeeanneeeas 138
Chapter 11 Remote Profiling........ccooiiiiiiiiiiiie e 139
11.1 Profile remote targets USING CLI.......ccviiiiiiiieie e 139
11.1.1 Adding user-id in the remote target SYStemcooveiieiiieiiieiie e 139
11.1.2 Launching REMOTE AGENT......coiiiiiiiiiie ittt 139
11.1.3 Collect data and generate rePOIt.........cccoiueeiiiiiieeiii e 140
112 LIMIEEIONS. ..ot iieie ettt e et et e et e e ente e e et e e et e e e neeeenreeeennteeennneeeas 140
Chapter 12 Profile CONtrol APIS.........oo i 141
12.1 AMDPIOFIECONIIOL APIS ...ttt e e et e e nnnea e 141
12.1.1 Profile CONtrol APIS.......oee ettt e e 141
12.1.2 HOW L0 USE the APIS? ...ttt e e e e 142
12.1.3 Compiling instrumented target appliCationccccceviiriiieniiniie e 143
12.1.4 Profiling instrumented target appliCationccceiviiiiiiiie i 143
Chapter 13 RETEIEINCEcoiie et e e e et a e e a e e anaaeeaneees 144
13.1 Preparing an application for profiling..........ccccooeveeiii e 144
13.1.1 Generate debug information on WindoWS:..........ccceeviveiiire e 144
13.1.2 Generate debug information 0N LiNUX:cccoveiiiieiiiee e 145
13.2 CPU PrOfIlING c..vveeiiee ettt st e et e e aana e 146
13.2.1 HardWAare SOUICESccuvieitiieiieiee ettt sttt ettt et et nreeanns 146
13.2.2 Profiling CONCEPLS......eciiiie ettt sae e e e 147
13.2.3 PrOTIIE TYPES .ttt e e 148
13.2.4 Predefined Core PMC EVENEScccoiiiiiiieiieeiee e 149
13.2.5 IBS DErIVEU EVENES.....viiiiiiiiiiiiie ittt sttt 158
13,3 USEIUL TINKS. ..ottt et 164

AMD uProf User Guide AMDA1

[AMD Public Use]

About this document

This document describes how to use AMD uProf to perform CPU and Power analysis of applications
running on Windows and Linux operating systems on AMD processors.

The latest version of this document is available at AMD uProf web site at the following URL:
https://developer.amd.com/amd-uprof/

Intended Audience

This document is intended for software developers and performance tuning experts who want to
improve the performance of their application. It assumes prior understanding of CPU architecture,
concepts of threads, processes, load modules and familiarity with performance analysis concepts.

Conventions:

Following conventions are used in this document:

Convention Description

GUI element A Graphical User Interface element like menu name or button
-> Menu item within a Menu

1 Contents are optional in syntax

Preceding element can be repeated

| Denotes “or”, like two options are not allowed together

File name Name of a file or path or source code snippet
Command Command name or command phrase
Hyperlink Links to external web sites

Link Links to the section within this document

https://developer.amd.com/amd-uprof/

AMD uProf User Guide AMDZ1

[AMD Public Use]

Definitions:

Following terms may be used in this document.

Term Description

PMC
TBP
EBP
IBS
NB
SMU
RAPL
MSR
DTLB
DC
ITLB
IC
PTI
IPC
CPI
ASLR
GUI
CLI
CsSv
Target system

Host system

Performance Monitoring Counter

Timer Based Profiling

Event Based Profiling. This uses Core PMC events.
Instruction Based Sampling

Northbridge

System Management Unit

Running Average Power Limit

Model Specific Register

Data Translation Lookaside Buffer

Data Cache

Instruction Translation Lookaside Buffer
Instruction Cache

Per Thousand Instructions

Instruction Per Cycle

Cycles Per Instruction

Address Space Layout Randomization
Graphical User Interface

Command Line Interface

Comma Separated Values format

System in which the profile data is collected

System in which the AMDuProf client process runs

AMD uProf User Guide AMDA1

[AMD Public Use]

Client

Agent

AMD uProf
AMDuProfPcm
AMDuProf
AMDuProfCLI
AMDRemoteAgent
Performance Profiling (or)
CPU Profiling

System Analysis

Instance of AMDuProf or AMDuProfCLI running on a host
system

Instance of AMDRemoteAgent process running on a target
system

Denotes the uProf product name

Denotes the CLI that is used to perform system analysis
Denotes the name of the graphical-user-interface tool
Denotes the name of the command-line-interface tool

Denotes the name of the remote agent tool which runs on target
system

Identify and analyze the performance bottlenecks. Performance
Profiling and CPU Profiling denotes the same.

Refers AMDuProfPcm

AMD uProf User Guide AMDZ1

[AMD Public Use]

Chapter 1 Introduction

1.1 Overview

AMD uProf is a performance analysis tool for applications running on Windows and Linux
operating systems. It allows developers to better understand the runtime performance of their
application and to identify ways to improve its performance.

AMD uProf offers functionalities to perform:
e Performance Analysis (CPU Profile)
= To identify runtime performance bottlenecks of the application
e System Analysis
= To monitor basic system performance metrics like IPC, memory bandwidth
e Live Power Profile
= To monitor thermal and power characteristics of the system
e Energy Analysis
= To identify energy hotspots in the application (Windows only)

AMD uProf has following user interfaces:

Executable Description Supported OS
'AMDuProf ~ GUI to perform CPU & Power Profile Windows, Linux
AMDuProfCLI CLI to perform CPU & Power Profile Windows, Linux, FreeBSD
AMDuProfPcm CLI to perform System Analysis Windows, Linux, FreeBSD
AMDRemoteAgent CLI agent for remote profiling Windows, Linux

AMD uProf can effectively be used to:
e Analyze the performance of one or more processes/applications
e Track down the performance bottlenecks in the source code
« Identify ways to optimize the source code for better performance and power efficiency
e Examine the behavior of kernel, drivers, and system modules
e Observe system-level thermal and power characteristics
e Observe system metrics like IPC, memory bandwidth

10

AMD uProf User Guide AMDA1

[AMD Public Use]

1.2 Specifications

AMD uProf supports the following specifications. For detailed list of supported processors and
operating systems, refer Release Notes.

Processors

« AMD CPU & APU Processors
o Discrete GPUs: Graphics IP 7 GPUs, AMD Radeon 500 Series, FirePro models (Power
Profiling Only)

Operating Systems

AMD uProf supports the 64-bit version of the following Operating Systems:
e Microsoft
= Windows 7, Windows 10, Windows Server 2016, Windows Server 2019
e Linux
= Ubuntu 16.04 & later, RHEL 7.0 & later, CentOS 7.0 & later
= 0penSUSE Leap 15.0, SLES 12 & 15

Compilers and Application Environment

AMD uProf supports following application environment:
o Languages:
= Native languages: - C, C++, Fortran, Assembly
= Non-Native languages: - Java, C#
e Programs compiled with
= Microsoft compilers, GNU compilers, LLVM
= AMD’s AOCC, Intel compilers
o Parallelism
= OpenMP
= MPI
e Debug info formats:
= PDB, COFF, DWARF, STABS
e Applications compiled with and without optimization or debug information
e Single-process, multi-process, single-thread, multi-threaded applications
e Dynamically linked/loaded libraries
e POSIX development environment on Windows
= Cygwin
= MinGW

11

AMD uProf User Guide AMDZ1

[AMD Public Use]

1.3 Installing uProf

The latest version of the AMD uProf installer package for the supported Operating systems can be
downloaded from https://developer.amd.com/amd-uprof/. Install AMD uProf using one of the
following methods.

1.3.1 Windows

Run the 64-bit Windows installer binary AMDuProf-x.y.z.exe. Upon successful completion
of the installation the executables, libraries and the other required files will be installed at
C:\Program Files\AMD\AMDuProf\ folder.

1.3.2 Linux

Install using tar file
Install uProf from the downloaded tar file, by extracting the tar.bz2 binary.
$ tar -xf AMDuProf Linux x64 x.y.z.tar.bz2
The Power Profiler Linux driver must be installed manually. To do that, refer this section.
Install using RPM package (RHEL)
Install the uProf RPM package by either using the rpm or yum command.
$ sudo rpm --install amduprof-x.y-z.x86 64.rpm
$ sudo yum install amduprof-x.y-z.x86 64.rpm

Upon successful completion of the installation the executables, libraries and the other required files
will be installed at /opt /AMDuProf X.Y-7ZZ/ directory.

Install using Debian package (Ubuntu)

Install the uProf Debian package by using the dpkg command.

$ sudo dpkg —--install amduprof x.y-z amdé64.deb

Upon successful completion of the installation the executables, libraries and the other required files
will be installed at /opt /AMDuProf X.Y-7ZZ/ directory.

12

https://developer.amd.com/amd-uprof/

AMD uProf User Guide AMDA1

[AMD Public Use]

Installing Power Profiling driver on Linux

While installing uProf using RPM and Debian installer packages, the Power Profiling driver gets
build and installed automatically. However, if you have downloaded the AMD uProf tar.bz2 archive,
you must install the Power Profiler’s Linux driver manually.

The GCC and MAKE software packages are prerequisites for installing Power Profiler’s Linux
driver. If you do not have these packages, they can be installed using the following commands:

On RHEL and CentOS distros:

$ sudo yum install gcc make

On Debian/Ubuntu distros:

$ sudo apt install build-essential

Perform the following steps:
$ tar —xf AMDuProf Linux x64 x.y.z.tar.bz2
$ cd AMDuProf Linux x64 x.y.z/bin
S sudo ./AMDPowerProfilerDriver.sh install
Installer will create a source tree for power profiler driver at /usr/src/AMDPowerProfiler—

<version> directory. All the source files required for module compilation are in this directory
and under MIT license.

To uninstall the driver run the following command:
$ cd AMDuProf Linux x64 x.y.z/bin

S sudo ./AMDPowerProfilerDriver.sh uninstall

Linux Power Profiling driver support for DKMS

On Linux machines, Power profiling driver can also be installed with Dynamic Kernel Module
Support (DKMS) framework support. DKMS framework automatically upgrades the power
profiling driver module whenever there is a change in the existing kernel. This saves user from
manually upgrading the power profiling driver module. The DKMS package needs to be installed
on target machines before running the installation steps mentioned in the above section.
AMDPowerProfilerDriver.sh installer script will automatically take care of DKMS related
configuration if DKMS package is installed in the target machine.

13

AMD uProf User Guide AMDZ1

[AMD Public Use]

Example (for Ubuntu distros):

sudo apt-get install dkms
tar —-xf AMDuProf Linux x64 x.y.z.tar.bz2

cd AMDuProf Linux x64 x.y.z/bin

v O»r U

sudo ./AMDPowerProfilerDriver.sh install

If the user upgrades the kernel version frequently it is recommended to use DKMS for installation.

1.3.3 FreeBSD
Install using tar file
Install uProf from the downloaded tar file, by extracting the tar.bz2 binary.

$ tar -xf AMDuProf FreeBSD x64 x.y.z.tar.bz2
1.4 Sample programs

Few sample programs are installed along with the product is installed along with the product to let
you use with the tool.

Windows:
e A sample matrix multiplication application

C:\Program Files\AMD\AMDuProf\Examples\AMDTClassicMatMul\bin\AMDTClassicMatMul.exe

Linux:
e A sample matrix multiplication program with makefile
/opt/AMDuProf X.Y-ZZzZ/Examples/AMDTClassicMat/

e An OpenMP example program and its variants with makefile
/opt/AMDuProf X.Y-ZZZ/Examples/CollatzSequence C-OMP/

FreeBSD:

e A sample matrix multiplication program with makefile
/<install dir>/AMDuProf FreeBSD x64 X.Y.ZZZ/Examples/AMDTClassicMat/

14

AMD uProf User Guide AMDA1

[AMD Public Use]

1.5 Support

Visit the following sites for downloading the latest version, bug reports, support, and feature
requests.

AMD uProf product page - https://developer.amd.com/amd-uprof/

AMD Developer Community forum - httos,/community.amd.com/t5/server-gurus/ct-p/amd-server-

gurus

15

https://developer.amd.com/amd-uprof/
file:///C:/Users/gnanam/AppData/Roaming/Microsoft/Word/AMD%20Developer%20Community
https://community.amd.com/t5/server-gurus/ct-p/amd-server-gurus
https://community.amd.com/t5/server-gurus/ct-p/amd-server-gurus

AMD uProf User Guide AMDZ1

[AMD Public Use]

Chapter 2 CPU Profiling - workflow and key
concepts

2.1 CPU Profiling

AMD uProf profiler follows a statistical sampling-based approach to collect profile data to identify
the performance bottlenecks in the application.

o Profile data is collected using any of the following approaches:
= Timer Based Profiling (TBP) - to identify the hotspots in the profiled applications
= Event Based Profiling (EBP) - sampling based on Core PMC events to identify micro-
architecture related performance issues in the profiled applications
= Instruction based Sampling (IBS) - precise instruction-based sampling

e Call-stack Sampling

e Secondary profile data (Windows only)
= Thread concurrency
= Thread Names

e Profile scope
= Per-Process: Launch an application and profile that process its children
= System-wide: Profile all the running processes and/or kernel
= Attach to an existing application (Native applications only)

e Profile mode
= Profile data is collected when the application is running in User and/or Kernel mode

e Profiles
= C, C++, Java, .NET, FORTRAN, Assembly applications
= Various software components — Applications, dynamically linked/loaded modules,
Driver, OS Kernel modules

o Profile data is attributed at various granularities
= Process/ Thread / Load Module / Function / Source line / Disassembly
= To correlate the profile data to Function and Source line, debug information emitted
by the compiler is required
= C++ & Java in-lined functions

o Processed profile data is stored in databases, which can be used to generate reports later.

16

AMD uProf User Guide AMDA1

[AMD Public Use]

o Profile reports are available in comma-separated-value (CSV) format to use with spreadsheets.

e AMDuProfCLI, the command-line-interface can be used to configure a profile run, collect
the profile data, and generate the profile report.
= collect option to configure and collect the profile data
= report option to process the profile data and to generate the profile report

e AMDuProf GUI can be used to:
= Configure a profile run
= Start the profile run to collect the performance data
= Analyze the performance data to identify potential bottlenecks

e AMDuProf GUI has various Uls to analyze and view the profile data at various granularities
= Hot spots summary
= Thread concurrency graph (Windows only and requires admin privileges)
= Process and function analysis
= Source and disassembly analysis
= Flame Graph - a stack visualizer based on collected call-stack samples
= Call Graph - butterfly view of callgraph based on call-stack samples
= HPC - to analyze OpenMP profile data
= Cache Analysis - to analyze the hot cache lines that are false shared

o Profile Control API to selectively enable and disable profiling from the target application by
instrumenting it, to limit the scope of the profiling

2.2 Workflow

The AMD uProf workflow has the following phases:

Phase Description

Collect Running the application program and collect the profile data
Translate Process the profile data to aggregate and correlate and save them in a DB
Analyze View and analyze the performance data to identify bottlenecks

The profile data can be collected and analyzed using either by the GUI or the command-line-
interface tool.

17

AMD uProf User Guide AMDZ1

[AMD Public Use]

2.2.1 Collect phase

Important concepts of collect phase are explained in this section.
Profile Target

The profile target is the any of the following for which profile data will be collected.
= Application - Launch application and profile that process and its children
= System - Profile all the running processes and/or kernel
= Process - Attach to an existing application (Native applications only)

Profile Type

The profile type defines the type of profile data collected and how the data should be collected.
Following profile types are supported:

= CPU Profile

= System-wide Power Profile

= Power Application Analysis (Windows only)

How data should be collected is defined by Sampling Configuration.

o Sampling Configuration identifies the set of Sampling Events, and their Sampling Interval
and mode.

e Sampling Event is a resource used to trigger a sampling point at which a sample (profile data)
will be collected.

o Sampling Interval defines the number of the occurrences of the sampling event after which
an interrupt will be generated to collect the sample.

e Mode defines when to count the occurrences of the sampling event — in User mode and/or OS
mode.

What type of profile data to collect — Sampled data:

e Sampled data — the profile data that can be collected when the interrupt is generated upon the
expiry of the sampling interval of a sampling event.

CPU Profiling Process 1D, OS Timer,
Thread ID, Core PMC events,
IP, IBS
Callstack,

ETL tracing (Windows only)
OpenMP Trace — OMPT (Linux)

18

AMD uProf User Guide AMDA1

[AMD Public Use]

For CPU Profiling, since there are numerous micro-architecture specific events are available to
monitor, the tool itself groups the related and interesting events to monitor — which is called
Predefined Sampling Configuration. For example, Assess Performance is one such
configuration, which is used to get the overall assessment of performance and to find potential issues
for investigation. Refer this section for all the supported Predefined Sampling Configurations.

A Custom Sampling Configuration is the one in which the user can define a sampling
configuration with events of interest.

Profile Configuration

A profile configuration identifies all the information used to perform a collect measurement. It
contains the information about profile target, sampling configuration and data to sample and profile
scheduling details.

The GUI saves these profile configuration details with a default name (Ex: AMDuProf-TBP-
Classic> which is also user definable. Since the performance analysis is iterative, this is persistent
(can be deleted), so that the user can reuse the same configuration for future data collection runs.

Profile Session (or Profile Run)

A profile session represents a single performance experiment for a Profile Configuration. The tool
saves all the profile data, translated data (in a DB) under the folder which is named as <profile
config name>-<timestamp>.

Once the profile data is collected, the GUI will process the data to aggregate and attribute the
samples to the respective processes, threads, load modules, functions, and instructions. This
aggregated data will be written into an SQLite DB which is used during Analyze phase. This process
of the translating the raw profile data happens in CLI while generating the profile report.

2.2.2 Translate phase

The collected raw profile data will be processed to aggregate and attribute to the respective
processes, threads, load modules, functions, and instructions. Debug information for the launched
application generated by the compiler is needed to correlate the samples to functions and source
lines.

This phase is performed automatically in GUI once the profiling is stopped and in the CLI, when
you invoke the report command to generate the report from the raw profile file.

19

AMD uProf User Guide AMDZ1

[AMD Public Use]

2.2.3 Analyze phase

View Configuration

A View is a set of sampled event data and computed performance metrics either displayed in the
GUI pages or in the text report generated by the CLI. Each predefined sampling configuration has
a list of associated predefined views.

For CPU Profiling, since there are numerous micro-architecture specific events data can be
collected, the tool itself groups the related and interesting metrics — which is called Predefined
View. For example, IPC assessment view, lists metrics like CPU Clocks, Retired Instructions, IPC,
and CPI. Refer this section for all the supported Predefined View Configurations.

2.3 Predefined Sampling Configuration

For CPU Profiling, since there are numerous micro-architecture specific events are available to
monitor, the tool itself groups the related and interesting events to monitor — which is called
Predefined Sampling Configuration. They provide a convenient way to select a useful set of
sampling events for profile analysis.

Here is the list of predefined sampling configurations:

Profile Predefined Configuration Abbreviation Description
Type Name
TBP Time-based profile tbp To identify where programs are
spending time.
Assess performance assess Provides an overall assessment of
performance.
EBP .
Assess performance assess_ext Provides an overall assessment of
(Extended) performance with additional metrics.
Investigate data access data_access To find data access operations with

poor L1 data cache locality and poor
DTLB behavior.

Investigate instruction access inst_access To find instruction fetches with poor
L1 instruction cache locality and
poor ITLB behavior.

20

AMD uProf User Guide AMDA1

[AMD Public Use]

Investigate branching branch To find poorly predicted branches
and near returns.

IBS Instruction based sampling ibs To collect sample data using IBS
Fetch and IBS OP. Precise sample
attribution to instructions.

Energy Power Application Analysis power To identify where the programs are
consuming energy.

Note:
e The AMDuProf GUI uses the name of the predefined configuration in the above table.
e Abbreviation is used with AMDuProfCLI collect command’s --config option.
e The supported predefined configurations and the sampling events used in them, is based on
the processor family and model.

2.4 Predefined View Configuration

A View is a set of sampled event data and computed performance metrics either displayed in the
GUI pages or in the text report generated by the CLI. Each predefined sampling configuration has
a list of associated predefined views.

List of predefined view configurations for Assess Performance:
View configuration Abbreviation Description

Assess triage_assess This view gives the overall picture of performance,

Performance including instructions per clock cycle (IPC), data cache
accesses and misses, mispredicted branches, and
misaligned data access. Use it to find possible issues for
deeper investigation.

IPC assessment ipc_assess To find hotspots with low instruction level parallelism.
Provides performance indicators — IPC and CPI.

Branch assessment br_assess Use this view to find code with a high branch density
and poorly predicted branches.

Data access dc_assess Information about data cache (DC) access including DC
assessment miss rate and DC miss ratio.

21

AMD uProf User Guide AMDZ1

[AMD Public Use]

Misaligned access misalign_assess To identify regions of code that access misaligned data.
assessment

List of predefined view configurations for Investigate Data Access:

View configuration Abbreviation Description

IPC assessment ipc_assess To find hotspots with low instruction level parallelism.
Provides performance indicators — IPC and CPI.

Data access dc_assess Information about data cache (DC) access including
assessment DC miss rate and DC miss ratio.
Data access report dc_focus Use this view to analyze L1 Data Cache (DC) behavior

and compare misses versus refills.

Misaligned access misalign_assess = To identify regions of code that access misaligned data.
assessment

DTLB report dtlb_focus Information about L1 DTLB access and miss rates.

List of predefined view configurations for Investigate Branch Access:

View configuration Abbreviation Description

Investigate Branch Use this view to find code with a high branch density
Branching and poorly predicted branches.

IPC assessment ipc_assess To find hotspots with low instruction level parallelism.

Provides performance indicators — IPC and CPI.

Branch assessment br_assess Use this view to find code with a high branch density
and poorly predicted branches.

Taken branch taken_focus Use this view to find code with a high number of taken

report branches.

Near return report return_focus Use this view to find code with poorly predicted near
returns.

List of predefined view configurations for Assess Performance (Extended):

View configuration Abbreviation Description

22

AMD uProf User Guide AMDA1

[AMD Public Use]

Assess triage_assess_ext This view gives an overall picture of performance. Use
Performance it to find possible issues for deeper investigation.
(Extended)

IPC assessment ipc_assess To find hotspots with low instruction level parallelism.

Provides performance indicators — IPC and CPI.

Branch assessment br_assess Use this view to find code with a high branch density
and poorly predicted branches.

Data access dc_assess Information about data cache (DC) access including
assessment DC miss rate and DC miss ratio.

Misaligned access misalign_assess To identify regions of code that access misaligned
assessment data.

List of predefined view configurations for Investigate Instruction Access:

View configuration Abbreviation Description

IPC assessment ipc_assess To find hotspots with low instruction level parallelism.
Provides performance indicators — IPC and CPI.

Instruction cache ic_focus Use this view to identify regions of code that miss in
report the Instruction Cache (IC).
ITLB report itlb_focus Use this view to analyze and break out ITLB miss rates

by levels L1 and L2.

List of predefined view configurations for Instruction Based Sampling:
View configuration Abbreviation Description

IBS fetch overall ibs_fetch_overall ~ Use this view to show an overall summary of the
IBS fetch sample data.

IBS fetch ibs_fetch_ic Use this view to show a summary of IBS attempted
instruction cache fetch Instruction Cache (IC) miss data.

IBS fetch ibs_fetch_itlb Use this view to show a summary of IBS attempted
instruction TLB fetch ITLB misses.

IBS fetch page ibs_fetch_page Use this view to show a summary of the IBS L1
translations ITLB page translations for attempted fetches.

23

AMD uProf User Guide

AMDZ1

[AMD Public Use]

IBS All ops

IBS MEM all
load/store

IBS MEM data
cache

IBS MEM data
TLB

IBS MEM locked
ops and access by

type

IBS MEM
translations by page
size

IBS MEM
forwarding and
bank conflicts

IBS BR branch

IBS BR return

IBS NB
local/remote access

IBS NB cache state

IBS NB request
breakdown

Note:

ibs_op_overall

ibs_op_Is

ibs op_Is dc

ibs_op_lIs_dtlb

ibs_op_Is_memacc

ibs_op_Is_page

ibs_op_Is_expert

ibs_op_branch

ibs_op_return

ibs_op_nb_access

ibs_op_nb_cache

ibs_op_nb_service

Use this view to show a summary of all IBS Op
samples.

Use this view to show a summary of IBS Op
load/store data.

Use this view to show a summary of DC behavior
derived from IBS Op load/store samples.

Use this view to show a summary of DTLB behavior
derived from IBS Op load/store data.

Use this view to show uncacheable (UC) memory
access, write combining (WC) memory access and
locked load/store operations.

Use this view to show a summary of DTLB address
translations broken out by page size.

Use this view to show memory access bank
conflicts, data forwarding and Missed Address
Buffer (MAB) hits.

Use this view to show IBS retired branch op
measurements including mispredicted and taken
branches.

Use this view to show IBS return op measurements
including the return misprediction ratio.

Use this view to show the number and latency of
local and remote accesses.

Use this view to show cache owned (O) and
modified (M) state for NB cache service requests.

Use this view to show a breakdown of NB access
requests.

e The AMDuProf GUI uses the name of the predefined configuration in the above tables.
e Abbreviation is used with AMDuProfCLI report command’s --view option.

24

AMD uProf User Guide AMDA1

[AMD Public Use]

e The supported predefined Views and the corresponding metrics are based on the processor
family and model.

25

AMD uProf User Guide AMDZ1

[AMD Public Use]

Chapter 3 Getting started with
AMDuProfPcm — System Analysis

System Analysis utility AMDuProfPcm helps to monitor basic performance monitoring metrics for
AMD’s family 17h processors. This utility periodically collects the CPU Core, L3 & DF
performance events count values and report various metrics.

Notes:
o This tool is supported on Windows, Linux, and FreeBSD.
e On Linux:

= AMDuProfPcm uses msr driver and either requires root privileges or read write
permissions for /dev/cpu/*/msr devices.
= NMI watchdog needs to be disabled. (echo 0 > /proc/sys/kernel/nmi_watchdog)
e On FreeBSD, AMDuProfPcm uses cpuctl module and either requires root privileges or read
write permissions for /dev/cpuctl* devices

Synopsis:
AMDuProfPcm [<OPTIONS>] -- [<PROGRAM>] [<ARGS>]
<PROGRAM> - Denotes a launch application to be profiled
<ARGS> - Denotes the list of arguments for the launch application

Common usages:
$ AMDuProfPcm -h
AMDuProfPcm -m ipc -c core=0 -d 10 -o /tmp/pmcdata.txt

AMDuProfPcm -m memory -a -d 10 -o /tmp/memdata.txt -- /tmp/myapp.exe
Options:
-h Displays this help information on the console/terminal.
-m <metric,...> Metrics to report. Default metric group is 'ipc'.

Supported metric groups and the corresponding metrics
are Platform, OS, and Hypervisor specific.

26

AMD uProf User Guide AMDA1

[AMD Public Use]

-c <core|ccx|ccd|package=<n>

Run “AMDuProfpcm -h” to get the list of supported
metrics.

In general, following metric groups will be supported:
ipc — reports metrics like CEF, Utilization, CPI, IPC
fp — reports GFLOPS

11 — L1 cache related metrics (DC access and I1C Fetch
miss ratio)

12 — L2D and L2I cache related access / hit / miss
metrics

I3 — L3 cache metrics like L3 Access, L3 Miss, and
Average Miss latency

dc — advanced caching metrics like DC refills by
source

memory — approximate memory read and write
bandwidths in GB/s for all the channels

pcie — PCle bandwidth in GB/s

xgmi — approximate xGMI outbound data bytes in
GB/s for all the remote links

Collect from the specified core | ccx | die | package.
Default is ‘core=0'".

If 'cex’ is specified:

- core events will be collected from all the cores of this
CCX.

- 13 events will be collected from the first core of this
CCX.

- df events will be collected from the first core of this
CCX.

If 'die' is specified:

- core events will be collected from all the cores of this
die.

- 13 events will be collected from the first core of all the
ccx's of this die.

27

AMD uProf User Guide AMDZ1

[AMD Public Use]

-A
<system, package, ccd, ccx, core>

- df events will be collected from the first core of this
die.

If 'package’ is specified:

- core events will be collected from all the cores of this
package.

- 13 events will be collected from the first core of all the
cex's of this package.

- df events will be collected from the first core of all
the die of this package.

Collect from all the cores.
Note: Options -c and -a cannot be used together.

Prints the cumulative data at the end of the profile
duration. Otherwise, all the samples will be reported as
timeseries data.

Print aggregated metrics at various component level.
Following are various granularity that are supported:

system — samples from all the cores in the system will be
aggregated,

package - samples from all the cores in the package will
be aggregated and reported for all the packages available
in the system; Applicable for multi-package systems.

ccd - samples from all the cores in CCD will be
aggregated and reported for all the CCDs.

cex - samples from all the cores in CCX will be
aggregated and reported for all the CCXs.

core - samples from all the cores on which samples are
collected will be reported without aggregation.

Note:

- Option -a should be used along with this option to
collect samples from all the cores.
- Comma separated list of components can be specified

28

AMD uProf User Guide AMDA1

=i

-d

-t

[AMD Public Use]

<config file>

<seconds>

<multiplex interval in

ms>

-0

<output file>

<dump file>

<n>

<pmc-event>

<core-id,...>

<dir>

User defined XML config file that specifies Core|L3|DF
counters to monitor.

Refer sample files at <install-dir>/bin/Data/Config/ dir
for the format.

Note:

- Options -i and -m cannot be used together.
- If option -i is used, all the events mentioned in the
user-defined config file will be collected.

Profile duration to run

Interval in which PMC count values will be read.
Minimum is 16ms

Output file name. The output report will be in CSV
format.

Output file that contains the event count dump for all the
events that are being monitored. This output report will
be in CSV format.

Set precision of the metrics reported. Default is 2.
Hide CPU topology section in the output report.
To force reset the MSRs

List supported raw PMC events

Print the name, description, and available unit masks for
the event.

Core affinity for launched application, comma separated
list of core ids.

Specify the working directory. Default will be the path of
the launched application

Print version

29

AMD uProf User Guide

AMDZ1

[AMD Public Use]

Following performance metrics are reported for AMD EPYC 2" generation processors:

Metric group Metric Description

ipc

fp

1l

Utilization (%)

Eff Freq

IPC

CPI

Branch Misprediction
Ratio

Retired SSE/AVX
Flops(GFLOPs)

Mixed SSE/AVX Stalls

IC(32B) Fetch Miss Ratio

DC Access

L2 Access

Percentage of time the Core was running — i.e.,
non-idle time

Core Effective Frequency (CEF) Core Effective
Frequency (without halted cycles) over the
sampling period, reported in GHz. The metric is
based on APERF and MPERF MSRs. MPERF is
incremented by the core at the PO state frequency
while the core is in CO state. APERF is
incremented in proportion to the actual number of
core cycles while the core is in CO state.

Instruction Per Cycle (IPC) is the average number
of instructions retired per cpu cycle. This is
measured using Core PMC events PMCx0CO0
[Retired Instructions] and PMCx076 [CPU
Clocks not Halted]. These PMC events are
counted in both OS and User mode.

Cycles Per Instruction (CPI) is the multiplicative
inverse of IPC metric. This is one of the basic
performance metrics indicating how cache misses,
branch mis-predictions, memory latencies and
other bottlenecks are affecting the execution of an
application. Lower CPI value is better.

The ration between mispredicted branches and
retired branch instructions.

The number of retired SSE/AVX FLOPs.

Mixed SSE/AVX stalls.
This metric is in per thousand instructions (PTI).
Instruction cache fetch miss ratio.

All data cache (DC) accesses. This metric is in per
thousand instructions (PTI)

All L2 cache accesses. This metric is in per
thousand instructions (PTI)

30

AMD uProf User Guide AMDA1

tib

[AMD Public Use]

L2 Access from IC Miss

L2 Access from DC Miss

L2 Access from HWPF

L2 Miss

L2 Miss from IC Miss

L2 Miss from DC Miss

L2 Miss from HWPF

L2 Hit

L2 Hit from IC Miss

L2 Hit from DC Miss

L2 Hit from HWPF

L1 ITLB Miss

L2 ITLB Miss

L2 cache accesses from IC miss. This metric is in
per thousand instructions (PTI)

L2 cache accesses from DC miss. This metric is in
per thousand instructions (PTI)

L2 cache accesses from L2 hardware prefetching.
This metric is in per thousand instructions (PTI)

All L2 cache misses. This metric is in per thousand
instructions (PTI)

L2 cache misses from IC miss. This metric is in per
thousand instructions (PTI)

L2 cache misses from DC miss. This metric is in
per thousand instructions (PTI)

L2 cache misses from L2 hardware prefetching.
This metric is in per thousand instructions (PTI)

All L2 cache hits. This metric is in per thousand
instructions (PTI)

L2 cache hits from IC miss. This metric is in per
thousand instructions (PTI)

L2 cache hits from DC miss. This metric is in per
thousand instructions (PTI)

L2 cache hits from L2 hardware prefetching. This
metric is in per thousand instructions (PTI)

The instruction fetches that misses in the L1
Instruction Translation Lookaside Buffer(ITLB)
but hit in the L2-ITLB plus the ITLB reloads
originating from page table walker. The table walk
requests are made for L1-1TLB miss and L2-ITLB
misses.

This metric is in Per-Thousand-Instructions (PTI)

Number of ITLB reloads from page table walker
due to L1-ITLB and L2-1TLB misses.

This metric is in Per-Thousand-Instructions (PTI)

31

AMD uProf User Guide AMDZ1

[AMD Public Use]

memory

xgmi

pcie

L1 DTLB Miss

L2 DTLB Miss

L3 Access

L3 Miss

Ave L3 Miss Latency
Mem Ch-A RdBw (GBY/s)

Mem Ch-A WrBw (GB/s)

xGMIO BW (GB/s)
xGMI1 BW (GB/s)
xGMI2 BW (GB/s)
xGMI3 BW (GB/s)
PCle0 (GBIs)
PClel (GBIs)
PCle2 (GBIs)

PCle3 (GB/s)

The number of L1 Data Translation Lookaside
Buffer (DTLB) misses from load store micro-ops.
This event counts both L2-DTLB hit and L2-
DTLB miss.

This metric is in Per-Thousand-Instructions (PTI)

The number of L2 Data Translation Lookaside
Buffer (DTLB) missed from load store micro-ops.

This metric is in Per-Thousand-Instructions (PTI)

L3 cache accesses. This metric is in per thousand
instructions (PTI)

L3 cache miss. This metric is in per thousand
instructions (PTI)

Average L3 miss latency in core cycles.

Memory Read and Write bandwidth in GB/s for all
the memory channels.

Approximate XxGMI outbound data bytes in GB/s
for all the remote links.

Approximate PCle bandwidth in GB/s.

32

AMD uProf User Guide

AMDZ1

[AMD Public Use]

Following performance metrics are reported for AMD EPYC 3rd generation processors:

Metric group Metric Description

ipc

fp

1l

Utilization (%)

Eff Freq

IPC

CPI

Branch Misprediction
Ratio

Retired SSE/AVX
Flops(GFLOPs)

Mixed SSE/AVX Stalls

IC(32B) Fetch Miss Ratio

Op Cache (64B) Fetch
Miss Ratio

Percentage of time the Core was running — i.e.,
non-idle time

Core Effective Frequency (CEF) Core Effective
Frequency (without halted cycles) over the
sampling period, reported in GHz. The metric is
based on APERF and MPERF MSRs. MPERF is
incremented by the core at the PO state frequency
while the core is in CO state. APERF is
incremented in proportion to the actual number of
core cycles while the core is in CO state.

Instruction Per Cycle (IPC) is the average number
of instructions retired per cpu cycle. This is
measured using Core PMC events PMCx0CO0
[Retired Instructions] and PMCx076 [CPU
Clocks not Halted]. These PMC events are
counted in both OS and User mode.

Cycles Per Instruction (CPI) is the multiplicative
inverse of IPC metric. This is one of the basic
performance metrics indicating how cache misses,
branch mis-predictions, memory latencies and
other bottlenecks are affecting the execution of an
application. Lower CPI value is better.

The ration between mispredicted branches and
retired branch instructions.

The number of retired SSE/AVX FLOPs.

Mixed SSE/AVX stalls.
This metric is in per thousand instructions (PTI).
Instruction cache fetch miss ratio.

Op Cache fetch miss ratio

33

AMD uProf User Guide AMDZ1

[AMD Public Use]

IC Access

IC Miss

DC Access

L2 Access

L2 Access from IC Miss

L2 Access from DC Miss

L2 Access from HWPF

L2 Miss

L2 Miss from IC Miss

L2 Miss from DC Miss

L2 Miss from HWPF

L2 Hit

L2 Hit from IC Miss

L2 Hit from DC Miss

L2 Hit from HWPF

All instruction cache accesses.

This metric is in per thousand instructions (PTI)
Instruction cache miss.

This metric is in per thousand instructions (PTI)

All data cache (DC) accesses. This metric is in per
thousand instructions (PTI)

All L2 cache accesses. This metric is in per
thousand instructions (PTI)

L2 cache accesses from IC miss. This metric is in
per thousand instructions (PTI)

L2 cache accesses from DC miss. This metric is in
per thousand instructions (PTI)

L2 cache accesses from L2 hardware prefetching.
This metric is in per thousand instructions (PTI)

All L2 cache misses. This metric is in per thousand
instructions (PTI)

L2 cache misses from IC miss. This metric is in per
thousand instructions (PTI)

L2 cache misses from DC miss. This metric is in
per thousand instructions (PTI)

L2 cache misses from L2 hardware prefetching.
This metric is in per thousand instructions (PTI)

All L2 cache hits. This metric is in per thousand
instructions (PTI)

L2 cache hits from IC miss. This metric is in per
thousand instructions (PTI)

L2 cache hits from DC miss. This metric is in per
thousand instructions (PTI)

L2 cache hits from L2 hardware prefetching. This
metric is in per thousand instructions (PTI)

34

AMD uProf User Guide AMDA1

tib

dc

[AMD Public Use]

L1 ITLB Miss

L2 ITLB Miss

L1 DTLB Miss

L2 DTLB Miss

All TLBs Flushed

DC Fills from Same CCX

DC Fills from different
CCX in same node

DC Fills from Local
Memory

The instruction fetches that misses in the L1
Instruction Translation Lookaside Buffer(ITLB)
but hit in the L2-ITLB plus the ITLB reloads
originating from page table walker. The table walk
requests are made for L1-1TLB miss and L2-ITLB
misses.

This metric is in Per-Thousand-Instructions (PTI)

Number of ITLB reloads from page table walker
due to L1-ITLB and L2-ITLB misses.

This metric is in Per-Thousand-Instructions (PTI)

The number of L1 Data Translation Lookaside
Buffer (DTLB) misses from load store micro-ops.
This event counts both L2-DTLB hit and L2-
DTLB miss.

This metric is in Per-Thousand-Instructions (PTI)

The number of L2 Data Translation Lookaside
Buffer (DTLB) missed from load store micro-ops.

This metric is in Per-Thousand-Instructions (PTI)
All TLBs flushed.
This metric is in Per-Thousand-Instructions (PTI).

The number of Data Cache (DC) fills from local
L2 cache to the core or different L2 cache in the
same CCX or L3 cache that belongs to the CCX.

This metric is in Per-Thousand-Instructions (PTI)

The number of Data Cache (DC) fills from cache
of different CCX in the same package (node).

This metric is in Per-Thousand-Instructions (PTI)

The number of Data Cache (DC) fills from DRAM
or 10 connected in the same package (node).

This metric is in Per-Thousand-Instructions (PTI)

35

AMD uProf User Guide AMDZ1

[AMD Public Use]

DC Fills from Remote
CCX Cache

DC Fills from Remote
Memory

All DC Fills

13 L3 Access

L3 Miss

Ave L3 Miss Latency
Memory Mem Ch-A RdBw (GBY/s)

Mem Ch-A WrBw (GB/s)

xgmi XGMIO0 BW (GBY/s)
XGMI1 BW (GBI/s)
XGMI2 BW (GBI/s)
XGMI3 BW (GBI/s)

Examples (Linux & FreeBSD)

The number of Data Cache (DC) fills from cache
of CCX in the different package (node).

This metric is in Per-Thousand-Instructions (PTI)

The number of Data Cache (DC) fills from DRAM
or 10 connected in the different package (node).

This metric is in Per-Thousand-Instructions (PTI)

The total number of Data Cache fills from all the
data sources.

This metric is in Per-Thousand-Instructions (PTI)

L3 cache accesses. This metric is in per thousand
instructions (PTI)

L3 cache miss. This metric is in per thousand
instructions (PTI)

Average L3 miss latency in core cycles.

Memory Read and Write bandwidth in GB/s for all
the memory channels.

Approximate XxGMI outbound data bytes in GB/s
for all the remote links.

e Collect IPC data from core 0 for the duration of 60 seconds:

./AMDuProfPcm -m ipc -c core=0 -d 60 -o /tmp/pcmdata.csv

e Collect IPC/L3 metrics for CCX=0 for the duration of 60 seconds:
./AMDuProfPcm -m ipc,13 -c ccx=0 -d 60 -o /tmp/pcmdata.csv

36

AMD uProf User Guide AMDA1

[AMD Public Use]

Collect only the memory bandwidth across all the UMCs for the duration of 60 seconds and save
the output in /tmp/pcmdata.csv file

./AMDuProfPcm -m memory -a -d 60 -o /tmp/pcmdata.csv

Collect IPC data for 60 seconds from all the cores:
./AMDuProfPcm -m ipc -a -d 60 -o /tmp/pcmdata.csv

Collect IPC data from core 0 and run the program in core 0:

./AMDuProfPcm -m ipc -c core=0 -o /tmp/pcmdata.csv —-- /usr/bin/taskset -c
0 myapp.exe

Collect IPC and data 12 data from core 0 and report the cumulative (not timeseries) and run the
program in core 0

./AMDuProfPcm -m ipc,12 -c core=0 -o /tmp/pcmdata.csv -C —-—
/usr/bin/taskset -c 0 myapp.exe

List the supported raw Core PMC events:

./AMDuProfPcm -1

Print the name, description, and the available unit masks for the specified event:

./AMDuProfPcm -z pmcx03

Examples (Windows)

Core Metrics

To get the list of supported metrics:
C:\> AMDuProfPcm.exe -h

Collect IPC data from core O for the duration of 30 seconds:

C:\> AMDuProfPcm.exe -m ipc -c core=0 -d 30 -o c:\tmp\pcmdata.csv

Collect IPC/L2 metrics for all the core in CCX=0 for the duration of 30 seconds:
C:\> AMDuProfPcm.exe -m ipc,12 -c ccx=0 -d 30 -o c:\tmp\pcmdata.csv

Collect IPC data for 30 seconds from all the cores in the system:
C:\> AMDuProfPcm.exe -m ipc -a -d 30 -o c:\tmp\pcmdata.csv

Collect IPC data from core 0 and run the program:

C:\> AMDuProfPcm.exe -m ipc -c core=0 -o c:\tmp\pcmdata.csv myapp.exe

Collect IPC and data |12 data from all the cores and report the aggregated data at the system and
package level

37

AMD uProf User Guide AMDZ1

[AMD Public Use]

C:\> AMDuProfPcm.exe -m ipc,12 -a -o c:\tmp\pcmdata.csv -d 30 -A
system, package

Collect IPC and data 12 data from all the cores in CCX=0 and report the cumulative (not
timeseries)

C:\> AMDuProfPcm.exe -m ipc,12 -c ccx=0 -o c:\tmp\pcmdata.csv -C -d 30

Collect IPC and data |2 data from all the cores and report the cumulative (not timeseries)
C:\> AMDuProfPcm.exe -m ipc,12 -a -o c:\tmp\pcmdata.csv -C -d 30

Collect IPC and data 12 data from all the cores and report the cumulative (not timeseries) and
aggregate at system and package level

C:\> AMDuProfPcm.exe -m ipc,12 -a -o c:\tmp\pcmdata.csv -C -A system, package
-d 30

L3 Metrics

Collect L3 data from ccx=0 for the duration of 30 seconds:
C:\> AMDuProfPcm.exe -m 13 -c ccx=0 -d 30 -o c:\tmp\pcmdata.csv

Collect L3 data from all the CCXs and report for the duration of 30 seconds:

C:\> AMDuProfPcm.exe -m 13 -a -d 30 -o c:\tmp\pcmdata.csv

Collect L3 data from all the CCXs and aggregate at system and package level and report for the
duration of 30 seconds:

C:\> AMDuProfPcm.exe -m 13 -a -d 30 -A system,package -o c:\tmp\pcmdata.csv

Collect L3 data from all the CCXs and aggregate at system and package level and report for the
duration of 30 seconds: Also report for individual CCXGs.

C:\> AMDuProfPcm.exe -m 13 -a -d 30 -A system,package,ccx -o
c:\tmp\pcmdata.csv

Collect L3 data from all the CCXs for the duration of 30 seconds and report the cumulative data
(no timeseries data)

C:\> AMDuProfPcm.exe -m 13 -a -d 30 -C -o c:\tmp\pcmdata.csv

Collect L3 data from all the CCXs and aggregate at system and package level and report
cumulative data (no timeseries data)

C:\> AMDuProfPcm.exe -m 13 -a -d 30 -A system,package -C -o
c:\tmp\pcmdata.csv

Collect IPC data from core O for the duration of 30 seconds:

C:\> AMDuProfPcm.exe -m ipc -c core=0 -d 30 -o c:\tmp\pcmdata.csv

Memory Bandwidth:

38

AMD uProf User Guide AMDA1

[AMD Public Use]

Report memory bandwidth for all the memory channels for the duration of 60 seconds and save
the output in c:\tmp\pcmdata.csv file

C:\> AMDuProfPcm.exe -m memory —-a -d 60 -o c:\tmp\pcmdata.csv

Report total memory bandwidth aggregated at the system level for the duration of 60 seconds
and save the output in c:\\tmp\pcmdata.csv file

C:\> AMDuProfPcm.exe -m memory —-a -d 60 -o c:\tmp\pcmdata.csv -A system

Report total memory bandwidth aggregated at the system level and also report for every memory
channels

C:\> AMDuProfPcm.exe -m memory -a -d 60 -o c:\tmp\pcmdata.csv -A
system, package

Report total memory bandwidth aggregated at the system level and also report for all the
available memory channels. To report cumulative metric value, instead of timeseries data:

C:\> AMDuProfPcm.exe -m memory —-a -d 60 -o c:\tmp\pcmdata.csv -C -A
system, package

Raw event count dump:

Monitor events from core 0 and dump the raw event counts for every sample in timeseries
manner. No metrics report will be generated

C:\> AMDuProfPcm.exe -m ipc -d 60 -D c:\tmp\pcmdata dump.csv

Monitor events from all the cores and dump the raw event counts for every sample in timeseries
manner. No metrics report will be generated

C:\> AMDuProfPcm.exe -m ipc -a -d 60 -D c:\tmp\pcmdata dump.csv

Custom config file:

A sample config XM file is available at <uprof-install-dir>\bin\Data\Config\SamplePcm-
core.conf. This file can be copied and modified to specific user-specific interesting events and
formula to compute metrics. All the metrics defined in that file, will be monitored, and reported.

C:\> AMDuProfPcm.exe -i SamplePcm-core.conf -a -d 60 -o c:\tmp\pcmdata.csv

C:\> AMDuProfPcm.exe -i SamplePcm-core-13-df.conf -a -d 60 -o
c:\tmp\pcmdata.csv

Miscellaneous:

List the supported raw Core PMC events:
C:\> AMDuProfPcm.exe -1

Print the name, description, and the available unit masks for the specified event:

C:\> AMDuProfPcm.exe -z pmcx03

39

AMD uProf User Guide AMDZ1

[AMD Public Use]

Chapter 4 Getting started with AMDuProf
GUI

4.1 User Interface

AMDuProf GUI provides a visual interface to profile and analyze the performance data. It has
various pages, and each page has several sub windows. The pages can be navigated through the top
horizontal navigation bar. When a page is selected, its sub windows will be listed in the leftmost
vertical pane.

AMDuProf - [C:/Users/gnanam/A...-16-2021_13-43-18.db]

f PROFILE SUMMARY ANALYZE SOURCES X Lo

Welcome to AMD uProf!

Recent Session(s)

Import Session Start Here Quick Links

About Profile an Application? See what's keeping your System busy

Profile running Process(es)? 3

Profile entire System? This starts a system wide Time based profile.

2
Import existing Session? . :

See what's guzzling power in your System

This starts a system wide power profile.

Recently Used Configuration(s) AMD uProf Resources

16 FEB 13:43 LESREME YL ETNAIR] [Session(s) Generated
27 AN 15:16 RSN SETR YR ENERIE] [Session(s) Generated:

) I AMD uProf User Guide
)]

PLIEURER P CUSTOM Launch [ScimarkStable] [RS S NI TENE)| AMDuProf User Guide [PDF]
) 1

Power Profile APl Docs [PDF
23)AN 14:31 IRy o] "INETT YT BB [Session(s) Generated

See Full List... Visit AMD uProf Page

See the latest AMD uProf release. File a bug.

. See more information about the product and tutorials.
Recently Opened Session(s)

RLZRETEN ASSESS | Launched [Scimarkstable] [CISO T NesteenverCuruiioms
PP JLUREREIN ASSESS Launched [Scimarkstable] JITIl-IELB] AMD Server Guru Forums exist to serve the EPYC
PLILUREXVIN CUSTOM Launched [Scimarkstable] BiZi[qeleenn| community for all discussions on performance tuning.

AP ALUREF I CUSTOM Launched [ScimarkStable] WiZHqel i aN|

See Full List...

AMDuProf GUI — user interface

1. The menu names in the horizontal bar like HOME, PROFILE, SUMMARY, ANALYZE are
called pages

2. Each page will have its sub windows listed in the leftmost vertical pane. For example, HOME
page has various windows like Welcome, Recent Session(s), Import Session etc.,

40

AMD uProf User Guide AMDA1

[AMD Public Use]

3. Each window will have various sections. These sections are used to specify various inputs
required for a profile run, display the profile data for analyze, buttons and links to navigate to
associated sections. Here in the Welcome window, Quick Links section has two links that lets
you start a profile session with minimal configuration steps.

4.2 Launching GUI
To launch the AMDuProf GUI program:

Windows

Launch GUI from C:\Program Files\AMD\AMDuProf\bin\AMDuProf.exe Or
from the Desktop shortcut.

Linux

Launch GUI from /opt/AMDuProf X.Y-7ZZzZ/AMDuProf binary.

On launching the GUI, you will be greeted with the Welcome window. This window has many
sections — quick links to start a profile run, help links to configure a new profile and a list of recently
opened profiles.

Pal AMDuProf

22 PROFILE o

Welcome to AMD uProf!

Recent Session(s)

a
Import Session Start Here Quick Links

1
About Profile an Application?

Profile running Process(es)?
Profile entire System? This starts a system wide Time based profile.

See what's keeping your System busy

Import existing Session? .)
See what's guzzling power in your System

This starts a system wide power profile.

Recently Used Configuration(s) AMD uProf Resources
16 FEB 13:43 NS SPRUETTT Jela FTIFIIE] [Session(s) Generated] AMD uProf User Guide
PYNTVRERIIM ASSESS Launch [ScimarkStable] [Session(s) Generated]
’ = . AMDuProf User Guide [PDE.
25JAN 13:02 Uy (e] " INEITTOYELTENSEIAL [Session(s) Generated] Power Profile APl Docs [PD
23JAN 14:31 Ry (o] VINFEITT YT ENSEIEL [Session(s) Generated]
See Full List... Visit AMD uProf Page

See the latest AMD uProf release. File a bug.
See more information about the product and tutorials.

Recently Opened Session(s)

16 FEB 13:03 [Edic Options Visit Server Guru Forums
27 JAN 15:19 [Edit Options
25 JAN 13:02 [Edit Options
17 JAN 13:45 [Edit Options

See Full List...

AMDuProf Welcome window

AMD Server Guru Forums exist to serve the EPYC
community for all discussions on performance tuning.

41

AMD uProf User Guide AMDZ1

[AMD Public Use]

1. Start Here section provides quick links to start profile for the various profile targets.

2. Recently used profile configurations are listed in Recently Used Configuration(s) section. User
can click on this configuration to reuse that profile configuration for subsequent profiling.

3. Recently opened profile sessions are listed in Recently Opened Session(s) section. User can
click on any one of the sessions to load the corresponding profile data for further analysis.

4. Quick Links section contains two entries which lets you to start profiles with minimal
configuration.

a. Clicking See what’s keeping your System busy will start a system-wide time-based
profiling until stopped by you and then display the collected data.

b. Clicking See what’s guzzling power in your System will take you to a section where
various power and thermal related counters can be selected and will present a live view
of the data through graphs.

5. AMD uProf Resources section provides links to uProf user guide and power profiler API guide
and AMD server community forum for discussions on profiling and performance tuning.

4.3 Configure a profile

To perform a collect run, first you should configure the profile by specifying the:
1. Profile target
2. Profile type
a. What profile data should be collected (CPU or Power performance data)
b. Monitoring events - how the data should be collected
c. Additional profile data (if needed) - callstack samples, profile scheduling etc.,

This is called profile configuration - which identifies all the information used to perform a collect
measurement. Note: The additional profile data to be collected, depends on the selected profile type.

4.3.1 Select Profile Target

To start a profile, either click the PROFILE page at the top navigation bar or Profile an
Application? link in HOME page’s Welcome window. This will navigate to the Start Profiling
window. You will see Select Profile Target fragment in the Start Profiling window.

Different types of profile target can be selected from the Select Profile Target dropdown.

42

AMD uProf User Guide AMDA1

[AMD Public Use]

AMDuProf - [C:/Users/amd/AMDu...-17-2021_08-43-18.db]

f PROFILE SUMMARY ANALYZE

Select Profile Target Application =
Saved Configurations

Launch an application by specifying the path to the executable. Note that you can optionally specify program options, environment variables
required and the working directory. The working directorty defaults to the same location where the executable is located unless specified by you.
Despite launching application, you can still collect system wide data but core affinity will not work however. Optionally you can specify whether to
terminate the application after profiling or not.

Application Path C:\Users\amd\SamplePrograms\ScimarkStable\Release\ScimarkStable.exe X Browse

Application Options

Working Directory C:\Users\amd\SamplePrograms\ScimarkStable\Release X Browse
Environment Variables Enter environment variable in <name==<value> format... Add
Collect System Wide Data (o J

Terminate Application After Profiling @

Core Affinity 0.1,2-4

W IBS is disabled Config Name AMDuProf-TBP-ScimarkStable(3) X Reset Name Previous Next _-

Start Profiling — Select Profile Target

Application: Select this target when you want to launch an application and profile it (or launch and
do a system-wide profile). The only compulsory option is a valid path to the executable. (By default,
the path to the executable becomes the working directory unless you specify a path).

System: Select this if you do not wish to launch any application but perform either a system-wide
profile or profile specific set of cores.

Process(es): Select this if you want to profile an application/process which is already running. This
will bring up a process table which can be refreshed. Selecting any one of the process from the table
is mandatory to start profile.

Once profile target is selected and configured with valid data, the Next button will be enabled to go
the next fragment of Start Profiling. Note that specifying any invalid option will disable the Next
button.

4.3.2 Select Profile Type

Once profile target is selected and configured, clicking Next button will take you to the Select
Profile Type fragment.

43

AMD uProf User Guide AMDZ1

[AMD Public Use]

f

AMDuProf - [C/Usersfamd/AMDu...-17-2021_08-43-18.db]

Saved Configurations

—
w IBSis disabled Config Name | AMDuProf-EBP-ScimarkStable X I Reset Name Previous MNext _ -

PROFILE SUMMARY ANALYZE

Select Profile Type ceuProfie -

Tz e Use this configuration to get an overall assessment of performance and to find

Investigate Instruction Access potential issues for investigation.

Event Mask Sampling Period = User Mode | Kernel Mode | Callstack

Investigate Data Access
[Oxc0 : 0x0] RETIRED_INST 0x0 250000 Yes Yes No

Investigate Branching [076:: 0x0] CYCLES_NOT_IN_HALT | 0x0 250000 Yes Yes No

Assess Performance (Extended) [0xc2 : 0x0] RETIRED_BR_INST 0x0 I 3 I 50000 Yes Yes No
[0%c3 : 0x0] RETIRED_BR_INST_MISP 0x0 50000 Yes Yes No

Assess Performance [0%40] DC_ACCESSES 0x0 250000 Yes Yes No

Custom Profile [0x41] LS_MAB_ALLOCATES_BY_TYPE | 0xb 50000 Yes Yes No

[0x47 : 0x0] MISALIGNED_LOADS 0x0 50000 Yes Yes No

The number of instructions retired from execution. This count includes exceptions and interrupts.

Each exception or interrupt is counted as one instruction. Modify Events

4

Advanced Options EJ

)

Start Profiling — Select Profile Type

This fragment lets you to decide the type of profile data collected and how the data should be
collected. You can select the profile type based on the performance analysis that you intend to
perform. Refer this section for details on profile types. In the above figure:

1.
2.

Select Profile Type dropdown lists all the supported profile types

Once you select a profile type, the left vertical pane within this window, will list the options
corresponding to the selected profile type. Here, For CPU Profile type, all the available
predefined sampling configurations will be listed.

This section lists all the sampling events that are monitored in the selected predefined sampling
configuration. Each entry represents a sampling configuration (Unit mask, Sampling interval,
OS & User mode) for that event. You can modify these event attributes by clicking Modify
Events button and as well add new events and/or remove events

Clicking Advanced Options button will take you to the Advanced Options fragment to set
other options like the Call Stack Options, Profile Scheduling, Sources, and Symbols etc.,

This profile configuration details are persistent and saved by the tool with a name — here it is
AMDuProf-EBP-ScimarkStable. This name is user definable and the same configuration can be

44

AMD uProf User Guide AMDA1

[AMD Public Use]

reused later by clinking PROFILE - Saved Configurations and then selecting from the list
of saved configurations.

The Next and Previous buttons are available to navigate to various fragments within the Start
Profiling window.

4.3.3 Advanced Options

Advanced options

Clicking Advanced Options button in Select Profile Type fragment will take you to the Advanced
Options fragment to set the following options.

1.

Enable Thread Concurrency Option to collect the profile data to show Thread Concurrency
Chart. (Windows only option)

Call Stack Options to enable callstack sample data collection. This profile data is used to show
Flame Graph and Call Graph views.

Profile Scheduling to schedule the profile data collection.

The Next and Previous buttons are available to navigate to various fragments within the Start
Profiling window.

Sources line-edit to specify the path(s) to locate the source files of the profiled application.

Symbols to specify the Symbols servers (Windows only) and to specify the path(s) to locate the
symbol files of the profiled application.

45

AMD uProf User Guide AMDZ1
[AMD Public Use]

AMDuProf - [C/Users/amd/AMD

u..-17-2021_08-43-18.db]

PROFILE SUMMARY ANALYZE

Advanced Options

Saved Configurations

Enable this switch to view the Thread Concurrency Graph which shows the number of threads running concurrently for the time elapsed(in
seconds) for a given process.

Enable Thread Concurrency [o]

Enable Thread Name Collection [o]

Specify call stack settings which will collect data regarding function call stack. FPO is related to Frame Pointer Omission which when enabled leads to
better call stack reconstruction and better call graph views.

Enable FPO (o]

Call Stack Collection User and Kernel Mode.

Call Stack Depth - 16 +1

Enable start Paused switch to launch the application (if specified) but not collect the profile data or if you are using Profile APl instrumentation then you can spe
cify that or specify a start delay which is launch the application (if specified) but start the profiling only after the delay period. Optionally you can specify the pro
file duration (in seconds) after which the profiling will be stopped.(StartPaused, Delay and Instrumentation not supported for Power Profiling)

Enable start paused (e]

Are you using Profile Instrumentation API? (e]

v

W 1BS is disabled Config Name = AMDuProf-EBP-ScimarkStable X Reset Name Previous Next _ -

Start Profiling — Advanced Options

AMDuProf - [C/Users/amd/AMDu..-17-2021_08-43-18.db]

f PROFILE SUMMARY ANALYZE

—A

Saved Confi i Enable start Paused switch to launch the application (if specified) but not collect the profile data or if you are using Profile APl instrumentation then you can spe

kg (3 I E e cify that or specify a start delay which is launch the application (if specified) but start the profiling only after the delay period. Optionally you can specify the pro
file duration (in seconds) after which the profiling will be stopped.(StartPaused, Delay and Instrumentation not supported for Power Profiling)
Enable start paused

Are you using Profile Instrumentation API? a

Start Profiling After - 0 .
Profile Duration = 0 '

Provide extra options such as Sources directory (the sources directoryfor the application being profiled which enables source-level attribution of the code whic
h can be used to identify bottlenecks)

Root to Sources Enter path to root of the sources (Note: This leads to recursive search from root for sources) Browse

Sources Directory

C\Users\amd\SamplePrograms\ScimarkStable

Use these Symbol Configuration settings to configure symbol and server locations. Press enter to add multiple symbol file locations.
Use Microsoft Symbol Server(s) @D

Symbols Download Path

C:\Users\amd\Downloads\AMDuProf\Symbols X Browse

v

W IBS is disabled Config Name AMDuProf-EBP-ScimarkStable X Reset Name Previous Next _-

Start Profiling — Advanced Options

46

AMD uProf User Guide AMDA1

[AMD Public Use]

434 Start Profile

Once all the options are set correctly, the Start Profile button at the bottom will be enabled and you
can click on it to start the profile to collect the profile data. After the profile initialization you will
see:

Bl AMDuProf - [C:/Users/amd/AMDu...-17-2021_08-43-18.db] - O X

L PROFILE SUMMARY ANALYZE

00:00:12

Collecting data...

Cancel Pause Stop

HEE
Profile data collection

1. The running timer displaying the number of seconds passed starting from zero.
2. When the profiling is in progress, the user can

= Stop the profiling by clicking Stop button.

= Cancel the profiling by clicking Cancel button, which will take you back to Select
Profile Target fragment of PROFILE.

= Pause the profiling by clicking Pause button. When the profile is paused, the profile data
will not be collected, and the user can resume profiling by clicking Resume button.

47

AMD uProf User Guide AMDZ1

[AMD Public Use]

4.4 Analyze the profile data

When the profiling stopped, the collected raw profile data will be processed automatically, and you
can analyze the profile data through various Ul sections to identify the potential performance
bottlenecks:

« SUMMARY page to look at overview of the hotspots for the profile session.

e ANALYZE page to examine the profile data at various granularities.

e SOURCES page to examine the data at source line and assembly level.

« MEMORY page to examine the cache-line data for potential false cache sharing.
e HPC page to examine the OpenMP tracing data for potential load imbalance issue.

The sections available depends on the profile type. The CPU Profile and Power Application
Analysis types will have SUMMARY, ANALYZE, MEMORY, HPC and SOURCES pages to
analyze the data.

4.4.1 Overview of performance hotspots

Once the translation completes, the SUMMARY page will be populated with the profile data and
Hot Spots window will be presented. This SUMMARY page gives an overview of the hot spots for
the profile session through various windows like Hot Spots and Session Information.

In this Hot Spots window, hotspots will be shown for functions, modules, process, and threads.
Process and Threads will only be shown if there are more than one.

48

AMD uProf User Guide AMDA1

[AMD Public Use]

AMDuPer - [C/Users/amd/AMDu...-17-2021_09-20-01.db]

f PROFILE SUMMARY ANALYZE

Profile Duration : 27s CYCLES_NOT_IN_HALT v

Thread Concurrency ~
Hot Functions

Session Information
1

CYCLES NOT_IN_HALT CYCLES NOT IN_HALT
[sample count] [event count]

Function

‘SparseCompRow_matmult 80191 20047750000

LU_factor 59477 14869250000

SOR_execute 58004 14501000000

Random_nextDouble 49498 12374500000

FFT_transform_internal 37496 9374000000

Others 53030 13257500000

Hot Processes

CYCLES_NOT_IN_HALT

Process [sample count]

AL p! il i exe (PID 16264) = 336253

C:\Windows\System32\conhost.exe (PID 9404) 1431

Others 12

SUMMARY - Hot Spots window

In the above Hot Spots window:
1. Lists the top 5 hottest functions, Processes, Modules and Threads for the selected event.

2. The Hot Functions pie chart is interactive in nature - i.e., you can click on any section and the
corresponding function's source will open in a separate tab in SOURCES page

3. The hotspots are shown per event and the monitored event can be selected from dropdown in
top right corner. Changing it to any other event will update the hotspot data accordingly.

4.4.2 Thread Concurrency Graph

Clicking SUMMARY - Thread Concurrency will show the below graph to analyze the thread
concurrency of the profiled application. Note: This is Windows OS only feature.

49

AMD uProf User Guide AMDZ1

[AMD Public Use]

AMDuProf - [C;/Users/amd/AMDu...-17-2021_09-20-01.db]

fr

SUMMARY

PROFILE ANALYZE

Hot Spots Thread Concurrency Graph

Display data as Percentage | ™ Process: 16264 '™

Session Information

100

Elapsed Time (in % of total seconds)

L L L L L
0 1 2 3 4 5 6 7 8

Thread Count

e

! |/
SUMMARY - Thread Concurrency Graph

4.4.3 Function Hotspots

Click on the ANALYZE button on the top horizontal navigation bar to go Function HotSpots
window, which displays the hot functions across all the profiled processes and load modules. This
window contains the following:

1. The Functions table lists the hot functions - the IP samples are aggregated and attributed at the
function-level granularity.

a) Double click on a function entry to navigate to the corresponding SOURCE view of that
function.
b) Right click will list the following context menu-items
= “Copy selected rows(s)” to copy the highlighted row to clipboard.
= “Copy all rows” to copy all the rows to clipboard.

2. Filters and Options pane lets you filter the profile data displayed by various controls.

e The View controls the counters that are displayed. The relevant counters and their derived
metrics are grouped in predefined views. The user can select the views from the View drop-
down. Refer this section for more details on predefined View configurations.

e The Show Values By dropdown can be used to display the counter values either as

50

AMD uProf User Guide AMDA1

[AMD Public Use]

= "Sample Count” is the number of samples attributed to a function.
= “Event Count” is the product of sample count and sampling interval.
= “Percentage” is the percentage of samples collected for a function.
e The System Modules option can be used to either exclude or include the profile data
attributed to system modules.

AMDuProf - [C;/Users/amd/AMDu...-17-2021_09-20-01.db]

1.3 PROFILE SUMMARY ANALYZE
P Filters and QOptions

Metrics View All Data v Show Values By Sample Count '* System Modules: = Exclude m

Flame Graph Search Type function name... m Enable Regex Search (I Go Back

call Graph Functions Modules CYCLES_ NOT_IN_HALT ¥ | DC ACCESSES MISALIGNED_LOADS | RETIRED_INST RETIRED BR | ™
SparseCompRow_matmult ScimarkStable.exe 80191 46099 11 206326 9t
LU_factor ScimarkStable.exe 59477 35698 29 126296 3¢
SOR_execute E— ScimarkStable.exe 58004 7498 29816 ¢
Randem_nextDouble (] ScimarkStable.exe 49498 17964 44922 4
FFT_transform_internal ScimarkStable.exe 37496 14536 89489 20
MonteCarlo_integrate ScimarkStable.exe 27890 10107 25188 2t
KiDpcinterruptBypass ntoskrnl.exe 9409 1128 3247 £
FFT_bitreverse ScimarkStable.exe 5746 1722 11375 1C
KiDeliverApc ntoskrnl.exe 2823 174 325
Array2D_double_copy ScimarkStable.exe 1230 682 2200 1
KiApcinterrupt ntoskrnl.exe 1179
FFT_inverse ScimarkStable.exe 894 467 2103
_sin_pentium4 msverg0.dll 554 267 1361
_Clsin msver80.dil 274 127 706
KilnsertQueueDpc ntoskrnl.exe 166 42
HalRequestSoftwarelnterrupt hal.dll 113 92 319
guard_dispatch_icall ntoskrnl.exe 11
KiExecuteAllDpcs ntoskrnl.exe 92
KiDispatchinterruptContinue ntoskrnl.exe 89
|2:r-\...|.r. SP P [N R SR P R e an > s

1
ANALYZE - Function HotSpots

3. The search text box lets you search a function name in the Functions table. Only the selected
function will be displayed in the Functions table.

a) Click Go Back button to go back to the Functions table that list all the functions.
b) Turn on Enable Regex Search switch to search with regular expression matching.

Not all entries will be loaded for a profile. To load more than the default number of entries, click
the Load more functions button on the top right corner to display more data. The columns can be
sorted as well by clicking on the column headers.

4.4.4 Process and Functions

Clicking ANALYZE -> Metrics will display the profile data table at various program unit
granularities - Process, Load Modules, Threads and Functions. The window contains data in two
different formats:

51

AMD uProf User Guide AMDZ1

[AMD Public Use]

AMDuProf - [C/Users/amd/AMDu...-17-2021_09-20-01.db]

H

PROFILE SUMMARY ANALYZE

Function HotSpots P Filters and Options
View All Data ¥ GroupBy Process ™ ShowValuesBy Sample Count '® System Modules: = Exclude m
Ehre Graph Process CYCLES_NOT_IN_HALT ¥ | DC_ACCESSES MISALIGNED_LOADS RETIRED_INST RETIRED_BR_INST RETIRED BR_INS ™
~ ScimarkStable.exe (PID 16264) 336253 136636 47 544004 254836 77
Call Graph v Load Modules
320462 134779 e 537769 248394
[Sys] ntoskrnl.exe 14598 1348 3745 5706 1
[Sys] msvcr80.dll M 840 399 2092 581
[Sys] hal.dll — 154, 98 341 115
[Sys] amdppm.sys 28
[Sys] ntdil.dll 26 13 13 .
< >
Search: | Type function name... Reset -
Functions (for ScimarkStable.exe) CYCLES_NOT_IN_HALT ¥ | DC_ACCESSES MISALIGNED_LOADS RETIRED_INST RETIRED_BR_INST RETIRED_BR_IN! ~
SparseCompRow_matmult 80191 46099 "1 206326 95350
LU_factor 59477 35698 29 126296 38079 3
SOR_execute m 58004 7498 . 29816 4307
Random_nextDouble = 49498 17964 | El 44922 49764 41
FFT_transform_internal 37496 14536 89489 20211 1
MonteCarlo_integrate 27830 10107 25188 28219 23
FFT_bitreverse 5746 1722 11375 10753 2
Array2D_double_copy 1230 682 2200 1042
FFT_inverse 894 467 2103 657)
< >

.|
ANALYZE page - Metrics window

1. The upper tree represents samples grouped by Process. The tree can be expanded to see the child
entries for each parent (i.e., for a process). The Load Modules and Threads are child entries
for the selected process entry.

a) Right click will list the following context menu-items
= “Expand All Entries” to list the modules and threads of all the processes.

= “Collapse All Entries” to list only the top-level entries.
= “Copy selected rows(s)” to copy the highlighted row to clipboard.

“Copy all rows” to copy all the rows to clipboard.

2. The lower Functions table contains samples attributed to corresponding functions. The function
entries depend on what is selected in the upper tree. For more specific data, you can select a

child entry from the upper tree and the corresponding function data will be updated in the lower
tree.

a) Double click on a function entry to navigate to the corresponding SOURCE view of that
function.

b) Right click will list the following context menu-items
= “Copy selected rows(s)” to copy the highlighted row to clipboard.

52

AMD uProf User Guide AMDA1

[AMD Public Use]

= “Copy all rows” to copy all the rows to clipboard.
= “Open Call Graph” to navigate to the corresponding function entry in Call
Graph section.

. The search text box lets you search a function name in the Functions table. Only the selected
function will be displayed in the Functions table.

a) Click Reset button to clear the search text box.
b) Click Go Back button to go back to the Functions table that list all the functions.

Filters and Options pane lets you filter the profile data displayed by various controls.

The View controls the counters that are displayed. The relevant counters and their derived
metrics are grouped in predefined views. The user can select the views from the View drop-
down. Refer this section for more details on predefined View configurations.
The Group By dropdown is used to group the data by Process, Module and Thread. By
default, the sample data is grouped-by Process
The Show Values By dropdown can be used to display the counter values either as

= "Sample Count” is the number of samples attributed to a function.

= “Event Count” is the product of sample count and sampling interval.

= “Percentage” is the percentage of samples collected for a function.
The System Modules option can be used to either exclude or include the profile data
attributed to system modules.

Confidence level - The metrics that cannot be calculated reliably due to low number of samples
collected for a program unit will be greyed out.

4.4.5

Not all entries will be loaded for a profile. To load more than the default number of entries, click
the Load more functions or Load more profile data buttons on the top right corner to fetch more
data. The columns can be sorted as well by clicking on the column headers.

Source and Assembly

Double-clicking any entry on the Functions table in Metrics window will load the source tab for
that function in SOURCES page. If the GUI can find the path to the source file for that function,
then it will try to open the file, failing which you will be prompted to locate it.

Following section are there in the source tab:

1. The source lines of the selected function are listed, and the corresponding metrics are populated

in various columns against each source line. If no samples are collected when a source line was
executed, the metrics column will be empty.

53

AMD uProf User Guide AMDZ1

[AMD Public Use]

2. The assembly instruction of the corresponding highlighted source line. The tree will also show
the offset for each assembly instruction along with metrics.

3. Heatmap — overview of the hotspots at source level.

AMDuPrOf— [C:/Users/amd/AMDu...-17-2021_09-20-01.db] - O X

f PROFILE SUMMARY ANALYZE SOURCES

SparseCompRow_matmult X
P Filters
PID: [16264] ScimarkStable.exe ™ TID: TID[8300] ¥ View AllData v Show Values By Sample Count [¥ Show Assembly @D
A Line Source CYCLES_NOT_IN_HALT | DC ACCESSES | MISALIGNED_LOADS | RETIRED_INST ~
55 double sum = 8.8;
56 int rowR = row[r]; rl_]
57 int rowRpl = row[r+l1]; — 20 15
58 for (i=rowR; i<rowRpl; i++) 8744 5116 22562
sum += x[col[i]] * val[i]; 46354 2 117893
60 y[r] = sum; 25071 14530 65851
61 3
62 #endif
63 ¥
Aa 1 M
< >
[zl Address Line Code Bytes Assembly CYCLES_NOT_IN_HALT | DC_ACCESSES MISALIGNED_LOADS | RETIRED_INST ~
Ox4023d5 58 8D 0480 lea eax, [eax+esi*4]
@x40823d8 59 8B 69 F8 mov ebp, [ecx-88h] 15 38
ox4023db 59 DD 04 EF f1d quord [edi+ebp*8] [2] a8 10 33
ox4023de 59 88 60 FC mov ebp, [ecx-04h] — 60 27 87
@x4023e1 59 DC4AFD fmul qword [edx-18h] 22 30
Bx4023ed 59 83ci 10 add ecx,10h 4221 2518 11085
0x4023e7 59 83cz20 add edx,2@h 14 27
0x4023ea 59 83EEQ1 sub esi,@1h 33 12 47
Ox4023ed 59 DEC1 faddp sti,st
= @x4023ef 59 DD 04 EF fld gword [edi+ebp*8] 151 58 283
< >

SOURCES - source and assembly window

4. Filters pane lets you filter the profile data by providing the following options.

e The View controls the counters that are displayed. The relevant counters and their derived
metrics are grouped in predefined views. The user can select it from the View drop-down.
Refer this section for more details on predefined View configurations.

e The PID drop-down lists all the processes on which this selected function is executed and
has samples

e The TID drop-down lists all the threads on which this selected function is executed and has
samples

e The Show Values By dropdown can be used to display the counter values either as

= "Sample Count” is the number of samples attributed to a function.
= “Event Count” is the product of sample count and sampling interval.
= “Percentage” is the percentage of samples collected for a function.

54

AMD uProf User Guide AMDA1

[AMD Public Use]

For multi-threaded or multi-process applications, if a function has been executed from multiple
threads or processes, then each of them will be listed in the PID and TID dropdowns in Filters
pane. Changing them will update the profile data for that selection. By default, profile data for the
selected function, aggregated across all processes and all threads will be shown.

Note: If the source file cannot be located or opened, only disassembly will be displayed.
4.4.6 Flame Graph

Flame graph is a visualization of sampled callstack traces to quickly identify the hottest code
execution paths. Clicking ANALYZE - Flame Graph will navigate to this window.

AMDuProf - [C:/Users/amd/AMDu...-18-2021_11-58-39.db] - O X
f PROFILE SUMMARY ANALYZE
Function HotSpots Counters: CPU TIME ¥ Process IDs: [16180] ScimarkStable.exe[® | Zoom Entire Graph Search function name... Clear
Metrics Click on any block in Flame Graph to focus on it's children.
Call Graph
Random_nextDouble
MonteCarlo_integrate LU factor SOR_execute SparseCompRow_matmult FFT_transfo... FFT_transfo...
kernel_measureMonteCarlo kernel measureLU kernel measureSOR kernel measureSparseM... FFT inverse FFT transfo...
main kernel_measureFFT

Flame graph window
The Flamegraph section has:

1. The x-axis of the Flamegraph shows the callstack profile and the y-axis shows the stack depth.
It is not plotted based on passage of time. Each cell represents a stack frame and if a frame were
present more often in the callstack samples, the cell would be wider.

a) Module wise coloring of the cells.

b) Clicking on a cell will zoom only that cell and its children. Use Reset Zoom button
visualize the entire graph.

¢) Right click on a cell will list the following context menu-items

55

AMD uProf User Guide

AMDZ1

[AMD Public Use]

= “Copy Function Data” to copy the function names and its metrics to clipboard.
= “Open Source View” to navigate to the source tab of that function.
d) Hovering the mouse over a cell will display the tooltip showing the inclusive and

exclusive number of samples of that function.

2. Following options are available at the top of this section.

e Click Zoom Entire Graph button for better zooming experience.

e Searching for particular function will highlight that function cells in all the Flamegraph.

e The Process IDs dropdown lists all the processes for which callstack samples are collected.
Changing the process will plot the Flamegraph for that particular process.
e The Counters dropdown lists all the counters for which callstack samples are collected.
Changing the counter will plot the Flamegraph for that particular counter.

4.4.7

Callgraph

Clicking ANALYZE -» Call Graph will navigate to the callgraph windows. This is constructed
using the callstack samples and offers a butterfly view to analyze the hot call-paths.

AMDuProf - [C:/Users/amd/AMDu...-18-2021_11-58-39.db]

f PROFILE

SUMMARY ANALYZE

Function HotSpots
Metrics

Flame Graph

Counters: CPU_TIME

W | Process IDs: [16180] ScimarkStable.exe ™

Function

‘ Inclusive Sample (s) | Exclusive Sample (s) ‘

Module

Source File

main
kernel_measureMonteCarlo

MonteCarlo_integrate

34.97
11.40
11.40

e

3.94

ScimarkStable.exe
ScimarkStable.exe
ScimarkStable.exe

ScimarkStable.exe

c:\codeanalyst\tests\scimarkstable\scimark2.c

c:\codeanalystitests\scimarkstable\kernel.c

c\codeanalystitests\scimarkstable\montecarlo.c

c\codeanalyst\tests\scimarkstable\kernel.c

LU_factor 8.73 8.73| ScimarkStable.exe | c\codeanalystitests\scimarkstable\lu.c
kernel_measureSOR 8.55 ScimarkStable.exe | c\codeanalyst\tests\scimarkstable\kernel.c
SOR_execute 8.55 8.55 ScimarkStable.exe | c\codeanalystitests\scimarkstable\sor.c
Random_nextDouble 7.47 7.47| ScimarkStable.exe | c\codeanalystitests\scimarkstable\random.c
kernel_measureFFT 6.21 ScimarkStable.exe | c\codeanalystitests\scimarkstable\kernel.c
FFT_transform_internal 6.07 5.23| ScimarkStable.exe | c\codeanalystitests\scimarkstable\fft.c ©
Caller(s) of Function: kernel_measurelLU Callee(s) of Function: kernel_measureLU
Parents | Sample | % ‘ Module Self + Children ‘ Sample ‘ % ‘ Module

main

8.92| 100.00% Scimarkstable.exe

LU_factor

Array2D_double_copy

8.73| 97.86% ScimarkStable.exe

0.19| 2.14% ScimarkStable.exe

|
ANALYZE - Call graph window

56

AMD uProf User Guide AMDA1

[AMD Public Use]

1. The Function table lists all the functions with inclusive and excusive samples.

a) Double clicking on a function entry having exclusive samples will navigate to the
corresponding function source view.
b) Right click on an entry will list the following context menu-items
= “Copy Rows(s)” to copy the highlighted row to clipboard.
= “Copy All Rows” to copy all the rows to clipboard.
c) Clicking on function will show its Caller and Callee functions in the butterfly view.
2. Lists all the parents of the function selected in the Function table.
a) Right click on an entry will list the following context menu-items
= “Go to Caller/Callee” to show the parent and children of this function.
= “Copy Current Rows” to copy the highlighted row to clipboard.
= “Copy All Row(s)” to copy all the rows to clipboard.
3. Lists all the children of the function selected in the Function table.
a) Right click on an entry will list the following context menu-items
= “Go to Caller/Callee” to show the parent and children of that function.
= “Copy Current Rows” to copy the highlighted row to clipboard.
= “Copy All Row(s)” to copy all the rows to clipboard.

4. Options

e The Process IDs dropdown lists all the processes for which callstack samples are collected.
Changing the process will show the callgraph for that particular process.

e The Counters dropdown lists all the counters for which callstack samples are collected.
Changing the counter will show the callgraph for that particular counter.

4.5 Importing Profile Databases

To analyze a profile database generated using CLI, clickihg HOME -> Import Session will
navigate to Import Profile Session window and you will see the following window.

This can be used to import a raw profile data file collected using the CLI or the processed data saved
in the profile database as well.
e The path should be specified in the Profile Data File input text box.

e Binary Path: If the profile run is performed in a system and the corresponding raw profile data
is imported in another system, then you may need to specify the path(s) in which binary files
can be located.

e Source Path: Specify the source path(s) from where the sources files can be located.

57

AMD uProf User Guide AMDZ1

[AMD Public Use]

e Symbols: Specify the symbol path(s) from where the debug info files (On Windows, PDB files)
can be located.

AMDuProf - m] X
13 PROFILE TIMECHART X E o]
Welcome

Import Profile Session
Recent Session(s)

_ Profile Data File ‘:able\AMDuProf—EBP-ScimarkStable-Feb-17-2021709-20-01\AMDuProf—EBP-ScimarkStable-Feb-17-2021709-20-01.db‘ x } Browse

About Root Path to Sources Enter path to root of the sources (Note: This leads to recursive search from root for sources) Browse
Binary Path Enter path(s) to binary file(s)...
CAUsers\amd\SamplePrograms\ScimarkStable1\Release
Source Path Enter path(s) to source file(s)...
C\Users\amd\SamplePrograms\ScimarkStable1\src

Resolve Unknown Functions @D

Resolving symbols can take a large amount of time depending on the amount of data being processed.
It is recommended to turn it off for faster import of session.

Use these Symbol Configuration settings to configure symbol and server locations. Press enter to add multiple symbol file locations.

Use Microsoft Symbol Server(s) @D
Symbols Download Path C:\Users\amd\Downloads\AMDuProf\Symbols X Browse
Add Symbol File Location(s) Path in srw/local-directory/network-share format Browse

Discard Current Changes

Import Session — importing profile database

4.6 Analyzing saved Profile Session

Once you have a created new profile session or opened(imported) profile database, the history is
updated and the last 50 opened profile databases’ records are stored (i.e., where they are located).
Such a list will come up in the HOME - Recent Session(s) as well.

In the below screenshot:

1. History of profile sessions opened for analysis in the GUI.
a) Clicking on an entry will load the corresponding profile db for analysis.
b) See Details button will show details about this profile session like profiled application,
monitored events list etc.,
c) Clicking Edit Options will automatically fill the Import Profile Session for this db and
let you update any of the line-edits before opening the session.
d) Remove Entry button will delete this profile session from the history.
2. Detalils of the selected profile session.

58

AMD uProf User Guide AMDA1

[AMD Public Use]

AMDuProf

~ PROFILE TIMECHART X o

Welcome AMDuProf-EBP-ScimarkStable-Feb-17-2021_22-11-42.db

17th Feb 2021 | 10:11:43 PM

AMDuProf-EBP-ScimarkStable-Feb-17-2021_22-11-42

Custom Profile Profile Type Custom Profile
i i i i Profile Sco Single lication
Import Session Hide Details Remove Entry Edit Options € pe gle App
Machine Name BLR-5CG9219XMB
About AMDuProf-EBP-Scimarkstable-Feb-17-2021_09-20-01.db I C:\Users\amd\SamplePrograms\ScimarkStable\Release
Target Application .
17th Feb 2021 | 9:20:01 AM \Scimarkstable.exe
Custom Profile Working Directory C:\Users\amd\SamplePrograms\ScimarkStable\Release
See Details Remove Entry Edit Options Call Stack collected Yes

Call stack depth 0
AMDuProf-TBP-ScimarkStable(3)-Feb-17-2021_08-43-18.db

17th Feb 2021 | 8:43:19 AM Event Name |Event D | Sampling Interval | Maskl (s
Time-based Sampling [Oxc3 : 0x0] RETIRED_BR_INST_MISP Oxc3 50000 0x0 Ves
See Details Remove Entry Edit Options
[0xcO : 0x0] RETIRED_INST 0xcO 250000 0x0 Yes
AMDuProf-TBP-ScimarkStable(3)-Feb-17-2021_08-40-19.db [0x40] DC_ACCESSES 0x40 250000 0x0 |ves
17th Feb 2021 | 8:40:19 AM A7
Time-based Sampling < >
See Details Remove Entry Edit Options
. 2

AMDuProf-EBP-ScimarkStable(7)-Feb-16-2021_13-43-18.db

16th Feb 2021 | 1:43:19 PM
Assess Performance

See Details Remove Entry Edit Options

AMDuProf-EBP-ScimarkStable(7)-Jan-27-2021_15-16-44.db

27th Jan 2021 | 3:16:44 PM
Assess Performance

See Details Remove Entry Edit Options

AMDuProf-Custom-ScimarkStable(3)-Jan-25-2021_13-02-53.d ,

1
PROFILE — Recent Sessions

4.7 Using saved Profile Configuration

When a profile configuration is created (when you set the options and start profiling), if it generates
at least one valid profile session, the profile configuration details will be stored with the options set
and can be loaded again in future. Such a list is available in PROFILE - Saved Configurations
window.

In the below screenshot:

1. History of profile configurations used to collect profile data using GUI.
a) Clicking on an entry will load the corresponding profile configuration for data collection.
b) See Details button will show details about this profile session like profiled application,
monitored events list etc.,
c) Remove Entry button will delete this profile session from the history.
2. Details of the selected profile session.
3. History of generated sessions using this profile configuration.
a) Clicking on an entry will load the profile session db for analysis.

59

AMD uProf User Guide AMDZ1

[AMD Public Use]

AMDuProf - [C:/Users/gnanam/A..-17-2021_22-11-42.db]

n

PROFILE SUMMARY ANALYZE

Start Profiling AMDuProf-EBP-ScimarkStable

CPU Profiling

CPU Profiling

Created on : 17th Feb 2021 | 10:11:42 PM Target Type Application

Hide Details Remove Entry Application Path C:\ltlsers\arnd\SamplePrograms\S:lmarkS(able\Release

\ScimarkStable.exe

AMDuProf-TBP-ScimarkStable(3) Working Directory C:\Users\amd\SamplePrograms\ScimarkStable\Release
CPU Profiling Call stack Collected Yes

Created on : 17th Feb 2021 | 8:43:18 AM Call Stack Depth 16

See Details Remove Entry €55 Mode User and Kernel Mode

FPO Enabled Yes
AMDuProf-EBP-ScimarkStable(7)

CPU Profiling Event Name |Event ID | Sampling Interval | Maskl "
Created on : 16th Feb 2021 | 1:43:18 PM

[0xc3 : 0x0] RETIRED_BR_INST_MISP ~ Oxc3 50000 0x0 Yes
See Details ~ Remove Entry
[0x40] DC_ACCESSES 0x40 250000 0x0 Yes
AMDuProf-EBP-Scimarkstable(7) [0x41] LS_MAB_ALLOCATES_BY_TYPE Ox41 50000 Oxb Yes
CPU Profiling 37
Created on : 27th Jan 2021 | 3:16:44 PM < >
See Details Remove Entry
Session Name Creation Date

AMDuProf-Custom-ScimarkStable(3)
CPU Profiling

IAMDuProf-EBP-ScimarkStable-Feb-17-2021_22-11-42 17th Feb 2021 | 10:11:42 ..

Created on : 25th Jan 2021 | 1:02:53 PM IAMDuProf-EBP-ScimarkStable-Feb-17-2021_09-20-01 17th Feb 2021 | $:20:01 AM
See Details ~ Remove Entry .
AMDuProf-Custom-ScimarkStable(3)

CPU Profiling
Created on : 23th Jan 2021 | 2:31:41 PM

See Details Remove Entry
AMDuProf-Custom-ScimarkStable(3) .

e
Saved Configurations

Note that by default the profile configuration name is generated by the application and if you want
to reuse it, you should ideally name it so that it is easy to locate. This can be done by providing a
config name in the bottom left corner (Config Name line-edit) in PROFILE - Start Profiling.

4.8 Settings

There are certain application-wide settings to customize the experience. The SETTINGS page is in
top-right corner and is divided into three sections — Preferences, Symbols and Source Data each
having a short description of what it contains.

Preferences: use this section to set the global path and data reporting preferences.

60

AMD uProf User Guide AMDA1

[AMD Public Use]

AMDUProf

f PROFILE

Path Preferences
Symbols Default path for Profile Session storage C:\Users\amd\AppData\Roaming\AMDuProf X Browse

Source Data Data Reporting Preferences
[These changes will be reflected in current profile and subsequent profile runs]

Show Values By Sample Count [¥

Include System Modules m Exclude
Floating point precision - 2 +
Sort function stacks in Flame Graph (o]

Sample threshold in Flame Graph - 0 + %
Data Buffer Count = 512 +
Confidence Threshold Number = 10 +

Maximum rows to show in Cache Analysis Tree - 1024 +
Log information to collect Minimal -

This will only collect error logs.

v

e
SETTINGS - Preference

e The settings once changed can be applied by clicking the Apply Changes button. There are
settings which are common with profile data filters and hence any change in them when applied
through Apply Changes button will only get applied to such views which do not have local
filters set.

e Incase you want to override them, you can click on the Apply & Override Local Filters button.
You will lose all local filters applied

e You can always reset the settings by clicking Reset button or Cancel to cancel any changes that
you don't want to apply.

Symbols: use this section to configure the Symbol Paths and Symbol Server locations. The Symbol
server is a Windows only option.

Source Data: use this section to set the Source view preferences.

61

AMD uProf User Guide AMDZ1

[AMD Public Use]

AMDuProf

PROFILE

Preferences
Use these Symbol Configuration settings to configure symbol and server locations. Press enter to add multiple symbol file locations. Click

Apply changes buttan to reflect the changes across the profile run.

Use Microsoft Symbol Server(s) @D

Source Data

Symbols Download Path C:\Users\amd\Downloads\AMDuProf\Symbols X Browse

Add Symbol File Location(s) Path in srw/local-directory/network-share format Browse

Apply Changes Reset Cancel

N
SETTINGS - Symbols section

Pa] AMDUProf - O X
PROFILE

Preferences . . . i
These settings impact how the source data is presented and processed based on debug symbols. These settings are only applied when you

Symbols click the Apply button. Any existing source file tabs may not reflect the latest settings and should be re-opened.

_ Select Source View type Show in Assembly offset crder.

Show Code Bytes in Source View (o]
Show Disassembly in Source View &

Always prompt to locate source when missing? @D

Expand inlined functions a
Show source view for kernel functions (o]
Select assembly address type Module Load Address .

Apply Changes Reset Cancel

[||
SETTINGS — Source data

62

AMD uProf User Guide AMDA1

[AMD Public Use]

Chapter 5 Getting started with
AMDuProfCLI

AMD uProf’s command-line-interface AMDuProfCLI provides options to collect and generate
report for analyzing the profile data.

AMDuUProfCLI [--version] [--help] COMMAND [<options>] [<PROGRAM>] [<ARGS>]

Following COMMANDSs are supported:

Command Description

collect Run the given program and collects the profile samples

translate Process the raw profile datafile and generates the profile db
report Process the raw profile datafile and generates profile report
timechart Power Profiling - collects and reports system characteristics like

power, thermal and frequency metrics

info Displays generic information about system, topology

Refer this section for the workflow. To run the command line interface AMDuProfCLI:

Windows:
Run c:\Program Files\AMD\AMDuProf\bin\AMDuProfCLI.exe binary.

Linux:
Run /opt/AMDuProf X.Y-727/AMDuProfCLI binary, or

/tmp/AMDuUProf Linux x64 X.Y.z2%/bin/aMbuProfcLT (if installed using tarfile)

FreeBSD:

Run /tmp/AMDuProf FreeBSD x64 X.Y.ZZZ/bin/AMDuProfCLI binary.

63

AMD uProf User Guide AMDZ1

[AMD Public Use]

5.1 How to start CPU profile?

To profile and analyze the performance of a native (C/C++) application, you need to follow these
steps:

1. Prepare the application. Refer section on how to prepare an application for profiling
2. Collect the samples for the application using AMDuProfCLI’s collect command
3. Generate the report using AMDuProfCLI’s report command, in readable format for analysis

Preparing the application is to build the launch application with debug information as debug info is
needed to correlate the samples to functions and source lines.

The collect command will launch the application (if given) and collect the profile data for the given
profile type and sampling configuration. It will generate raw data file (.prd on Windows and .caperf
on Linux) and other miscellaneous files.

The report command translates the collected raw profile data to aggregate and attribute to the
respective processes, threads, load modules, functions and instructions and writes them into a DB
and then generate a report in CSV format.

C:\Users\amd> | AMDuProfCLI.exe collect --config tbp -o C:\Temp\cpu-prof C:\Users\amd\AMDTClassicMatMul\bin\AMDTClassicMatMul.exe

Profile started ...

ultiplication sample

Initializing matrices
Multiplying matrices

Invoke inefficient implementation of matrix multiplication
Elapsed time: 1.2630 sec (0.9010 sec resolution)

Profile completed ...

Generated raw file :|C:\Temp\cpu-prof.prd

C:\Users\amd>| AMDUProfCLI.exe report -i C:\Temp\cpu-prof.prd
Translation started -

Translation done ...

Report generation started ...

Generating report file...

Report generation completed...

Generated report file :|C:\Temp\cpu-prof\cpu-prof.csv

C: \Users\amd>

AMDuProfCLI — collect and report command invocations

This above screenshot shows how to run time-based profile and generate a report for the launch
application AMDTClassicMatMul.exe.

64

AMD uProf User Guide AMDA1

[AMD Public Use]

Note: On Linux, AMDuProfCLI collect command will generate a caperf file which will be passed
as input file to report command.

List of predefined sampling configurations

To get the list of supported predefined sampling configurations that can be used with collect
command’s --config option run the below command.

C:\> AMDuProfCLI.exe info --list collect-configs

And the output will look like:

AMDUProf\bin>AMDuProfCLI.exe info --list collect-configs
List of predefined profiles that can be used with 'collect --config' option:

thp : Time-bas
Use this

[PMU Events: PI

data_access : TInvestigate Data Access
Use th
cache

[PMU Even st

branch : Investigat
Use this
[PMU Events:

Profile report

The profile report, which is CSV format, contains the following section:

e EXECUTION - information about the target launch application
e PROFILE DETAILS - details about this session - profile type, scope, sampling events, etc.,
e 5 HOTTEST Functions — List of top 5 hot functions and the metrics attributed to them
e PROFILE REPORT FOR PROCESS - For the profiled process, the metrics attributed. This
section contains other sub-sections like:
= THREAD SUMMARY - list of threads that belongs to this process with metrics
attributed to them

65

AMD uProf User Guide AMDZ1

[AMD Public Use]

= MODULE SUMMARY - list of load modules that belongs to this process with metrics
attributed to them

= FUNCTION SUMMARY - list of functions that belongs to this process for which
samples are collected, with metrics attributed to them

= Function Detail Data — Source level attribution for the top functions for which samples
are collected

= CALLGRAPH — Call graph, if callstack samples are collected

66

AMD uProf User Guide AMDA1

[AMD Public Use]

5.2 How to start Power profile?

System-wide Power Profiling (Live)

To collect power profile counter values, you need to follow these steps:

1. Get the list of supported counter categories by running AMDuProfCLI’s timechart
command with --list option

2. Collect and the report the required counters using AMDuProfCLI’s timechart command by
specifying the interesting counters with --event option

The timechart run to list the supported counter categories:

C:\Users\amd>|AMDuProfCLI.exe timechart --list

Supported Devices:-

Device Name Instance

Socket
Die
Core
Thread
Gfx

Supported Counter Categories:-
Category Supported Device Type

Power [Socket]
Frequency [Gfx, Thread]
Temperature [Socket]
P-State [Thread]
Energy [Socket, Core]
Controllers [socket]

C: \Users\amd>_

AMDuProfCLI timechart --list command’s output

The timechart to collect the profile samples and write into a file:

C:\Users\amd> AMDuProfCLI.exe timechart -e Energy,Frequency -o C:\Temp\power-prof C:\Users\amd\AMDTClassicMatMul\bin\AMDTClassic|
MatMul.exe
Profile started ...

Matrix multiplication sample

Initializing matrices
Multiplying matrices

Invoke inefficient implementation of matrix multiplication
Elapsed time: 1.2410 sec (8.0018 sec resolution)

Profile finished
Live Profile Output file : C:\Temp\power-prof.csv

C:\Users\amd>_

AMDuUProfCLI timechart run

67

AMD uProf User Guide AMDZ1

[AMD Public Use]

The above run will collect the energy and frequency counters on all the devices on which these
counters are supported and writes them in the output file specified with -0 option. Before the

profiling begins, the given application will be launched, and the data will be collected till the
application terminates.

68

AMD uProf User Guide AMDA1

[AMD Public Use]

53 Collect command

This collect command runs the given program and collects the performance profile data and writes
into specified raw profile data file. This file can then be analyzed using AMDuProfCLI’s report
command or AMDuProf GUI.

Synopsis:

AMDuUProfCLI collect [--help] [<options>] [<PROGRAM>] [<ARGS>]
<PROGRAM> - Denotes a launch application to be profiled
<ARGS> - Denotes the list of arguments for the launch application

Common usages:

$ AMDuUProfCLI collect <PROGRAM> [<ARGS>]

$ AMDuProfCLI collect [--config <config> | -e <event>] [-a] [-d <duration>]
[<PROGRAM>]
Options:
-h | --help Displays this help information on the console/terminal.
--config <config> Predefined sampling configuration to be used to collect samples.

Use the command info --list collect-configs to get the list of
supported configs.

—e | --—event A <predefined event> is the symbolic name of a core PMC event
<predefined-event> hat can be directly used with -e, --event.

Use command 'info --list predefined-events' for the list of
supported predefined events.

-e | --event <EVENT> Specify a sampling event to monitor in the form of the comma
separated key=value pair. Supported keys are:

event=<timer | ibs-fetch | ibs-op | pmcxNNN> where NNN is
hexadecimal Core PMC event id.

umask=<unit-mask>

user=<0 | 1>

69

AMD uProf User Guide AMDZ1

[AMD Public Use]

-p | --pid <PID...>

--tid <TID...>

-a | --system-wide

0s=<0 | 1>
interval=<sampling interval>
ibsop-count-control=<0 | 1>
call-graph
loadstore

Ex: -e event=pmcx76,interval=250000

Use command info --list pmu-events for the list of supported PMC
events.

Details about the arguments:

umask - Applicable to PMU events. It can be in decimal or
hexadecimal. Default is 0.

user, os - Applicable to PMU events. Default is 1;

interval - Applicable to all events. For timer, the interval is in
milliseconds. For PMU event, if the interval is not set or 0, then the
event will be monitored in count mode. For timer, ibs-fetch and ibs-
op events valid sampling interval is required. Default is 0.

ibsop-count-control - Applicable only to ibs-op event. When set to
0, count clock cycles, otherwise count dispatched micro-ops.
Default is 0.

call-graph — To enable callstack data collection for this event.

loadstore — To collect only the load and store IBS OP samples on
Windows.

Multiple occurrences of --event (-e) are allowed.

Profile existing processes (processes to attach to). Process IDs are
separated by comma.

Profile existing threads (threads to attach to). Threads IDs are
separated by comma. This is a Linux only option.

System Wide Profile (SWP). If this flag is not set, then the
command line tool will profile only the launched application, or the
Process IDs attached with -p option.

70

AMD uProf User Guide AMDA1

[AMD Public Use]

-c | --cpu <core...>

-—-interval <count>

-d | —--duration <n>

-—affinity <core...>

-—-no-inherit

-b | —--terminate

--start-delay <n>

--start-paused

-w | —--working-dir
<path>

-0 | —--output <file>
-v | —-verbose <n>

Comma separated list of CPUs to profile. Ranges of CPUs also be
specified with -, e.g., 0-3. Use info --cpu-topology command to
get list of available core-ids.

NOTE: On Windows, the selected cores should belong to only one
processor group, e.g., 0-63, 64-127 and so on.

Sampling interval for PMC events. Note: This interval will override
the sampling interval specified with individual events.

Profile only for the specified duration n in seconds.

Set the core affinity of the launched application to be profiled.
Comma separated list of core-ids. Ranges of core-ids also be
specified, e.g., 0-3. Default affinity is all the available cores.

Do not profile the children of the launched application (i.e.,
processes launched by the profiled application).

Terminate the launched application after profile data collection
ends. Only the launched application process will be killed. Its
children, if any, may continue to execute.

Start Delay n in seconds. Start profiling after the specified duration.
When n is 0, it has no impact.

Profiling paused indefinitely. The target application resumes the
profiling using the profile control APIs. This option is expected to
be used only when the launched application is instrumented to
control the profile data collection using the resume and pause APIs
defined in AMDProfileControl library.

Specify the working directory. Default will be the directory of the
launch application.

Base name of the output file. If this option is skipped, default path
will be used. The default file will be

(Windows) %Temp%\AMDuProf-<timestamp>.prd
(Linux) /tmp/AMDuProf-<timestamp>.caperf
Specify debug log messaging level. Valid values of (n) are:

1: INFO, 2: DEBUG, 3: EXTENSIVE

71

AMD uProf User Guide AMDZ1

[AMD Public Use]

--ip <IP Addr> IP address of the target system.

Note: To perform remote profiling on a target system, remote agent
AMDRemoteAgent should be launched first on the target system.

--port <port> The port on which the remote agent AMDRemoteAgent is listening
on the target system.

Note: To perform remote profiling on a target system, remote agent
AMDRemoteAgent should be launched first on the target system.

Windows specific options:

Option Description

--call-graph Enable callstack Sampling. Specify the Unwind Interval (1) in
<1:D:S:E> milliseconds and Unwind Depth (D) value. Specify the Scope (S) by
choosing one of the following:

user : Collect only for user space code.
kernel : Collect only for kernel space code.
all : Collect for code executed in user and kernel space code.

Specify to collect missing frames due to Frame Pointer Omission
(F) by compiler:

fpo : Collect missing callstack frames.

nofpo : Ignore missing callstack frames.

-9 Same as passing --call-graph 1:128:user:nofpo

--data-buffer-count Tq specify the number of data buffers to be used by the Windows
<count> uProf driver. This will help to reduce the missing samples.

Linux specific options:

Option Description

72

AMD uProf User Guide AMDA1

[AMD Public Use]

—--call-graph <F:N>

-9

-—tid <TID, ..>

-m, —--mmap-pages
<size>

——omp

—-mpi

-0, --output-dir
<directory name>

Enable Callstack sampling. Specify (F) to collect/ignore missing
frames due to omission of frame pointers by compiler:

fpo : Collect missing callstack frames.
nofpo : Ignore missing callstack frames.

When F = fpo, (N) specifies the max stack-size in bytes to collect
per sample collection. Valid range to stack size: 16 - 8192. If (N) is
not multiple of 8, then it is aligned down to the nearest value
multiple of 8. The default value is 1024 bytes.

NOTE: Passing a large N value will generate a very large raw data
file.

When F = nofpo, the value for N is ignored, hence no need to pass
it.

Same as passing --call-graph nofpo

Profile existing threads(threads to attach to). Thread IDs are
separated by comma.

Set kernel memory mapped data buffer to size. Size can be specified
in pages or with a suffix Bytes(B/b), Kilo bytes(K/k),
Megabytes(M/m), Gigabytes(G/g).

Profile OpenMP application.
Note:

1. Applicable to per process and attach process profiling.
2. Not applicable to:
a. System wide profiling
b. Java app profiling
3. Compile the OpenMP application with LLVVM/Clang 8.0 or
later. Supported base languages: C, C++, Fortran

Use this option to get the MPI profiling information.

Name of the output directory. This option should be used with —mpi
option where the multiple raw data files are saved in a single
directory.

73

AMD uProf User Guide AMDZ1

[AMD Public Use]

Examples
Windows:

e Launch application AMDTClassicMatMul.exe and collect samples for
CYCLES_NOT_IN_HALT and RETIRED_INST events:
C:\> AMDuProfCLI.exe collect -e cycles-not-in-halt -e retired-inst

-—interval 1000000 -o c:\Temp\cpuprof-custom AMDTClassicMatMul.exe

C:\> AMDuProfCLI.exe collect -e event=cycles-not-in-halt,interval=250000
-e event=retired-inst, interval=500000 -o c:\Temp\cpuprof-custom
AMDTClassicMatMul.exe

e Launch application AMDTClassicMatMul.exe and collect Time-based profile (TBP) samples:

C:\> AMDuProfCLI.exe collect -o c:\Temp\cpuprof-tbp AMDTClassicMatMul.exe

e Launch AMDTClassicMatMul.exe and do ‘Assess Performance’ profile for 10 seconds:

C:\> AMDuProfCLI.exe collect --config assess -o c:\Temp\cpuprof-assess -d 10
AMDTClassicMatMul.exe

e Launch AMDTClassicMatMul.exe and collect ‘IBS’ samples in SWP mode:

C:\> AMDuProfCLI.exe collect --config ibs -a -o c:\Temp\cpuprof-ibs-swp
AMDTClassicMatMul.exe

e (Collect “TBP’ samples in SWP mode for 10 seconds:
C:\> AMDuProfCLI.exe collect -a -o c:\Temp\cpuprof-tbp-swp -d 10

e Launch AMDTClassicMatMul.exe and collect “TBP’ with Callstack sampling:

C:\> AMDuProfCLI.exe collect --config tbp -g -o c:\Temp\cpuprof-tbp
AMDTClassicMatMul.exe

e Launch AMDTClassicMatMul.exe and collect ‘“TBP’ with callstack sampling (unwind FPO
optimized stack):

C:\> AMDuProfCLI.exe collect --config tbp --call-graph 1l:64:user:fpo -o
c:\Temp\cpuprof-tbp AMDTClassicMatMul.exe

e Launch AMDTClassicMatMul.exe and collect samples for PMCx076 and PMCx0CO:
C:\> AMDuProfCLI.exe collect -e event=pmcx76,interval=250000 -e
event=pmcxc0,user=1,0s=0, interval=250000 -o c:\Temp\cpuprof-tbp
AMDTClassicMatMul.exe

e Launch AMDTClassicMatMul.exe and collect samples for IBS OP with interval 50000:

C:\> AMDuProfCLI.exe collect -e event=ibs-op,interval=50000 -o
c:\Temp\cpuprof-tbp AMDTClassicMatMul.exe

74

AMD uProf User Guide AMDA1

[AMD Public Use]

Linux:

e Launch application AMDT ClassicMatMul.exe and collect samples for
CYCLES_NOT_IN_HALT and RETIRED_INST events:
$./AMDuProfCLI collect -e cycles-not-in-halt -e retired-inst
-—interval 1000000 -o /tmp/cpuprof-custom AMDTClassicMatMul-bin

C:\> AMDuProfCLI.exe collect -e event=cycles-not-in-halt,interval=250000
-e event=retired-inst,interval=500000 -o /tmp/cpuprof-custom
AMDTClassicMatMul-bin

e Launch the application AMDTClassicMatMul-bin and collect Time-based profile (TBP)
samples:

$./AMDuProfCLI collect -o /tmp/cpuprof-tbp AMDTClassicMatMul-bin

e Launch AMDTClassicMatMul-bin and do ‘Assess Performance’ profile for 10 seconds:

$./AMDuProfCLI collect --config assess -o /tmp/cpuprof-assess -d 10
AMDTClassicMatMul-bin

e Launch AMDTClassicMatMul-bin and collect ‘IBS’ samples in SWP mode:

$./AMDuProfCLI collect --config ibs -a -o /tmp/cpuprof-ibs-swp
AMDTClassicMatMul-bin

e Collect ‘“TBP’ samples in SWP mode for 10 seconds:
$./AMDuProfCLI collect -a -o /tmp/cpuprof-tbp-swp -d 10

e Launch AMDTClassicMatMul-bin and collect “TBP’ with Callstack sampling:

$./AMDuProfCLI collect --config tbp -g -o /tmp/cpuprof-tbp
AMDTClassicMatMul-bin

e Launch AMDTClassicMatMul-bin and collect ‘TBP’ with callstack sampling (unwind FPO
optimized stack):

$./AMDuProfCLI collect --config tbp --call-graph fpo:512 -o /tmp/uprof-
tbp AMDTClassicMatMul-bin

e Launch AMDTClassicMatMul-bin and collect samples for PMCx076 and PMCx0CO:

$./AMDuProfCLI collect -e event=pmcx76,interval=250000 -e
event=pmcxc0,user=1,0s=0, interval=250000 -o /tmp/cpuprof-tbp
AMDTClassicMatMul-bin

e Launch AMDTClassicMatMul-bin and collect samples for IBS OP with interval 50000:

$./AMDuProfCLI collect -e event=ibs-op,interval=50000 -o /tmp/cpuprof-tbp
AMDTClassicMatMul-bin

75

AMD uProf User Guide AMDZ1

[AMD Public Use]

54 Report command

This report command processes the raw profile data (.prd on Windows or .caperf on Linux) or the
processed file (.db) and generate a profile report. The profile report can also be generated from the
DB file also.

Synopsis:
AMDuUProfCLI report [--help] [<options>]

Common usages:

$ AMDUProfCLI report -i <profile data file>

Options
-h | --help Displays this help information on the console/terminal.
-i | --input <file> Input file name. Either the raw profile data file (.prd on Windows and
.caperf on Linux) or the processed data file (.db) can be specified.
-0 | --output Output directory in which the processed data file (.db) and the report

<output dir> file (.csv) will be created.

The default output dir <base-name-of-input-file>, will be created in
the directory in which the input file resides.

-—detail Generate detailed report.
--group-by Specify the report to be generated. Supported report options are:
<section>

process: Report process details
module: Report module details
thread: Report thread details
This option is applicable only with --detail option.

-p, --pid <PID,..> Generate report for the specified PIDs. Process IDs are separated by
comma.

-g Print callgraph. Use with options --detail or --pid (-p). With --pid

option, callgraph will be generated only if the callstack samples were
collected for specified PIDs.

76

AMD uProf User Guide AMDA1

[AMD Public Use]

--cutoff <n>

--view <config>

-—-inline

--show-sys-src

--src-path
<pathl;...>

--ascii event-dump

-—-disasm

-s | ——-sort-
by <EVENT>

Cutoff to limit the number of process, threads, modules, and functions
to be reported. n is the minimum number of entries to be reported in
various report sections. Default value is 10.

Report only the events present in the given view file. Use the
command info --list view-configs to get the list of supported view-
configs.

Show inline functions for C, C++ executables.

Note: Using this option will increase the time taken to generate the
report.

Generate detailed function report of the system module functions (if
debug info is available) with source statements.

Source file directories. (Semicolon separated paths.)

To generate ASCII dump of IBS OP sample records from the given
raw profile file.

Generate detailed function report with assembly instructions.

Specify the Timer, PMU, or IBS event on which the reported profile
data will be sorted with arguments in the form of comma separated
key=value pairs. Supported keys are:

event=<timer | ibs-fetch | ibs-op | pmcXNNN> where NNN is
hexadecimal Core PMC event id.

umask=<unit-mask>
user=<0| 1>
0s=<0| 1>

Use command info --list pmu-events for the list of supported PMC
events.

Details about the arguments:

umask - Unit mask in decimal or hexadecimal. Applicable only to
PMU events.

user, os - User, OS mode. Applicable only to PMU events.

77

AMD uProf User Guide AMDZ1

[AMD Public Use]

——imix

--ignore-system-
module

--show-percentage
--show-sample-count
--show-event-count
--bin-path <path>

--symbol-path
<pathl;...>

-v | —--verbose <n>

--ip <IP Addr>

—-—port <port>

Multiple occurrences of —sort-by (-s) are not allowed.
Generate Instruction MIX report.

Ignore samples from system modules.

Show percentage of samples, instead of actual samples.

Show the number of samples. This option is enabled by default.
Show number of events occurred

Binary file path. Multiple use of --bin-path is allowed.

Debug Symbol paths. (Semicolon separated paths.)

Specify debug log messaging level. Valid values are:
1:INFO
2 : DEBUG
3 : EXTENSIVE

IP address of the target system.

Note: To perform remote profiling on a target system, remote agent
AMDRemoteAgent should be launched first on the target system.

The port on which the remote agent AMDRemoteAgent is listening
on the target system.

Note: To perform remote profiling on a target system, remote agent
AMDRemoteAgent should be launched first on the target system.

Windows specific options

Option Description

--symbol-server
<pathl;...>

—--symbol-cache-dir
<path>

Symbol Server directories. (Semicolon separated paths.)

Path to store the symbol files downloaded from the Symbol Servers.

78

AMD uProf User Guide AMDA1

[AMD Public Use]

Linux specific options

Option Description

-1, --input-dir Input directory name. This is used to specify the data collected using -
<directory name> --mpi option and the directory specified should be the one specified
with —output-dir option.

--host <hostname> This option is used along with the --input-dir option. Generate report
belonging to a specific host. Supported options are:

<hostname>: Report process belonging to a specific host.
all: Report all processes

Note: If --host is not used then only the processes belonging to the
system from which report is generated is reported.

--limit-cacheinfo Cut-off limit for entries in the cache line analysis report sections.
<n> Default value is 10.

Examples

Windows

e Generate report from the raw datafile:
C:\> AMDuProfCLI.exe report -i c:\Temp\cpuprof-tbp.prd -o c:\Temp\tbp-out

e Generate IMIX report from the raw datafile:

C:\> AMDuProfCLI.exe report --imix -i c:\Temp\cpuprof-tbp.prd -o
c:\Temp\cpuprof-tbp-out

e Generate report with Symbol Server paths:

C:\> AMDuProfCLI.exe report --symbol-path C:\Temp\Symbols —-symbol-
server http://msdl.microsoft.com/download/symbols —--cache-dir C:\symbols -
i c:\Temp\cpuprof-tbp.prd -o c:\Temp\cpuprof-tbp-out

79

AMD uProf User Guide AMDZ1

[AMD Public Use]

Linux

e Generate report from the raw datafile:
$./AMDuProfCLI report —-i /tmp/cpuprof-tbp.caperf -o /tmp/cpuprof-tbp-out

e Generate IMIX report from the raw datafile:

$./AMDuProfCLI report --imix -i /tmp/cpuprof-tbp.caperf -o /tmp/cpuprof-
tbp-out

5.5 Timechart command

This timechart command collects and reports system characteristics like power, thermal and
frequency metrics and generates a text or CSV report.

Synopsis:
AMDuUProfCLI timechart [--help] [--1list] [<options>] [<PROGRAM>] [<ARGS>]
<PROGRAM> - Denotes the application to be launch before start collecting the power metrics

<ARGS> - Denotes the list of arguments for the launch application

Common usages:
$ AMDuProfCLI timechart --list

S AMDuProfCLI timechart -e <event> -d <duration> [<PROGRAM>] [<ARGS>]

Options:
--list Display all the supported devices and categories.
-e | --event Collect counters for specified type or comma separated list of types,
SEWE 0 0 0> where type can be a device or a category.

Supported device list:
socket: Collect profile data from socket.
die: Collect profile data from die.

core: Collect profile data from core.

80

AMD uProf User Guide AMDA1

[AMD Public Use]

-t | —--interval <n>
-d | —--duration <n>
-—affinity
<core...>

-w | --working-dir
<dir>

-f | -——-format <fmt>
-0 | —--output
<file>

thread: Collect profile data from thread.

Supported category list:
Refer this section for family specific supported categories.
power: Collect all available power counters.
frequency: Collect all available frequency counters.
temperature: Collect all available temperature counters.
voltage: Collect all available voltage counters.
current: Collect all available current counters.

dvfs: Collect all available Dynamic Voltage and Frequency
Scaling (DVFS) counters.

energy: Collect all available energy counters.

cac: Collect all available cac counters.

controllers: Collect all available controllers counters.
Note: Multiple occurrences of -e is allowed.
Sampling interval n in milliseconds. The minimum value is 10ms.
Profile duration n in seconds.

Core affinity. Comma separated list of core-ids. Ranges of core-ids
also be specified, e.g., 0-3. Default affinity is all the available cores.
Affinity is set for the launched application.

Set the working directory for the launched target application.

Output file format. Supported formats are:
txt: Text (.txt) format.

csv: Comma Separated Value (.csv) format.
Default file format is CSV.

Output file path.

81

AMD uProf User Guide AMDZ1

[AMD Public Use]

--ip <IP Addr> IP address of the target system.

Note: To perform remote profiling on a target system, remote agent
AMDRemoteAgent should be launched first on the target system.

--port <port> The port on which the remote agent AMDRemoteAgent is listening

on the target system.

Note: To perform remote profiling on a target system, remote agent
AMDRemoteAgent should be launched first on the target system.

Examples:

Windows

Collect all the power counter values for the duration of 10 seconds with sampling interval of
100 milliseconds:

C:\> AMDuProfCLI.exe timechart --event power --interval 100 --duration 10

Collect all frequency counter values for 10 seconds, sampling them every 500 milliseconds and
dumping the results to a csv file:

C:\> AMDuProfCLI.exe timechart --event frequency -o C:\Temp\output.txt --
interval 500 --duration 10

Collect all frequency counter values at core 0 to 3 for 10 seconds, sampling them every 500
milliseconds and dumping the results to a text file:

C:\> AMDuProfCLI.exe timechart --event core=0-3, frequency --output
C:\Temp\PowerOQOutput.txt --interval 500 -duration 10 --format txt

Linux

Collect all the power counter values for the duration of 10 seconds with sampling interval of
100 milliseconds:

$./AMDuProfCLI timechart --event power —--interval 100 --duration 10

Collect all frequency counter values for 10 seconds, sampling them every 500 milliseconds and
dumping the results to a csv file:

$./RAMDuProfCLI timechart --event frequency -o /tmp/PowerOutput.csv --
interval 500 --duration 10

Collect all frequency counter values at core 0 to 3 for 10 seconds, sampling them every 500
milliseconds and dumping the results to a text file:

$./AMDuProfCLI timechart --event core=0-3, frequency --output
/tmp/PowerOutput.txt --interval 500 --duration 10 --format txt

82

AMD uProf User Guide AMDA1

[AMD Public Use]

5.6 Info command

This info command helps to get generic information about the system, CPU topology, disassembly
of a binary etc.

Synopsis:

AMDuUProfCLI info [--help] [<options>]
Common usages:

$ AMDuProfCLI info --system

$ AMDuProfCLI info --cpu-topology

Options:
Option Description
-h | —-help Displays the help information.
--list <type> Lists the supported items for the following types:

collect-configs: Predefined profile configurations that can be
used with collect command’s --config option.

predefined-events: List of the supported predefined events that
can be used with ‘collect --event' option

view-configs: List the supported data view configurations that
can be used with report command’s --view option.

pmu-events: Raw PMC events that can be used with collect
command’s --event option.

cacheline-events: List of event aliases to be used with 'report --
sort-by' option for cache analysis.

--collect-config <name> Displays details of the given profile configuration used with
collect --config <name> option.

Use info --list collect-configs command for details about the
supported profile configurations.

--view-config <name> Displays details of the given view configuration used in report
generation option report --view <name>.

83

AMD uProf User Guide AMDZ1

[AMD Public Use]

—-—-pmu-event <event>

—-—-system
--cpu-topology
--disasm <binary>
—--show-uid

--disasm <binary-path>

Examples:

Print system details:

Use info --list view-configs command for details about the
supported data view configurations.

Displays details of the given pmu event. Use command info --list
pmu-events for the list of supported PMC events.

Displays processor information of this system.
Displays CPU topology information of this system.
Disassembles the given binary file.

Displays the UID of the user.

Displays disassembly of the given binary file.

C:\> AMDuProfCLI.exe info --system

Print CPU topology details:

C:\> AMDuProfCLI.exe info —--cpu-topology

To disassemble AMDT ClassicMatMul.exe into classic-disasm.txt file:

C:\> AMDuProfCLI.exe info --disasm AMDTClassicMatMul.exe > classic_asm.txt

To print system info:

C:\> AMDuProfCLI.exe info --system

To print list of predefined events:

C:\> AMDuProfCLI.exe info --list predefined-events

To print list of predefined profiles:
C:\> AMDuProfCLI.exe info --1list collect-configs

To print list of PMU events:

C:\> AMDuProfCLI.exe info --list pmu-events

To print list of predefined report views:

C:\> AMDuProfCLI.exe info --list view-configs

To print details of predefined profile like “assess_ext™:

84

AMD uProf User Guide

AMDZ1

[AMD Public Use]
C:\> AMDuProfCLI.exe info --collect-config assess ext

To print details of the pmu-event like PMCx076:

C:\> AMDuProfCLI.exe info --pmu-event pmcx76

To print details of view configuration like ibs_op_overall:

C:\> AMDuProfCLI.exe info --view-config ibs op overall

85

AMD uProf User Guide AMDZ1

[AMD Public Use]

Chapter 6 Performance Analysis

CPU Profiling

AMD uProf profiler follows a statistical sampling-based approach to collect profile data to identify
the performance bottlenecks in the application.

o Profile data is collected using any of the following approaches:
= Timer Based Profiling (TBP) - to identify the hotspots in the profiled applications
= Event Based Profiling (EBP) - sampling based on Core PMC events to identify micro-
architecture related performance issues in the profiled applications
= Instruction based Sampling (IBS) - precise instruction-based sampling

e Call-stack Sampling

e Secondary profile data (Windows only)
= Thread concurrency
= Thread Names

e Profile scope
= Per-Process: Launch an application and profile that process its children
= System-wide: Profile all the running processes and/or kernel
= Attach to an existing application (Native applications only)

e Profile mode
= Profile data is collected when the application is running in User and/or Kernel mode

e Profiles
= C, C++, Java, .NET, FORTRAN, Assembly applications
= Various software components — Applications, dynamically linked/loaded modules,
Driver, OS Kernel modules

o Profile data is attributed at various granularities
= Process/ Thread / Load Module / Function / Source line / Disassembly
= To correlate the profile data to Function and Source line, debug information emitted
by the compiler is required
= C++ & Java in-lined functions

e Processed profile data is stored in databases, which can be used to generate reports later.

o Profile reports are available in comma-separated-value (CSV) format to use with spreadsheets.

86

AMD uProf User Guide AMDA1

[AMD Public Use]

e AMDuProfCLI, the command-line-interface can be used to configure a profile run, collect
the profile data, and generate the profile report.

collect option to configure and collect the profile data
report option to process the profile data and to generate the profile report

¢ AMDuProf GUI can be used to:

Configure a profile run
Start the profile run to collect the performance data
Analyze the performance data to identify potential bottlenecks

e AMDuProf GUI has various Uls to analyze and view the profile data at various granularities

Hot spots summary

Thread concurrency graph (Windows only and requires admin privileges)
Process and function analysis

Source and disassembly analysis

Flame Graph - a stack visualizer based on collected call-stack samples
Call Graph - butterfly view of callgraph based on call-stack samples
HPC - to analyze OpenMP profile data

Cache Analysis - to analyze the hot cache lines that are false shared

o Profile Control API to selectively enable and disable profiling from the target application by
instrumenting it, to limit the scope of the profiling

6.1

Analysis with Time-based profiling

In this analysis, the profile data is periodically collected based on the specified OS timer interval. It
is used to identify the hotspots of the profiled applications that are consuming the most time. These
hotspots are good candidates for further investigation and optimization. Follow these steps:

To configure and start profile:

1. Clicking PROFILE -> Start Profiling will navigate to the Select Profile Target window. After
selecting the appropriate profile target, clicking Next button will take you to Select Profile Type
fragment.

2. In Select Profile Type fragment, selecting CPU Profile from the drop-down list, will take you
to the below screenshot.

3. Select Time-based Sampling in the left vertical pane as shown in the below screenshot.

87

AMD uProf User Guide AMDZ1

[AMD Public Use]

AMDuProf

f

PROFILE

Select Profile Type ceuProfie

Saved Configurations

Time-based Sampling Use this configuration to identify where programs are spending time.

Investigate Instruction Access

Investigate Data Access Timer Interval |- 1 + Milli seconds
Investigate Branching

Assess Performance (Extended)

Assess Performance

Custom Profile

Advanced Options

¥ IBS is disabled

¥ Admin privilege unavailable Config Name ‘ AMDuProf-TBP-ScimarkStable % ResetName Previous Next _ -

Time based profile — configure

4. Click Advanced Options to enable Callstack, set symbol paths (if the debug files are in different
locations) and other options. Refer this section for more information on this window.

5. Once all the options are set, the Start Profile button at the bottom will be enabled and you can
click on it to start the profile. After the profile initialization you will see this profile data
collection screen.

To Analyze the profile data

6. When the profiling stopped, the collected raw profile data will be processed automatically, and
you will see the Hot Spots window of Summary page. The hotspots are shown for Timer
samples. Refer this section for more information on this window.

7. Clicking ANALY ZE button on the top horizontal navigation bar will go to Function HotSpots
window. Refer this section for more information on this window.

8. Clicking ANALYZE -> Metrics will display the profile data table at various granularities -
Process, Load Modules, Threads and Functions. Refer this section for more information on this
window.

88

AMD uProf User Guide AMDA1

[AMD Public Use]

9. Double-clicking any entry on the Functions table in Metrics window will make the GUI load
the source tab for that function in SOURCES page. Refer this section for more information on
this window.

6.2 Analysis with Event based profiling

In this profile, the uProf uses the PMCs to monitor the various micro-architectural events supported
by the AMD x86-based processor. It helps to identify the CPU and memory related performance
issues in profiled applications. Steps to follow:

To configure and start profile:

1. Clicking PROFILE - Start Profiling will navigate to the Select Profile Target window. After
selecting the appropriate profile target, clicking Next button will take you to Select Profile Type
fragment.

2. In Select Profile Type fragment, selecting CPU Profile from the drop-down list, will take you
to the below screenshot.

L PROFILE

Select Profile Type crurrofile

Saved Configurations

2 SR Use this configuration to get an overall assessment of performance and to find
Investigate Instruction Access potential issues for investigation.
Investigate Data Access Event Mask Sampling Period | User Mode @ Kernel Mode | Callstack
[0xc0 : 0x0] RETIRED_INST 0x0 250000 Yes Yes No
Investigate BranChing [0x76 : 0x0] CYCLES_NOT_IN_HALT 0x0 250000 Yes Yes No
Assess Performance (Extended) [0xc2 : 0x0] RETIRED_BR_INST 0x0 50000 Yes Yes No
[0xc3 : 0x0] RETIRED_BR_INST_MISP | 0x0 50000 Yes Yes No
Assess Performance [0x40] DC_ACCESSES 0x0 250000 Yes Yes No
Custom Profile [0%41] LS_MAB_ALLOCATES_BY_TYPE | Oxb 50000 Yes Yes No
[0x47 : 0x0] MISALIGNED_LOADS 0x0 50000 Yes Yes No
The number of instructions retired from execution. This count includes exceptions and interrupts. Modify Events

Each exception or interrupt is counted as one instruction.

Advanced Options

v IBS is disabled Config Name = AMDuProf-TBP-ScimarkStable X Reset Name Previous Next _-

Event based profile - configure

3. Select Assess Performance in the left vertical pane as shown in the below screenshot. Refer
this section for EBP based predefined sampling configurations.

89

AMD uProf User Guide AMDZ1

[AMD Public Use]

4. Click Advanced Options to enable Callstack, set symbol paths (if the debug files are in different
locations) and other options. Refer this section for more information on this window.

5. Once all the options are set, the Start Profile button at the bottom will be enabled and you can
click on it to start the profile. After the profile initialization you will see this profile data
collection screen.

To Analyze the profile data

6. When the profiling stopped, the collected raw profile data will be processed automatically, and
you will the Hot spots window of Summary page. Refer this section for more information on
this window.

7. Clicking ANALY ZE button on the top horizontal navigation bar will go to Function HotSpots
window. Refer this section for more information on this window.

8. Clicking ANALYZE -> Metrics will display the profile data table at various granularities -
Process, Load Modules, Threads and Functions. Refer this section for more information on this
window.

9. Double-clicking any entry on the Functions table in Metrics window will make the GUI load
the source tab for that function in SOURCES page. Refer this section for more information on
this window.

6.3 Analysis with Instruction based sampling

In this profile, the uProf uses the IBS supported by the AMD x86-based processor to diagnose the
performance issues in hot spots. It collects data on how instructions behave on the processor and in
the memory subsystem.

To configure and start profile:

1. Clicking PROFILE -> Start Profiling will navigate to the Select Profile Target window. After
selecting the appropriate profile target, clicking Next button will take you to Select Profile Type
fragment.

2. In Select Profile Type fragment, select CPU Profile from the dropdown and then select
Instruction-Based Sampling in the left vertical pane. Refer this section for predefined sampling
configurations.

3. Click Advanced Options to enable Callstack, set symbol paths (if the debug files are in different
locations) and other options. Refer this section for more information on this window.

90

AMD uProf User Guide AMDA1

[AMD Public Use]

4. Once all the options are set, the Start Profile button at the bottom will be enabled and you can
click on it to start the profile. After the profile initialization you will see this profile data
collection screen.

To Analyze the profile data

5. When the profiling stopped, the collected raw profile data will be processed automatically, and
you will the Hot spots window of Summary page. Refer this section for more information on
this window.

6. Clicking ANALY ZE button on the top horizontal navigation bar will go to Function HotSpots
window. Refer this section for more information on this window.

7. Clicking ANALYZE - Metrics will display the profile data table at various granularities -
Process, Load Modules, Threads and Functions. Refer this section for more information on this
window.

8. Double-clicking any entry on the Functions table in Metrics window will make the GUI load
the source tab for that function in SOURCES page. Refer this section for more information on
this window.

6.4 Analysis with Callstack samples

The callstack samples too can be collected for C, C++, and Java applications with all the CPU profile
types. These samples will be used to provide Flame Graph and Call Graph window.

To enable call-stack sampling, after selecting profile target and profile type, click on Advanced
Options button to turn on the Enable CSS option in Call Stack Options pane, as seen in the below
screen. Refer this section for more information on this window.

Note:

1. If the application is compiled with higher optimization levels and frame pointers are not emitted,
then Enable FPO option can be enables. On Linux, this will increase the size of the raw profile
file size.

91

AMD uProf User Guide AMDZ1

[AMD Public Use]

AMDuProf - [C;/Users/famd/AMDu..-17-2021_08-43-18.db]

f PROFILE SUMMARY ANALYZE

Advanced Options

Saved Configurations

Enable this switch to view the Thread Concurrency Graph which shows the number of threads running concurrently for the time elapsed(in
seconds) for a given process.

Enable Thread Concurrency [o]

Enable Thread Name Collection &

EnableCSS @

Specify call stack settings which will collect data regarding function call stack. FPO is related to Frame Pointer Omission which when enabled leads to
better call stack reconstruction and better call graph views.

Enable FPO (¢]
Call Stack Collection User and Kernel Mode.
Call Stack Depth |- 16 +1

Enable start Paused switch to launch the application (if specified) but not collect the profile data or if you are using Profile APl instrumentation then you can spe
cify that or specify a start delay which is launch the application (if specified) but start the profiling only after the delay period. Optionally you can specify the pro
file duration (in seconds) after which the profiling will be stopped.(StartPaused, Delay and Instrumentation not supported for Power Profiling)

Enable start paused a

v

Are you using Profile Instrumentation API? (o]

w IBS is disabled Config Name AMDuProf-EBP-ScimarkStable X Reset Name Previous Next _ -

Start Profiling — Advanced Options

6.4.1 Flame graph

Flame Graph provides a stack visualizer based on call-stack samples. The Flame Graph window
will be available in ANALY ZE page to analyze the call-stack samples to identify hot call-paths. It
can be navigated by clicking ANALYZE -> Flame Graph in the left vertical pane.

Refer this section for more information on this window.

92

AMD uProf User Guide AMDA1

[AMD Public Use]

Bl AMDuProf - [C:/Users/amd/AMDu..-18-2021_11-58-39.db] - O X

L PROFILE SUMMARY ANALYZE

Function HotSpots Counters: CPU_TIME '™ ProcessIDs: [16180] ScimarkStable.exe ™ Zoom Entire Graph Search function name... Clear

Metrics Click on any block in Flame Graph to focus on it's children.

Call Graph

Random_nextDouble

MonteCarlo_integrate LU_factor SOR_execute SparseCompRow_matmult FFT_transfo... FFT_transfo...
kernel_measureMonteCarlo kernel_measurelU kernel_measureSOR kernel measureSparseM... FFT inverse FFT transfo...
main kernel_measureFFT

ANALYZE - Flame graph window

The Flamegraph can be displayed based on Process IDs and Counters dropdowns. It also has the
function search box to search and highlight the given function name.

6.4.2 Call graph

Call Graph provides a butterfly view of callgraph based on call-stack samples The Call Graph
window will be available in ANALYZE page to analyze the call-stack samples to identify hot call-
paths. It can be navigated by clicking ANALYZE - Call Graph in the left vertical pane.

Refer this section for more information on this window.

93

AMD uProf User Guide AMDZ1

[AMD Public Use]

AMDuProf - [C;/Users/amd/AMDu..-18-2021_11-58-39.db] - O et

A PROFILE SUMMARY ANALYZE

Function HotSpots Counters: CPU_TIME ¥ Process|Ds: [16180] ScimarkStable.exe '™

Function Inclusive Sample (s) | Exclusive Sample (s) Module Source File

Metrics

0.00| ScimarkStable.exe | c\codeanalyst\tests\scimarkstable\scimark2.c

Flame Graph kernel_measureMonteCarlo 11.40 ScimarkStable.exe | c\codeanalystitests\scimarkstable\kernel.c

MonteCarlo_integrate 11.40 3.94| ScimarkStable.exe | c\codeanalyst\tests\scimarkstable\montecarlo.c
kernel_measureLU 8.92 ScimarkStable.exe | c:\codeanalyst\tests\scimarkstable\kernel.c
LU_factor 8.73 8.73| ScimarkStable.exe | c\codeanalyst\tests\scimarkstabletlu.c
kernel_measureSOR 8.55 ScimarkStable.exe | c\codeanalyst\tests\scimarkstablevkernel.c
SOR_execute 8.55 8.55| ScimarkStable.exe | ci\codeanalyst\tests\scimarkstable\sor.c
Random_nextDouble 7.47 7.47| ScimarkStable.exe | c\codeanalyst\tests\scimarkstable\random.c
kernel_measureFFT 6.21 ScimarkStable.exe | c:\codeanalyst\tests\scimarkstablevkernel.c
FFT_transform_internal 6.07 5.23| ScimarkStable.exe | c\codeanalyst\tests\scimarkstable\fft.c &
Caller(s) of Function: main Callee(s) of Function: main
Parents ‘ Sample ‘ % | Module Self + Children | Sample ‘ % ‘ Module
[ROOT] 34.97 100.00% kernel_measureMonteCarlo 11.40| 32.60% ScimarkStable.exe
kernel_measureLU 8.92| 25.51%| ScimarkStable.exe
kernel_measureSOR 8.55| 24.44% ScimarkStable.exe

kernel_measureSparseMatlV 5.96| 17.05%| ScimarkStable.exe

kernel_measureFFT 0.14| 0.40%| ScimarkStable.exe

ANALYZE - Call graph window

The data can be browsed based on Process IDs and Counters drop-downs. The top central table
displays call-stack samples for each function. Clicking on any function updates the bottom two
Caller(s) and Callee(s) tables. These tables display the callers and callees respectively of the
selected function.

6.5 Profiling a Java Application

AMD uProf supports Java application profiling running on JVM. To support this, it uses JVM Tool
Interface (JVMTI).

AMDuProf provides JVMTI Agent libraries: AMDJvmtiAgent.dll on Windows and
1libAMDJvmtiAgent.so on Linux. This JvmtiAgent library needs to be loaded during start-up
of the target JVM process.

Launching a Java application
If the Java application is launched by uProf, then the tool would take care of passing the

AMDJvmtiAgent library to JVM using Java’s -agentpath option. AMDuProf would be able to
collect the profile data and attribute the samples to interpreted Java functions.

94

https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html

AMD uProf User Guide AMDA1

[AMD Public Use]

To profile a Java application, you may use the following sample command:
$./AMDuProfCLI collect --config tbp -w <java-app-dir> <path-to-java.exe>
<java-app-main>

To generate report, you may need to pass source file path:

$./AMDuProfCLI report —--src-path <path-to-java-app-source-dir> -1 <raw-
data-file>

Attaching a Java process to profile

AMD uProf can’t attach JvmtiAgent dynamically to an already running JVM. Hence any JVM
process profiled by attach-process mechanism, uProf can’t capture any class information, unless the
JvmtiAgent library is loaded during JVM process start-up.

If you want to profile an already running Java process, then you must pass -agentpath <path to agent
lib> option while launching Java application. So that, later uProf can attach to the Java PID to collect
profile data.

For a 64-bit JVM on Linux:

$ java
-agentpath:<AMDuProf-install-dir/bin/ProfileAgents/x64/1ibAMDJIvmtiAgent.so>
<java-app-launch-options>

For a 64-bit IJVM on Windows:

C:\> java —-agentpath:
<C:\ProgramFiles\AMD\AMDuProf\bin\ProfileAgents\x64\AMDJvmtiAgent.dl1l>
<java-app-launch-options>

Keep a note of the process id (PID) of the above JVM instance. Then launch AMDuProf GUI or
AMDuProfCLI to attach to this process and profile.

Java source view

AMD uProf, will attribute the profile samples to Java methods and the source tab will show and the
Java source lines with the corresponding samples attributed to them.

Refer this section for more information on source window.

95

AMD uProf User Guide AMDZ1

[AMD Public Use]

XAMDuPer - [/home/amd/.AMDuPr...-18-2021_10-12-08.db] - O X

PROFILE SUMMARY ANALYZE SOURCES

jnt.scimark2. FFTzinverse(double[])

b Filters
PID: [235325] java . TID: TID[235335] ' View Overall Assessment . Show Values By Sample Count . Show Assembly @D
A tine | Source Ipc [2
34 // Normalize
35 int nd=data.length;
36 int n =nd/2;
37 double norm=1/((double) n);
38 for(int i=0; i<nd; i++)

data[i] *= norm;

41 ¥

4 »
Address | tine | Assembly IPC Pl =

0x14d371717601 37 cmovg %rled,%secx

0x14d371717605 39 vmulsd +0x10+(%rbx,%rdx,8) ,%xmmS ,%sxmme

0x14d37171760b 139 vmovsd %xmm@,+0x10+(%rbx,%rdx,8)

0x14d371717611 39 incl %edx

0x14d371717613 ‘38 cmp %ecx,%sedx

0x14d371717615 38 jl 8x0000000000000085 0x85

0x14d371717617 38 ‘mov %ried,%red

0x14d37171761a 38 add $6xf9,%r8d =

‘ »

Java method — Source view
Java callstack profile

To collect callstack for profile java application, use the following command:

$./AMDuProfCLI collect --config tbp -g -w <java-app-dir> <path-to-java.exe>
<java-app-main>

96

AMD uProf User Guide AMDA1

[AMD Public Use]

X AMDuProf - [/home/amd/.AMDuPr...-18-2021_10-12-08.db] - [m] X

PROFILE SUMMARY ANALYZE SOURCES

Function HotSpots Counters: CYCLES_NOT_IN_I Process IDs: [235325] java Zoom Entire Graph

Metrics Click on any block in Flame Graph to focus on it's children
Call Graph
int...
[it jnt.... |
 int.scimark2.SOR::exe... jnt.scimark2.SparseCompROW... ~ jnt...jnt.scima... jnt.simark2.MonteCarloz:inte... jnt.scimark2.LU:factor(do...

~ NativeCodeinterpreter
- NatveCodezaallswb
JavaCalls::call_helper(JavaValue*, methodHandle*, JavaCallArguments*, Thread*)
jni_invoke static(JNIEnv_*, JavaValue*, jobject*, JNICallType, jmethodID*, JNI ArgumentPusher*, Thread*)
jni_CallStaticVoidMethod
JavaMain
call_continuation
start_thread
1 7 N
L

Java application — Flamegraph

Refer this section for more information on using Flamegraph window.

6.6 Cache Analysis

The Cache Analysis uses IBS OP samples to detect the hot false sharing cache lines in
multithreaded and multi-process with shared memory applications.

At high level, this will feature will report
e The cache lines where there is a potential false sharing
o Offsets where those accesses occur and readers and writers to those offsets
e« PID, TID, Function Name, Source file, Line number for those reader and writers
o Load latency for the loads to those cache lines

6.6.1.1 Supported Metrics

Following IBS OP derived metrics are used to generate false cache sharing report:

Metric Description

LOAD _STORE_COUNT Total Loads and stores sampled

AMD uProf User Guide AMDZ1

[AMD Public Use]

LOAD_COUNT Total Loads

STORE_COUNT Total Stores

LOAD_LATENCY Accumulated load latencies for the loads to cache lines
DC L2 HIT Load operations hit in data cache or L2 cache

LCL_CACHE_HIT (M) Loads that was serviced from the local cache (L3) and the cache
hit state was Modified.

LCL_CACHE_HIT (O) Loads that was serviced from the local cache (L3) and the cache
hit state was Owned.

LCL_CACHE_MISS Loads that are missed in local cache (L3) and serviced by remote
cache, local or remote DRAM.

RMT_CACHE_HIT (M) Loads that was serviced from the remote cache (L3) and the cache
hit state was Modified.

RMT_CACHE_HIT (O) Loads that was serviced from the remote cache (L3) and the cache
hit state was Owned.

DRAM_HIT_LCL Loads that hit in local memory (Memory channels attached to
local socket or local CCD)

DRAM_HIT_RMT Loads that hit in remote memory (Memory channels attached to
remote socket or other CCDs in the local socket)

STORE_DC _MISS Store operations missed in data cache

6.6.2 Cache Analysis using GUI
To configure and start profile:

To perform cache analysis, after selecting profile target select Cache Analysis profile type in Select
Profile Type page and start the profile.

Analyzing the report:

After the profile completion, navigate to Cache Analysis page in MEMORY tab to analyze the
profile data. This page shows the cache-lines, and it offsets with the associated metric values.

98

AMD uProf User Guide AMDA1

[AMD Public Use]

PROFILE MEMORY

ANALYZE

SUMMARY

Cache Line Offset Sort Data By Load Latency v Show Values By Sample Count [

Group By

Show only shared cache lines @) Address Mask 0x0 < Apply

Cache Line Address/Offset/Thread/Function | LOAD STORE COUNT LOAD_COUNT LOAD_LATENCY CACHE_HIT(M) LCL_CACHE HIT(M) | RMT_CACHE HIT(M) | STORE COUNT STOREDC MISS | DRAM_HIT LCL DRAM _HITRMT | LCL CACHE_

v 0x197¢4510c0 3182 550 7484 75 75 2632 2384
¥ 8 352 352 4741 54 54
~ PID[25220] | Thread [25230] 352 352 474 54 54
read_func:187 352 352 414 54 54
v x29 198 198 2743 21 21
* PID[25220] | Thread [25232] 198 198 2743 21 21
read_func:201 198 198 2743 21 il

v x10 1252 1252 1215

¥ PID [25220] | Thread [25231) 1252 1252 1215

write_func:263 1252 1252 1215

v 0x31 1380 1380 1169

¥ PID [25220] | Thread [25233] 1380 1380 1169

write_func:277 1380 1380 1169

14 »

|
Cache Analysis

o Double clicking on the function will navigate to source view of that function.
e Show only shared cache lines switch can be turned off to show all the cache-lines for which
samples were collected.
e Address Mask can be used to filters samples shown based on the mask provided.
e Sort Data By lists the metrics based on which the entries can be sorted. By default, it is
based on Load Latency metric.
e Group By dropdown option decides how the cache-line samples are grouped in the detailed
table. It has the following options:
o Cache Line Offset
o Threads and Processes
e Show Values By dropdown will let you either show the value as sample count or in
percentage.

6.6.3 Cache Analysis using CLI
Data Collection:

The CLI has a config type called "memory" to cache analysis data. Run the following command to
collect the profile data:

$ AMDuProfCLI collect --config memory -o /tmp/cache analysis <target app>

99

AMD uProf User Guide AMDZ1

[AMD Public Use]

This command will launch the program and collect the profile data required to generate the cache
analysis report. The data file /tmp/cache analysis.caperf Will contain raw profile data.

Report generation and Analysis:

Use the following CLI command to generate the cache analysis report

$ AMDuProfCLI report -i /tmp/cache analysis.caperf

This will generate a CSV report at /tmp/cache analysis/cache analysis.csv and this report
will have the following sections:

e SHARED DATA CACHELINE SUMMARY: Lists the summary values of all the metrics.

e SHARED DATA CACHELINE REPORT: Lists the cache lines and the associated summary
values of the metrics.

e SHARED DATA CACHELINE DETAIL REPORT: Lists

e The cache lines where there is a potential false sharing

o Offsets where those accesses occur and readers & writers to those offsets

e PID, TID, Function Name, Source file, Line number for those reader and writers
o Load latency for the loads to those cache lines

e Supported metrics

By default, the generated report will have a cutoff limit of 10 entries for each of the above-mentioned

sections. To include more entries, use option --1imit-cacheinfo <cutoff-value> With report
command:

$ AMDuProfCLI report --limit-cacheinfo <cutoff-value> -i /tmp/cache analysis.caperf

100

AMD uProf User Guide AMDA1

[AMD Public Use]

SHARED DATA CACHELINE SUMMARY

Load/Store Count: 900810
Load Count: 608091
Load Latency: 943070
Cache Hit(M): 734
Lel Cache Hit(M): 734
Rmt Cache Hit(M}: 0
Store Count: 558376
Store DC Miss: 7078
DRAM Hit Lcl: 0
DRAM Hit Rmt: 0
Lel Cache Hit(0): 0
Rmt Cache Hit(0): 0
Lel Cache Miss: 0
DC/12 Hit: 607357

SHARED DATA CACHELINE REPORT

Cacheline Address Cache Hit (M) Load/Store Count Load Count Load Latency ~ Cache Hit{M) Lcl Cache Hit{M) Rmt Cache Hit{M] Store Count Store DCMiss DRAM HitLcl DRAM Hit Rmt Lcl Cache Hit{O) Rmd
0xBe50c0 99.86% 29269 58598 943011 73 73 0 234098 07 0 0 0
(Oxef815ec) 0.14% 344862 344862 59 1 1 0 233149 1 0 0 0
(OxB8e5000 0.00% n 7 0 0 0 0 0 0 0 0 0
(0x10585d40 0.00% 1 0 0 0 0 0 1 0 0 0 0
(0x10585e80 0.00% 101399 42719 0 0 0 0 58620 0 0 0 0
0x10585¢c0 0.00% 161780 161780 0 0 0 0 32508 0 0 0 0

Cache Analysis - Summary sections

SHARED DATA CACHELINE DETAILED REPORT
Cacheline Address Offset Thread Id Local Cache Hit " Remote Cache HiLoad/Store Cou Load Count Load Latency CacheHitM) Lcl Cache Hit{M) Rmt Cache HitStore Count Store DCMiss DRA
(xBe50c0
08 80819 100.00% 0.00% 58598 38598 943011 13 JEE] 0 0 0
0x10 89820 0.00% 0.00% 134098 0 0 0 0 0 234098 o
xef815ec0
x4 89820 0.00% 0.00% 49082 49082 0 0 0 0 0 0
0x10 89820 0.00% 0.00% 31228 3128 0 0 0 0 0 0
0x10 89820 100.00% 0.00% 133149 233149 39 1 1 0 233149 1
0x10 89820 0.00% 0.00% 31403 31403 0 0 0 0 0 0
(xBe5000
0x18 80819 0.00% 0.00% 4 4 0 0 0 0 0
0x18 89820 0.00% 0.00% 3 3 0 0 0 0 0 0
0x10585d40
0x18 80819 0.00% 0.00% 1 0 0 0 0 0 1 0
(x10585¢80
0x24 80319 0.00% 0.00% 421m 42718 0 0 0 0 0 0
0x30 80319 0.00% 0.00% 58620 0 0 0 0 0 58620 0
(x10585ec0
0x10 80319 0.00% 0.00% 32508 32508 0 0 0 0 32508 0
0x10 80319 0.00% 0.00% 1290 1290 0 0 0 0 0 0

Cache Analysis — detailed report

By default, the metrics are sorted by Cache Hit (M) metric. Use any of the following metric with
the -—sort-by option to changes the sorting by order:

Sort-by metric Description

Idst-count Total Loads and stores sampled

101

AMD uProf User Guide AMDZ1

[AMD Public Use]

Id-count Total Loads

st-count Total Stores

cache-hitm Loads that was serviced either from the local or remote cache (L3)
and the cache hit state was Modified.

Icl-cache-hitm Loads that was serviced from the local cache (L3) and the cache hit
state was Modified.

rmt-cache-hitm Loads that was serviced from the remote cache (L3) and the cache
hit state was Modified.

Icl-dram-hit Loads that hit in local memory (Memory channels attached to local
socket or local CCD)

rmt-dram-hit Loads that hit in remote memory (Memory channels attached to

remote socket or other CCDs in the local socket)

13-miss Loads that are missed in local cache (L3) and serviced by remote
cache, local or remote DRAM.

st-dc-miss Store operations missed in data cache

6.7 Custom Profile

Apart the predefine configurations, the user can choose the interesting events to profile. To
perform the custom profile, follow the steps mentioned here:

To configure and start profile:

1. Clicking PROFILE -> Start Profiling will navigate to the Select Profile Target window. After
selecting the appropriate profile target, clicking Next button will take you to Select Profile Type
fragment.

2. In Select Profile Type fragment, selecting CPU Profile from the drop-down list, will take you
to the below screenshot.

3. Select Custom Profile in the left vertical pane as shown in the below screenshot.

102

AMD uProf User Guide AMDA1

[AMD Public Use]

AMDuProf - [C/Users/amd/AMDu..-17-2021_08-43-18.db]

f PROFILE SUMMARY ANALYZE

‘ Select Profile Type cruPprofile
Saved Configurations
Time-based Sampling Select the relevant events to profile.
Investigate Instruction Access Filter Monitored Events
Decoder E ts
Investigate Data Access) P::deﬁ;!:;::n“ Event MaskUserKernel Interval [Callstack!
i ioate iranchi [0x76 : 0x0] CYCLES_NOT_IN_HALT |[0xc0 : 0x0] RETIRED_INST o0 M M | 250000 B o
nvestigate Branching [OxcO : Ox0] RETIRED_INST E]
[Oxc1 + 0x0) RETIRED_MICRO_OPS [0x76 : 0x0] CYCLES_NOT_IN_HALT 0x0 % 250000 o U
Performan: N ETIRE| m
AssassPerformanch (Extafided) Eg:i; g:g; :E.I::Eg :; :zg — T ARd Evant [Oxc2 : 0x0) RETIRED_BR_INST o b B 50000 s O
s e — o oo s 00 9 @ 6 som B ©
Custom Profile [0X60 : Oxc8] L2_CACHE_ACCESS.FROM_L1_DC_MISS -Remove Event | o) pc_ accesses 2 2B 250000 B o
[0x64 : 0x1] L2_CACHE_MISS.FROM_L1_IC_MISS = -
[0x64 : 0x8] L2_CACHE_MISS.FROM_L1_DC_MISS [0x41] LS_MAB_ALLOCATES BY_... Oxb [M = 50000 " “
[0x71 : 0x11) L2_HWPF_HIT_IN_L3 e
e e] (e - T
[0x64 ; 0x6] L2_CACHE_HIT.FROM_L1_IC_MISS v
Advanced Options
v 1BS is disabled Config Name AMDuProf-EBP-ScimarkStable X Reset Name Previous Next _“

Custom Profile

4. Click Advanced Options to enable Callstack, set symbol paths (if the debug files are in different
locations) and other options. Refer this section for more information on this window.

5. Once all the options are set, the Start Profile button at the bottom will be enabled and you can
click on it to start the profile. After the profile initialization you will see this profile data
collection screen.

To Analyze the profile data

6. When the profiling stopped, the collected raw profile data will be processed automatically, and
you will the Hot spots window of Summary page. Refer this section for more information on
this window.

7. Clicking ANALY ZE button on the top horizontal navigation bar will go to Function HotSpots
window. Refer this section for more information on this window.

8. Clicking ANALYZE -> Metrics will display the profile data table at various granularities -
Process, Load Modules, Threads and Functions. Refer this section for more information on this
window.

9. Double-clicking any entry on the Functions table in Metrics window will make the GUI load
the source tab for that function in SOURCES page. Refer this section for more information on
this window.

103

AMD uProf User Guide AMDZ1

[AMD Public Use]

6.8 Advisory
Confidence Threshold

The metric with low number of samples collected for a program unit either due to multiplexing or
statical sampling will be greyed out.

e This is applicable to SW Timer and Core PMC based metrics.
e This confidence threshold value can be set through Preferences section in SETTINGS page.

PROFILE SUMMARY ANALYZE

Function HotSpots P Filters and Options

View All Data . Group By Process . Show Values By Sample Count . System Modules: | Exclude m

Process CYCLES_NOT_IN_HAL RETIRED_INST RETIRED_BR_INST_M L1_DC_ACCESSES.ALL IPC CPl 2
¥ ScimarkStable.exe (PID 7036) 111236 250189
+ Load Modules
ScimarkStable.exe 68074 110644 1448 249249 1.63 0.62
[Sys] ntoskrnl.exe 210 46 E 172 0.22 4.57
[Sys] msvcr80.dll 208 531 733 2.55 0.39
[Sys] atikmdag.sys 25 1] | 13 0.04 25.00
[Sys] hal.dll 1
[Sys] Netwtw06.sys S "
< >
Search: Type function name... Reset -
Functions (for ScimarkStable.exe (PID 7036)) CYCLES_NOT_IN_HAL RETIRED_INST RETIRED_BR_INST_M L1_DC_ACCESSES.ALL IPC CPl 2
LU_factor 14330 31226 68 73395 2.18 0.46
SOR_execute 14214 7308 | | 14se0 0.51 1.94
Random_nextDouble 11943 11194 845 46551 0.94 1.07
SparseCompRow_matmult 10230 28848 4 52557 2.82 0.35
FFT_transform_internal 8831 22071 25 29495 2.50 0.40
MonteCarlo_integrate 6697 6056 453 26205 0.90 1.11
FFT_bitreverse 1317 2845 51 3684 2.16 0.46
Array2D_double_copy 281 547 1387 1.95 0.51
FFT_inverse 227 542 1096 2.39 042
< >

Confidence level of metrics — low confidence samples are greyed out
Issue Threshold

Highlight the CPI metric’s cells exceeding the specific threshold value (>1.0). Those cells will be
highlighted in pink to show them as potential performance problem.

104

AMD uProf User Guide AMDA1

[AMD Public Use]

PROFILE SUMMARY ANALYZE

Function HotSpots P Filters and Options

View All Data . Group By Process . Show Values By Sample Count . System Modules: = Exclude m

Process CYCLES_NOT_IN_HAL RETIRED_INST RETIRED_BR_INST_M L1.DC ACCESSES.ALL IPC CPl)
¥ ScimarkStable.exe (PID 7036) 111236 1456 250199

~ Load Modules
ScimarkStable.exe 68074 110644 1448 249249 1.63 062
[Sys] ntoskrnl.exe 210 46 e 172 0.22 4.57
[Sys] msvcr80.dil 208 531 733 2. JaRele
[Sys] atikmdag.sys 25 13 0.04
[Sys] hal.dll I
[Sys] Netwtw06.sys S v
< >
Search: | Type function name... Reset -
Functions (for ScimarkStable.exe (PID 7036)) CYCLES_NOT_IN_HAL RETIRED_INST RETIRED_BR_INST_M L1_DC_ACCESSES.ALL IPC CPl)
LU_factor 14330 31226 68 73385 218 046
SOR_execute 14214 7308 14860 0.9 1.94
Random_nextDouble 11943 11194 845 46551 0.94/ 1.07
SparseCompRow_matmult 10230 28848 4 52557 2.8 U3
FFT_transform_internal 8831 22071 25 29495 2.50 0.40
MonteCarlo_integrate 6697 6056 453 26205 0.90 11
FFT_bitreverse 1317 2845 51 3684 2.16 0.46
Array2D_double_copy 281 547 1387 1.95 0.51
FFT_inverse 227 542 1096 2.39 042
< >

CPI metric - threshold based performance issue

6.9 ASCII dump of IBS samples

For some usage scenarios, it would be useful to analyze the ascii dump of IBS OP profile samples
- perform follow the below mentioned steps:

1. To collect the IBS OP samples, run

C:\> AMDuProfCLI.exe collect -e event=ibs-op,interval=100000, loadstore, ibsop-count-
control=1 -a --data-buffer-count 20480 -d 250 -o C:\temp\cpuprof-ibs

2. Once the raw file is generated, run the following command to translate and get the ascii dump
of IBS OP samples:

C:\> AMDuProfCLI.exe translate --ascii event-dump -i C:\temp\cpuprof-ibs.prd

3. This will generate the text file that contains ascii dump of the IBS OP samples -
C:\temp\cpuprof-ibs\IbsOpDump.csv
4. During collection following control knobs are available:

e -e event=ibs-op,interval=100000,loadstore,ibsop-count-control=1
o interval = sampling interval
o loadstore - collect only the load & store ops (Windows only option)

105

AMD uProf User Guide AMDZ1

[AMD Public Use]

o ibsop-count-control=1 = count dispatched micro-ops (0 for “count clock cycles”)
o --data-buffer-count 1024 - number of per-core data buffers to allocate

In case if there are too many missing records then try any of the following:

e Increase the sampling interval
e Increase the data buffer count
e Reduce the number of cores profiled

6.10 Limitations

e CPU Profiling expects the profiled application executable binaries must not be compressed
or obfuscated by any software protector tools, e.g., VMProtect.

e Thread concurrency graph is Windows only feature and requires admin privileges.

o In case of AMD EPYC 1% generation B1 parts, only one PMC register is used at a time for
Core PMC event-based profiling (EBP).

106

AMD uProf User Guide AMDA1

[AMD Public Use]

Chapter 7 Performance Analysis (Linux only)

This chapter explains the Linux specific performance analysis models and for the common
Performance analysis refer this chapter.

7.1 OpenMP Analysis

The OpenMP API uses the fork-join model of parallel execution. The program starts with a single
master thread to run the serial code and when a parallel region is encountered multiple threads
perform the implicit or explicit tasks defined by the OpenMP directives. At the end of that parallel
region, the threads join at the barrier and only the master thread continues to execute.

When the threads execute the parallel region code, they should utilize all the available CPU cores
and the CPU utilization should be maximized. But due to several reasons the threads wait without
doing useful work:

« Idle: A thread finishes it task within the parallel region and waits at the barrier for the other
threads to complete.

e Sync: If locks are used inside the parallel region, threads can wait on synchronization locks
to acquire the shared resource.

e Overhead: Thread management overhead.

The OpenMP Analysis helps to trace the activities performed by OpenMP threads and their states
and provide the thread state timeline for parallel regions to analyze the performance issues.

Support matrix:

Component Supported Versions Languages
' OpenMP Spec ~ OpenMPV50
Compiler LLVM 8§, 9, 10, 11 C, C++
AOCC 2.1,22,23,3.0 C, C++, Fortran
ICC19.1 C, C++, Fortran
OS Ubuntu 18.04 LTS, 20.04 LTS
RHEL 8
CentOS 8

107

AMD uProf User Guide AMDZ1

[AMD Public Use]

Prerequisites
o Compile the OpenMP application using a supported compiler (on a supported platform) with

the required compiler options to enable OpenMP.

7.1.1 Profiling OpenMP Application using GUI

To configure and start profile:

To enable OpenMP profiling, after selecting profile target and profile type, click on Advanced
Options button to turn on the Enable OpenMP Tracing option in Enable OpenMP Tracing pane,
as seen in the below screen

PROFILE SUMMARY ANALYZE SETTINGS

Advanced Options

Saved Configurations

Remote Profile

You can enable the openMP tracing option to collect openMP metrics data.

Enable OpenMP Tracing [o]

Advanced Options — Enable OpenMP Tracing

Analyzing the OpenMP report:

After the profile completion, navigate to HPC page to analyze the OpenMP tracing data. This page
has the following views that can be navigated through the left vertical pane.

e Overview that shows the quick details about the runtime.

e Parallel Regions that show the summary of all the parallel regions. This tab is useful to quickly
understand which parallel region might be load imbalanced. Double click on the region names
to open the ‘Regions Detailed Analysis’ page.

e Regions Detailed Analysis that shows the activity of the threads in a parallel region. If a thread

spends too much time on non-work activity, it should be further investigated and optimized to
reduce the non-work activity time.

108

AMD uProf User Guide AMDA1

[AMD Public Use]

x AMDuProf - [/tmp/hpc/AMDuProf...y-uprof-ethanolx2.db] — a X

PROFILE SUMMARY ANALYZE

OpenMP

Parallel Regions
Total Time : 5.00s
Total Parallel Time : 1545
Total Serial Time : 3465
Parallel Time % : 30.76
Max Cores Utilized : 64

Total Threads Created : 64

HPC — Overview page

x AMDuProf - [/tmp/hpc/AMDuProf..y-uprof-ethanolx2.db]

PROFILE SUMMARY ANALYZE

Ooverview Process IDs: MarDyn_aocc_mpi_omp_rel[228077] .
Double dick on the region names to view its detailed analysis.

Parallel Region balance Time(s) ~ balance Time(%) Threads Idle
PrintThreadPinningToCPUSomp$UNKNOWN:64@PrintThreadPinningToCPU.cpp:25 0.20 65.57 64
ParticlePairs2PotForceAdapter::ParticlePairs2PotForceAdapterSomp$ UNKNOWN:64@ParticlePairs2PotForceAdapter.h:31 0.00 0.00 64
LinkedCells::rebuildompUNKNOWN:64@LinkedCells.cpp:195 0.00 0‘00- 64
SlicedCellPairTraversal<FullParticleCell>::SlicedCellPairTraversal$ompSUNKNOWN:64@SlicedCellPairTraversal.h:27 0.00 0.00 64
LinkedCells::update_via_coplesompUNKNOWN:64@LinkedCells.cpp:310 0.00 0.00 64
LinkedCells::deleteOuterParticlesompUNKNOWN:64@LinkedCells.cpp:613 000 0.00] 64
LinkedCells::getNumberOfParticles$ompSUNKNOWN:64@LinkedCells.cpp:573 0.00 0.00 64
VectorizedCellProcessor::VectorizedCellProcessorompUNKNOWN:64@VectorizedCellProcessor.cpp:91 0.00 0.00| 64
LinkedCells::deleteOuterParticlesSomp$UNKNOWN:64@LinkedCells.cpp:613 0.00 0.00 64
LinkedCells::update_via_copiesompUNKNOWN:64@LinkedCells.cpp:310 0.00 0.00 64
CommunicationPartner:collectMoleculesinRegionompUNKNOWN:64@CommunicationPartner.cpp:452 0.00 0‘00‘ 64
CommunicationPartner::collectMoleculesinRegionompUNKNOWN:64@CommunicationPartner.cpp:452 0.00 0.00 64
CommunicationPartner::collectMoleculesinRegion$ omp$UNKNOWN:64@CommunicationPartner.cpp:452 0.00 0‘00‘ 64
CommunicationPartner::collectMoleculesinRegionompUNKNOWN:64@CommunicationPartner.cpp:452 0.00 0.00 64
CommunicationPartner:collectMoleculesinRegion$ omp$UNKNOWN:64@CommunicationPartner.cpp:452 0.00 0‘00‘ 64
CamomunicatianBartnar:callacthinlacloc s IRICAL atinnDartonr con:A8Y nnn nnn Al " -

HPC — Parallel Regions view

109

AMD uProf User Guide AMDZ1

[AMD Public Use]

x AMDUuProf - [/tmp/hpc/AMDuProf..y-uprof-ethanolx2.db]

PROFILE SUMMARY ANALYZE

Overview MarDyn_aocc_mpi_omp rel[228077] X
Parallel Regions Thread State Timeline (Region Elapsed Time: 0.000838 s) Parallel Region slicedCellPairTraversal<FullParticleCell>zSlicedCellPairTraversalompUNKNOV)
_ ’
1
2
3
2
= 4
:s

: ' ' ' ' ' : L
0.00s 0.00s 0.00s 0.00s 000s 000s 0.00s 000s

Time(in seconds)

Thread no Thread Id Idle Time (s) Sync Time (s) ‘Overheac|

0 228077 0.00 0.00
1 228099 0.00 0.00
2 228103 0.00 0.00
3 228107 0.00 0.00
4 228112 0.00 0.00
5 228116 0.00 0.00
4

HPC — Regions Detailed Analysis view

7.1.2 Profiling OpenMP Application using CLI
Collect profile data:
Use the following command to profile OpenMP application using uProf CLI

$./AMDuProfCLI collect --omp --config tbp -o /tmp/myapp perf <openmp-app>

While performing the regular profiling, add option ‘--omp’ to enable OpenMP profiling. This
command will launch the program and collect the profile data required to generate the OpenMP
analysis report. The data file /tmp/myapp perf.caperf Will contain raw profile data.

Generate profile report:

Generate CSV report using the aMburProfcLI report command. No additional option needed for
OpenMP report generation. uProf checks for availability of any OpenMP profiling data and includes
it in the report if available.

$./AMDuProfCLI report -i /tmp/myapp perf.caperf

This will generate a CSV report at /tmp/myapp perf/myapp perf.csv and this report will have
the following sections:

110

AMD uProf User Guide AMDA1

[AMD Public Use]

An example of OpenMP report section in the CSV file shown below.

OpenMP TRACING REPORT
(Time/durations are in seconds.)

OpenMP OVERVIEW (PID-27842)
Total Time 2.37

Parallel Time 2.36
Serial Time 0.01
Parallel Time % 99.78
Max cores utilized 6
Total threads created 4

OpenMP PARALLEL-REGION METRIC (PID-27842)

Region Imbalance Time Imbalance Time(%) Threads Idle Time Sync Time Overhead Work Timi Loop Chur Schedule Elapsed Time
collatz_sequence_computeSompSparallel_for:4@collatz-sequence-omp-10pr.c:34 0.000007 0.001417 4 0.000007 0 0.025983 0.450394 1 Static 0.476391
collatz_sequence_computeSompSparallel_for:4@collatz-sequence-omp-10pr.c:34 0.000005 0.001008 4 0.000005 0 0.023332 0.447906 1 Static 0.471243
collatz_sequence_computeSompSparallel_for:4@collatz-sequence-omp-10pr.c:34 0.000006 0.001224 4 0.000006 0 0.023204 0.446558 1 Static 0.469768
collatz_sequence_computeSompSparallel_for:4@collatz-sequence-omp-10pr.c:34 0.000009 0.001862 4 0.000009 0 0.0233 0.44654 1 Static 0.469849
collatz_sequence_computeSompSparallel_for:4@collatz-sequence-omp-10pr.c:34 0.000239 0.050082 4 0.000239 0 0.021354 0.456124 1 Static 0.477718
OpenMP THREAD METRIC (collatz_sequence_computeSompSparallel_ford@collatz-sequence-omp-10pr.c:34)
ThreadNum Threadld Idle Time Sync Time Overhead Work Time

o 27842 o 0 0.064491 0.411899

1 27845 0.00001 0 0.026767 0.449614

2 27846 0.000008 0 0.012695 0.463688

3 27847 0.000009 0 0.000005 0476377

OpenMP THREAD METRIC (collatz_sequence_computeompparallel_ford@collatz-sequence-omp-10pr.c:34)

ThreadNum Threadid Idle Time Sync Time Overhead Work Time
o 27842 o 0 0.060944 0.410298
1 27845 0.000007 0 0.023169 0.443067
2 27846 0.000006 0 0.009212 0.462025
3 27847 0.000006 0 0.000005 0.471232

OpenMP THREAD METRIC (collatz_sequence_computeSompSparallel_for:4@collatz-sequence-omp-10pr.c:34)
ThreadNum Threadid Idle Time Sync Time Overhead Work Time
0 27842 0 0 0.060453 0.409315

It has following sub-sections:
e OpenMP Overview

e OpenMP PARALLEL-REGION METRIC: This helps in understanding the imbalanced
region, i.e., a region with less total work time with respect to its total time

e OpenMP THREAD METRIC: This helps in understanding how each thread spent its time in
the parallel region. If a thread spends too much time on non-work activity, then the parallel
region should be optimized further to improve the work time of each thread in that region

7.1.3 Environment variables
e AMDUPROF_MAX PR_INSTANCES - Set the max number of unique parallel regions to be
traced. The default value is set to 512.

¢ AMDUPROF_MAX PR _INSTANCE_COUNT - Set the max number of times one unique
parallel region to be traced. The default it is set to 512.

111

AMD uProf User Guide

AMDZ1

[AMD Public Use]

7.1.4 Limitations

The following features not yet supported in this release.

OpenMP profiling with System-wide profiling scope.

Loop chunk size and Schedule type when these parameters are specified using schedule

clause. It shows the default values (i.e., ‘1’ & ‘Static’) in this case.
Nested parallel regions.

GPU offloading and related constructs.

Callstack for individual OpenMP threads.

OpenMP profiling on Windows and FreeBSD platforms.
Applications with static linkage of OpenMP libraries.

112

AMD uProf User Guide AMDA1

[AMD Public Use]

7.2 MPI Profiling

The MPI programs that are launched through mpirun or mpiexec launcher programs can be profiled
by uProf. To profile the MPI applications and analyze the data, perform the following the steps:

1. Collect the profile data using CLI collect command.

2. Process the profile data using CLI’s translate command which will generate the profile DB.

3. Import the profile DB in GUI or generate the CSV report using CLI’s report command.

Support matrix:

Component Supported Versions
"MPISpec MPI-3.1
MPI Libraries Open MPI v4.1.0
MPICH 3.4.1

ParaStation MPI 5.4.8
Intel MPI 2019
(ON) Ubuntu 18.04 LTS, 20.04 LTS
RHEL 8
CentOS 8

7.2.1 Data Collection using CLI

Usually, MPI jobs are launched using MPI launchers like mpirun, mpiexec, etc., We need to use
AMDuProfCLI to collect profile data for an MPI application.

MPI job launch using mpirun uses the following syntax:
$ mpirun [options] <program> [<args>]

AMDuUProfCLI is launched using<program>and the application is launched using the
AMDuProfCLI's arguments. So, profiling an MPI application using AMDuProfCLI uses the
following syntax:

$ mpirun [options] AMDuProfCLI [options] <program> [<args>]

113

AMD uProf User Guide AMDZ1

[AMD Public Use]

The MPI profiling specific AMDuProfCLI options:

e —-mpi option is to denote that is to profile MPI application. The AMDuProfCLI will collect
some additional meta data from MPI processes

e --output-dir <output dir> specifies the path to a directory in which the profile
files are saved. For each MPI process a corresponding raw profile file will be created with
the following naming convention "AMDuProf-<hostname>-<TS>-<PID>.caperf"

A typical command uses the following syntax:
$ mpirun -np <n> /tmp/AMDuProf/bin/AMDuProfCLI collect
--config <config-type> --mpi --output-dir <outpit dir> [mpi app]

[<mpi app options>]

If an MPI application is launched on multiple nodes, AMDuProfCLI will profile all the MPI rank
processes running on all the nodes and the user can either analyze the data for processes ran on
one/many/all nodes.

Method 1 - Profile all the ranks on single or multiple nodes

To collect profile data for all the ranks running on a single node:

$ mpirun -np 16 /tmp/AMDuProf/bin/AMDuProfCLI collect --config tbp
--mpi --output-dir /tmp/myapp-perf myapp.exe

To collect profile data for all the ranks in multiple nodes, use -H / --host mpirun options or specify
-hostfile <hostfile>

$ mpirun -np 16 -H hostl,host2 /tmp/AMDuProf/bin/AMDuProfCLI collect

--config tbp --mpi --output-dir /tmp/myapp-perf myapp.exe

Method 2 - Profiling a specific rank(s)

To profile only a specify rank running on a host2:

$ export AMDUPROFCLI CMD=/tmp/AMDuProf/bin/AMDuProfCLI collect --config tbp
--mpi --output-dir /tmp/myapp-perf

$ mpirun -np 4 -host hostl myapp.exe : -host host2 -np 2
$SAMDUPROFCLI CMD myapp.exe

Method 3 — Using MPI config file

The mpirun also takes config file as an input and the AMDuProfCLI can also be used with the config
file to profile the MPI application

114

AMD uProf User Guide AMDA1

[AMD Public Use]

config file (myapp_config):

#MPI - myapp config file
-host hostl -n 4 myapp.exe
-host host2 -n 2 /tmp/AMDuProf/bin/AMDuProfCLI collect --config tbp --mpi \

--output-dir /tmp/myapp-perf myapp.exe
To run this config to collect data only for the MPI processes running on host2

$ mpirun --app myapp config

7.2.2 Analyze the data using CLI

The data collected for MPI processes can either be analyzed using the CSV reported by the
AMDuProfCLI’s report command.

For CLI, following reporting options are possible

e Generating report for a specific MPI process (using the -i option)

$ AMDuProfCLI report \
-i /tmp/myapp-perf/AMDuProf-<hostname>-<Timestamp>-<PID>.caperf

o Generating report for all the MPI processes ran on the localhost (ex: hostl) in which the
MPI launcher was launched (using new option —-input-dir)

$ AMDuUProfCLI report —--input-dir /tmp/myapp-perf/ --host hostl

This will create an output dir /tmp/myapp-perf/AMDuProf-Summary-host1/ and under
that dir result files AMDuProf-Summary-hostl.db and AMDuProf-Summary-hostl.csv

Option —--host is not mandatory to create the report file for localhost.

o Generating report for all the MPI processes ran on another host (ex: host2) in which the
MPI launcher was not launched

$ AMDuUProfCLI report —--input-dir /tmp/myapp-perf/ --host host2

This will create an output dir /tmp/myapp-perf/AMDuProf-Summary-host2/ and under
that dir result files AMDuProf-Summary-host2.db and AMDuProf-Summary-host2.csv

o Generating report for all the MPI processes ran on all the hosts

$ AMDuProfCLI report --input-dir /tmp/myapp-perf/ --host all

115

AMD uProf User Guide AMDZ1

[AMD Public Use]

This will create an output dir /tmp/myapp-perf/AMDuProf-Summary-all/ and under
that dir result files AMDuProf-Summary-all.db and AMDuProf-Summary-all.csv

7.2.3 Analyze the data using GUI
To analyze the profile data in the GUI, run the following steps:

e Generate the profile DB as specified in this section
e Import the profile DB as specified in this section

After importing, profile data all the profiled ranks will be available for analysis as shown in the
below screenshot.

x AMDuProf - [/tmp/hpc/AMDuProf..y-uprof-ethanoix2.db]

PROFILE SUMMARY ANALYZE

» Filters and Options

Function HotSpots

System Modules: | Exclude m

Show Values By Sample Count

View Overall Assessment Group By Process 1-‘5’-'—

Process IPC vy ‘ (] RETIRED_BR_INST_MISP (PTI) SRETIRED BR INST MISP L1 DC ACCESSES (PTI) ‘ L1.DC_MISSES (PTI)
» MarDyn_aocc_mpi_omp_rel (PID 228080) (Rank 3) | 1,92‘ 0.52‘ O.ZB‘ 0.064 99076. 6,85“
» MarDyn_aocc_mpi_omp_rel (PID 228078) (Rank 2) 2.15 0. 47’ 031 0.06 1010.96 6.03
» MarDyn_aocc_mpi_omp_rel (PID 228079) (Rank 1) 2.64 0.38 0.29 0.06 1027.95 6.51
» MarDyn_aocc_mpi_omp_rel (PID 228077) (Rank 0) 3.70 0.Z7v 017 0.03 1073.06 7.33

unctions (for MarDyn_aocc_mpi_omp_rel (PID 228080) (Rank 3 IPC ¥ (] [RETIRED_BR_INST_MISP (PTI) | SSRETIRED_BR_INST MISP | L1_DC_ACCESSES (PTI) L1_DC_MISSES (PTI) £
013 935.02 13357

void VectorizedCellProcessor::_calculatePairs<SingleCellPol 791

FullMolecule::FullMolecule(FullMolecule const&)

Quaternion::rotate(std::array<double, 3ul> const&) const 866.67
__memset_avx2_unaligned_erms

void VectorizedCellProcessor::_calculatePairs<CellPairPolicy 577 017 907.12 117.03
void VectorizedCellProcessor::_calculatePairs<CellPairPolicy 4.65 0.22 1022.59 11237

double* std::vector<double, AlignedAllocator<double, 64ul

ParticleCellBase::;getBoxMin(int) const

. e PR

MPI — Profile data for all ranks

71.2.4 Limitations

e MPI environment parameters like ‘Total number of ranks’ and ‘Number of ranks running
on each node’ are currently supported only for OpenMPI.

116

AMD uProf User Guide AMDA1

[AMD Public Use]

7.3 Profiling Linux System Modules

To attribute the samples to system modules (e.g., glibc, libm, etc.), uProf uses the corresponding
debug info files. Usually, the Linux distros does not come with the debug info files, but most of the
popular distros provide options to download the debug info files.

Refer the below links to understand how to download the debug info files.
o Ubuntu: https://wiki.ubuntu.com/Debug%20Symbol%20Packages
e SLES/OpenSUSE: https://www.suse.com/support/kb/doc/?id=3074997

e RHEL/CentOS: https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/intro.debuginfo.htmi

Make sure to download the debug info files for the required system modules for the required Linux
distros before starting the profiling.

117

https://wiki.ubuntu.com/Debug%20Symbol%20Packages
https://www.suse.com/support/kb/doc/?id=3074997
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/intro.debuginfo.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/intro.debuginfo.html

AMD uProf User Guide AMDZ1

[AMD Public Use]

7.4 Profiling Linux Kernel

To profile and analyze the Linux kernel modules and functions, you need to do the following:

1. Enable kernel symbol resolution
2. Download and install kernel debug symbol packages and source

(or)
3. Build Linux kernel with debug symbols

Once the kernel debug info is available in the default path, uProf automatically locates and utilizes
that debug info to show the kernel sources lines and assembly in the source view.

Supported OS Ubuntu 18.04 LTS, Ubuntu 20.04 LTS, RHEL 7, RHEL 8

74.1 Enable kernel symbol resolution

To attribute the kernel samples to appropriate kernel functions, uProf extracts required information
from /proc/kallsyms file. Exposing kernel symbol addresses through /proc/kallsyms requires
setting of the appropriate value to /proc/sys/kernel/kptr_restrict file.

o Set /proc/sys/kernel/perf_event_paranoid config is to -1

o Set /proc/sys/kernel/kptr_restrict to appropriate value
= 0 - kernel addresses are available without limitations
= 1 > kernel addresses are available if the current user has a CAP_SYSLOG capability
= 2 -> kernel addresses are hidden

Set the perf_event_paranoid value either by

$ sudo echo -1 > /proc/sys/kernel/perf event paranoid

or
$ sudo sysctl -w kernel.perf event paranoid=-1

Set the kptr_restrict value either by
$ sudo echo 0 > /proc/sys/kernel/kptr restrict

or
$ sudo sysctl -w kernel.kptr restrict=0

7.4.2 Download and install kernel debug symbol packages

On a Linux system, the /boot dir either contains the compressed vmlinuz or uncompressed vmlinux
image. These kernel files are stripped and has no symbol and debug information. If there is no debug

118

AMD uProf User Guide AMDA1

[AMD Public Use]

info AMDuProf will not be able to attribute samples to kernel functions and hence by default uProf
cannot report kernel functions.

Some Linux distros provide debug symbol files for their kernel which can be used for profiling
purposes.

Ubuntu:

Follow the below mentioned steps to download kernel debug info and source code on Ubuntu
systems. Verified on Ubuntu 18.04.03 LTS.

1. Trust the debug symbol signing key
$ sudo apt install ubuntu-dbgsym-keyring // Ubuntu 18.04 LTS and newer:

$ sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys
F2EDC64DCSAEE1F6RIC621F0C8CAB6595FDFF622 [/ Earlier releases of Ubuntu use:

2. Add the debug symbol repository

$ echo "deb http://ddebs.ubuntu.com $(lsb_release -cs) main restricted
universe multiverse

deb http://ddebs.ubuntu.com $(lsb release -cs)-security main restricted
universe multiverse

deb http://ddebs.ubuntu.com $(lsb_release -cs)-updates main restricted
universe multiverse

deb http://ddebs.ubuntu.com $(lsb release -cs)-proposed main restricted
universe multiverse"™ | \

sudo tee -a /etc/apt/sources.list.d/ddebs.list
3. Retrieve the list of available debug symbol packages

$ sudo apt update
4. Install the debug symbols for the current kernel version

$ sudo apt install --yes linux-image-$ (uname -r)-dbgsym
5. Download the kernel source

$ sudo apt source linux-image-unsigned-$ (uname -r)
or

$ sudo apt source linux-image-$ (uname -r)

Once the kernel debug info file gets downloaded, it can be found at the default path:

$ /usr/lib/debug/boot/vmlinux-"uname -r°

119

http://ddebs.ubuntu.com/
http://ddebs.ubuntu.com/
http://ddebs.ubuntu.com/
http://ddebs.ubuntu.com/

AMD uProf User Guide AMDZ1

[AMD Public Use]

RHEL.:

Follow the steps mentioned at the page https://access.redhat.com/solutions/9907 to download the
RHEL kernel debug info.

Once the kernel debug info file gets downloaded, it can be found at the default path:
$ /usr/lib/debug/lib/modules/ uname -r /vmlinux
7.4.3 Build Linux kernel with debug symbols

If the debug symbol packages are not available for pre-built kernel images, then to analyze kernel
functions at source level requires recompilation of the Linux kernel with debug flag enabled.

7.4.4 How to analyze hotspots in kernel functions:

If the debug info for kernel modules is available, any subsequent CPU performance analysis will
attribute the kernel space samples appropriately to [vmlinux] module and display the hot kernel
functions. Otherwise, kernel samples will be attributed to [kernel.kallsyms]_text module.

1. Ifyou see [vmlinux] module, then you should be able to analyze the performance data for kernel
functions in the Source view and IMIX view on GUI. The CLI should also be able to generate
source level report and IMIX report for the kernel.

2. If the source is downloaded and the Source Path is set while importing the db or in Sources
section in Advanced Options, then you should be able to see the kernel source lines in GUI.

3. Passing of kernel debug file path, passing of kernel source path is not recommended as that
might lead to performance issues.

Below screenshot is the source view of a kernel function.

120

https://access.redhat.com/solutions/9907

AMD uProf User Guide AMDA1

[AMD Public Use]

x AMDuProf - [/tmp/AMDuProf-Feb...-18-2021_09-43-59.db] -] X
PROFILE SUMMARY ANALYZE SOURCES
poll_idle x
» Filters
PID: [0] [kernel] . TID: TID [0] ' View timer-based profile ' Show Values By Sample Count ' Show Assembly [@]
A Line } R Source CPU_TIME (5) =
15 if (!current_set_polling_and_test()) { 0.03
while (!need resched())
17 cpu_relax();
18 }
19 current_clr_polling();
20
21 return index;
.22 } =
Address | tine | Assembly CPU_TIME (5) =
oxffffffffb65c2ecs 17 pause
oxffffffffb65c2eca 16 mov %gs:0x00015c00+(),%rax 11.63
oxfrffffffbe5c2eds |16 |mov (%rax),%rax 130
oxffffffffb65c2ed6 16 test $0x08,%al 0.81
oxfFFFfFffbe5c2eds |16 |jz oxffFfffffaloczec8 <poll idle + 0x28>
exffffffffb65c2eda 19 mov %gs:0x00015c00+() ,%rax
oxfFFFFfffbe5c2ee3 |19 [Lock andb sexdf,+6xe2 (%rax)
oxffffffffb65c2ees 19 lock addl $0x00,-0x04-(%rsp)
oxffffffffb65c2eece .19 .mov (%rax),%rax -

Linux Kernel function — Source view

7.4.5 Linux kernel callstack sampling

In System-wide profile callstack samples too can be collected for kernel functions. For example, the
below command will collect the kernel callstack:

AMDuProfCLI collect -a -g /usr/bin/stress-ng —--cpu 8 --io 4 —--vm 2 --vm-bytes
128M --fork 4 --timeout 20s

Below is the screenshot of Flamegraph constructed for the kernel-space callstack samples:

121

AMD uProf User Guide AMDZ1

[AMD Public Use]

x AMDuProf - [/tmp/AMDuProf-F..8-2021_09-43-59.caperf] - [m} X

PROFILE SUMMARY ANALYZE

Function HotSpots Counters: CPU_TIME | ProcessIDs: [25122]stress-ng Zoom Entire Graph Search

Metrics Click on any block in Flame Graph to focus on it's children

Call Graph

kmem... _dlo...
seq 0... _dlo... looku...
nr ru... kernfs... appar... raw ... looku... walk ... vma_...
loada... do_dentry open _d lookup walk ... _kma... path l... _rhi..
seq re.. vfs_open lookup_fast link_p... may ... strncp...seq re... filena... vma_....
procr... path_openat getna... kernfs... user ... COpYy_process...
_visr.. do filp_open getna... _vfsr... vfs st... _do fork
vfs_read do_sys_open vfs_read task work_run SYSC_... SyS_clone
SyS_re... sys_openat Te... exit_to_userm... SyS n... do_syscall_ 64
do_sy... do_syscall 64 do_syscall 64 glob i... do_syscall 64 do sy... entry SYSCAL...
_dl ca...entry ... entry SYSCALL 64 after hwframe entry SYSCALL... glob@... entry SYSCALL... entry ... _Gl__fork
dim... _GI_... open64 _Glread stress.. _Gl_ close n... _GI_... _GI_...stress-ng!0x5...

Kernel callstack - Flamegraph

7.4.6 Constraints
1. Do not move the downloaded kernel debug info from its default path.

2. If the kernel version gets upgraded, then download the kernel debug info for the latest kernel
version. uProf would fail to show correct source and assembly if there is any mismatch of kernel
debug info and kernel version.

3. While profiling or analyzing kernel samples, do not reboot the system in between. Rebooting
the system, causes the kernel to load at a different virtual address due to KASLR feature of
Linux kernel.

4. The settings in the /proc/sys/kernel/kptr_restrict file enable uProf to resolve kernel symbols and
attribute samples to kernel functions. It does not enable the source and assembly level analysis,
call-graph analysis.

122

AMD uProf User Guide AMDA1

[AMD Public Use]

Chapter 8 Performance Analysis (Windows)

8.1 Thread Concurrency

Thread concurrency graph shows the number of threads of a process, running concurrently for the
time elapsed (in seconds). It uses Windows ETL records to generate this graph. It is:

e A Windows OS only feature that requires Admin privileges
o Available only with CPU Profile types

To enable this, after selecting profile target and profile type, click on Advanced Options button to
turn on the Enable Thread Concurrency switch in Enable Thread Concurrency Option pane,

as seen in the below screen.

Pal AMDuProf

PROFILE

Advanced Options

Saved Configurations

Enable this switch to view the Thread Concurrency Graph which shows the number of threads running concurrently for the time elapsed(in seconds) for a given

process.
Enable Thread Concurrency @
Enable Thread Name Collection [o]

Enable C55 O

Specify call stack settings which will collect data regarding function call stack. FPO is related to Frame Pointer Omission which when enabled leads to better cal
| stack reconstruction and better call graph views.

Enable FPO a»
Call Stack Collection User Mode .
Call Stack Depth ‘ = 16 + ‘

Enable start Paused switch to launch the application (if specified) but not collect the profile data or if you are using Profile APl instrumentation then you can spe
cify that or specify a start delay which is launch the application (if specified) but start the profiling only after the delay period. Optionally you can specify the pro
file duration (in seconds) after which the profiling will be stopped.(StartPaused, Delay and Instrumentation not supported for Power Profiling)

Enable start paused a

Are you using Profile Instrumentation API? a» v

w IBS is disabled Config Name AMDuProf-TBP-ScimarkStable(3) X Reset Name Previous Next _-

Start Profiling — Advanced Options

After the profile completion, clicking SUMMARY - Thread Concurrency will take you to the
following window to analyze the thread concurrency of the application.

123

AMD uProf User Guide AMDZ1

[AMD Public Use]

AMDuProf - [C;/Users/amd/AMDu...-17-2021_09-20-01.db]

110

PROFILE SUMMARY ANALYZE

Hot Spots Thread Concurrency Graph

Display data as Percentage . Process: 16264.

Session Information

100

Elapsed Time (in % of total seconds)

0 . . L L L L L

0 1 2 3 4 5 6 7 8

Thread Count

e

'
SUMMARY - Thread Concurrency

124

AMD uProf User Guide AMDA1

[AMD Public Use]

Chapter 9 Power Profile

System-wide Power Profile

AMD uProf profiler offers live power profiling to monitor the behavior of the systems based on
AMD CPUs, APUs and dGPUs. It provides various counters to monitor power and thermal
characteristics.

These counters are collected from various resources like RAPL, SMU and MSRs. These are
periodically collected at regular timer interval and either reported as text file or plotted as line graphs
and can also be saved into DB for future analysis.

Features

e AMDuProf GUI can be used to configure and monitor the supported energy metrics

e AMDuProf GUI’'s TIMECHART page helps to monitor and analyze:
= Logical Core level metrics - Core Effective Frequency, P-State
= Physical Core level metrics — RAPL based Core Energy, Temperature
= Package level metrics — RAPL based Package Energy
= GPU metrics — power, temperature, frequency
= SMU based APU metrics — CPU Core power, package power

e AMDuProfCLI’s timechart command to collect the system metrics and write into a text file
or comma-separated-value (CSV) file

o AMDPowerProfileApi library provides APIs to configure and collect the supported system
level performance, thermal and energy metrics of AMD CPU/APUs and dGPUs.

o Collected live profile data can be stored in database for future analysis

9.1 Metrics

The metrics that are supported depends on the processor family and model and they are broadly
grouped under various categories. Following are supported counter categories for various processor
families:

125

AMD uProf User Guide AMDZ1

[AMD Public Use]

Family 17h Model 00h — OFh (Ryzen, ThreadRipper, EPYC 7001)

Power Counter Category

Power

Frequency

Temperature

P-State

Description

Average Power for the sampling period, reported in Watts. This is
an estimated consumption value based on platform activity levels.
Available for Core and Package.

Core Effective Frequency for the sampling period, reported in MHz

Average temperature for the sampling period, reported in Celsius.
Temperature reported is with reference to Tctl. Available for
Package.

CPU Core P-State at the time when sampling was performed.

Family 17h Model 10h — 2Fh (Ryzen APU, Ryzen PRO APU)

Power Counter Category

Description

Power

Frequency

Temperature

P-State

Average Power for the sampling period, reported in Watts. This is
an estimated consumption value based on platform activity levels.
Available for Core and Package.

Core Effective Frequency for the sampling period, reported in MHz

Average temperature for the sampling period, reported in Celsius.
Temperature reported is with reference to Tctl. Available for
Package.

CPU Core P-State at the time when sampling was performed.

Family 17h Model 70h — 7Fh (3™ Gen Ryzen)

Power Counter Category

Power

Frequency

P-State

Description

Average Power for the sampling period, reported in Watts. This is
an estimated consumption value based on platform activity levels.
Available for Core and Package.

Core Effective Frequency for the sampling period, reported in MHz

CPU Core P-State at the time when sampling was performed.

126

AMD uProf User Guide AMDA1

[AMD Public Use]

Temperature Average temperature for the sampling period, reported in Celsius.
Temperature reported is with reference to Tctl. Available for
Package.

Family 17h Model 30h — 3Fh (EPYC 7002)

Power Counter Category Description

Power Average Power for the sampling period, reported in Watts. This is
an estimated consumption value based on platform activity levels.
Available for Core and Package.

Frequency Core Effective Frequency for the sampling period, reported in MHz

P-State CPU Core P-State at the time when sampling was performed.

Temperature Average temperature for the sampling period, reported in Celsius.
Temperature reported is with reference to Tctl. Available for
Package.

AMD EPYC 3" generation processors
Power Counter Category Description

Power Average Power for the sampling period, reported in Watts. This is
an estimated consumption value based on platform activity levels.
Available for Core and Package.

Frequency Core Effective Frequency for the sampling period, reported in MHz

P-State CPU Core P-State at the time when sampling was performed.

Temperature Average temperature for the sampling period, reported in Celsius.
Temperature reported is with reference to Tctl. Available for
Package.

Supported Counter categories for older APU families

Power Counter Category Description

127

AMD uProf User Guide AMDZ1

[AMD Public Use]

Power Average Power for the sampling period, reported in Watts. This is
an estimated consumption value based on platform activity levels.
Available for APU, ComputeUnit, iGPU, PCle Controller, Memory
Controller, Display Controller and VDDCR_SOC

Frequency Effective Frequency for the sampling period, reported in MHz
Available for Core and iGPU

Temperature Average estimated temperature for the sampling period, reported in
Celsius. Calculated based socket activity levels, normalized, and
scaled, relative to the specific processor's maximum operating
temperature. Available for CPU ComputeUnit and iGPU

P-State CPU Core P-State at the time when sampling was performed
Controllers Socket PPT Limit and Power
CorrelatedPower Correlated Average Power for the sampling period, reported in

Watts. This is an estimated consumption value based on platform
activity levels. Available for APU, CPU ComputeUnit, VDDGFX,
VDDIO, VDDNB, VDDP, UVD, VCE, ACP, UNB, SMU, RoC

Supported Counter categories for dGPUs

Power Counter Category Description

Power Average estimated dGPU power for the sampling period, reported
in Watts. Calculated based on dGPU activity levels.

Frequency Average dGPU frequency for the sampling period, reported in MHz

Temperature Average estimated dGPU temperature for the sampling period,
reported in Celsius.

Voltage CPU Core P-State at the time when sampling was performed

Current Socket PPT Limit and Power

9.2 Profile using GUI

System-wide Power Profile (Live): This profile type is used to perform the power analysis where
the metrics are plotted in a live timeline graph and/or saved in a DB. Here are the steps to configure
and start the profile:

128

AMD uProf User Guide AMDA1

[AMD Public Use]

9.2.1 Configure

o Either click the PROFILE page at the top navigation bar or Create a new profile? link in
HOME page’s Welcome window. This will navigate to the Start Profiling window.

e You will see Select Profile Target fragment in the Start Profiling window. After selecting
the appropriate profile target, clicking Next button will take you to Select Profile Type
fragment.

e In Select Profile Type fragment selecting System-wide Power Profile (Live) from the drop-
down list, will take you to the below screenshot.

You can also navigate to this page by clicking See what’s guzzling power in your System link in
the Welcome page.

Once this type is selected, on the left pane, various supported counter categories and the components
for which that category is available will be listed. The user can select the interesting counters to
monitor.

Pa] AMDuProf

PROFILE

Select Profile Type System-wide Power Profile (Live).

Saved Configurations

Show Live Graph @D Save Live Data @D sampling Interval |- 100 . Milli seconds
v [system
Power v [“]Socket0
[“]SocketO Package Power
Frequency CoreQ Power
[Corel Power
Temperature Core2 Power
Core3 Power
P-State

Config Name This configuration will not be saved... X Reset Name Previous Next _ -

Start Profiling — Select Profile Type (Live Power Profile)

1. Select profile type as System-wide Power Profile (Live) from the drop-down list. This will list
all the supported counter categories.

129

AMD uProf User Guide AMDZ1

[AMD Public Use]

2. Clicking on an interesting counter category, will list the components for which this counter is
selected as a tree selection.

3. Enable the interesting counters from this counter tree. Multiple counter categories can be
configured

4. Options lets you render the graphs live during profiling or save the data in database (.db file)
during profiling and render the graphs after the profile data collection completed.

Once all the options are set correctly and clicking the Start Profile button will start the profile data
collection. In this profile type, the profile data will be reported as line graphs in the TIMECHART
page for further analysis.

9.2.2 Analyze

Once the interesting counters are selected and the profile data collection started, the TIMECHART
page will open and the metrics will be plotted in the live timeline graphs.

AMDuProf - O ®
A PROFILE TIMECHART £
Graph Visibility 00:00:10.000 _00:00:20.000 _ 00:00:30.000 _00:00:40.000 _00:00:50.000
[“1Power [Parent Counter] ! ! I I ! !
[l Temperature [Parent Counter s5p
v [AFrequency | ‘R | 309 L I""."' | Counter | Value
[¥]Group #0 3 M i |J‘ i " |H) ‘w'u”'fl'w"."-.-‘w”"J.M".‘f‘fm\lj“wﬂl .y Ny h |l W Socketd Package Power | 37
g 2 bl ol A A Y W ! w\.‘ Mo
2 , i M | « | o Ll
+ ©J
0 System [Power]
S — 5 1 = | Counter Value
“F ’ W Socketd Tem 4738
perature
5 ENg o
Z: 0f
10
0 System Uemperature]
ot S i el A0 e AL 72 i e A [Counter Value
1500 v»w:l“‘vw'(wwp&ﬂbwnnp ¥ 30" m Wi R Mg
1250 F ! A WAy W Thread0 Core Effective Frequency | 190314
= 1000F Thread? Core Effective Frequency | 1627-14
Z ol M Thread1 Core Effective Frequency
500 |
250 F
o System [Frequency] #0
< >
[*] Pause Graphs m Stop Profiling _

'
TIMECHART page — timeline graphs

1. Inthe TIMECHART page the metrics will be plotted in the live timeline graphs. Line graphs
are grouped together and plotted based on the category.

130

AMD uProf User Guide AMDA1

[AMD Public Use]

2. There is also a corresponding data table adjacent to each graph to display the current value of
the counters.
3. Graph Visibility pane on the left vertical pane will let you choose the graph to display.
4. When plotting is in progress various buttons are available, to let you
= Pause the graphs without pausing the data collection by clicking Pause Graphs button,
later graphs can be resumed by clicking Play Graphs button.
= Stop the profiling without closing the view by clicking the Stop Profiling button. This
will stop collecting the profile data.
= Stop the profiling and close the view by clicking Close View button

9.3 Profile using CLI

AMDuProfCLI’s timechart command lets you collect the system metrics and write them into a text
file or comma-separated-value (CSV) file. To collect power profile counter values, you need to
follow these steps:

1. Get the list of supported counter categories by running AMDuProfCLI’s timechart
command with --list option

2. Collect and the report the required counters using AMDuProfCLI’s timechart command by
specifying the interesting counters with -e or --event option

The timechart run to list the supported counter categories:

C:\Users\amd>|AMDUProfCLI.exe timechart --list
Supported Devices:-
Device Name Instance
Socket
Die
Core

[e
Thread [e
Gfx

3]
71

Supported Counter Categories:-
Category Supported Device Type

Power [Socket]
Frequency [Gfx, Thread]
Temperature [Socket]
P-State [Thread]
Energy [Socket, Core]
Controllers [Socket]

C:\Users\amd>_

AMDuUProfCLI timechart --list command’s output

The timechart run to collect the profile samples and write into a file:

131

AMD uProf User Guide AMDZ1

[AMD Public Use]

C:\Users\amd> AMDuProfCLI.exe timechart -e Energy,Frequency -o C:\Temp\power-prof C:\Users\amd\AMDTClassicMatMul\bin\AMDTClassic
MatMul.exe
Profile started ...

Matrix multiplication sample

Initializing matrices
Multiplying matrices

Invoke inefficient implementation of matrix multiplication
Elapsed time: 1.2410 sec (©.0018 sec resolution)

Profile finished
Live Profile Output file : C:\Temp\power-prof.csv

C:\Users\amd>_

AMDuProfCLI timechart run

The above run will collect the energy and frequency counters on all the devices on which these
counters are supported and writes them in the output file specified with -0 option. Before the
profiling begins, the given application will be launched, and the data will be collected till the
application terminates.

9.3.1 Examples
Windows

e Collect all the power counter values for the duration of 10 seconds with sampling interval of
100 milliseconds:

C:\> AMDuProfCLI.exe timechart --event power --interval 100 --duration 10

e Collect all frequency counter values for 10 seconds, sampling them every 500 milliseconds and
dumping the results to a csv file:

C:\> AMDuProfCLI.exe timechart --event frequency -o C:\Temp\Poweroutput --
interval 500 --duration 10

e Collect all frequency counter values at core 0 to 3 for 10 seconds, sampling them every 500
milliseconds and dumping the results to a text file:

C:\> AMDuProfCLI.exe timechart --event core=0-3, frequency -output
C:\Temp\Poweroutput.txt --interval 500 -duration 10 --format txt

Linux

e Collect all the power counter values for the duration of 10 seconds with sampling interval of
100 milliseconds:

$./AMDuProfCLI timechart --event power --interval 100 --duration 10

e Collect all frequency counter values for 10 seconds, sampling them every 500 milliseconds and
dumping the results to a csv file:

$./RAMDuProfCLI timechart --event frequency -o /tmp/PowerOutput.csv
--interval 500 --duration 10

132

AMD uProf User Guide AMDA1

[AMD Public Use]

e Collect all frequency counter values at core 0 to 3 for 10 seconds, sampling them every 500
milliseconds and dumping the results to a text file:

$./AMDuProfCLI timechart --event core=0-3, frequency
--output /tmp/PowerOutput.txt —--interval 500 --duration 10 —--format txt

9.4 AMDPowerProfileAPI Library

AMDPowerProfileApi library provides APIs to configure and collect the supported power profiling
counters on various AMD platforms. The AMDPowerProfileAPI library is used to analyze the
energy efficiency of systems based on AMD CPUs, APUs and dGPUs (Discrete GPU).

These APIs provide interface to read the power, thermal and frequency characteristics of AMD APU
& dGPU and their subcomponents. These APIs are targeted for software developers who want to
write their own application to sample the power counters based on their specific use case.

For detailed information on these APIs refer AMDPowerProfilerAPI.pdf
94.1 How to use the APIs?

Refer the example program CollectAllCounters.cpp on how to use these APIs. The program must
be linked with AMDPowerProfileAPI library while compiling. The power profiling driver must be
installed and running.

A sample program collectAllCounters.cpp that uses these APIs, is available at <avpuprrof-
install-dir>/Examples/CollectAllCounters/ dir. To build and execute the example
application, following steps should be performed:

Windows

o A Visual Studio 2015 solution file collectallcounters.sln iS available at /c:/Program
Files/AMD/AMDuProf/Examples/CollectAllCounters/ folder to build the example

program.
Linux
e To build

$ cd <AMDuProf-install-dir>/Examples/CollectAllCounters

$ g++ -0 -std=c++11 CollectAllCounters.cpp —-I<AMDuProf-install-
dir>/include -1 AMDPowerProfileAPI -L<AMDuProf-install-dir>/bin -Wl,-rpath
<AMDuProf-install-dir>/bin -o CollectAllCounters

o To execute

$ export LD LIBRARY PATH=<AMDuProf-install-dir>/bin

133

AMD uProf User Guide AMDZ1

[AMD Public Use]

9.5

$./CollectAllCounters

Limitations

Only one Power profile session can run at a time.

Minimum supported sampling period in CLI is 100ms. It is recommended to use large
sampling period to reduce the sampling and rendering overhead.

Make sure latest Radeon driver is installed before running power profiler. Newer version of
dGPU may go to sleep (low power) state frequently if there is no activity in dGPU. In that
case, power profiler may emit a warning AMDT_WARN_SMU_DISABLED. Counters may
not be accessible in this state. Before running the power profiler, it is advisable to bring the
dGPU to active state.

ICELAND dGPU (Topaz-XT, Topaz PRO, Topaz XTL, Topaz LE) series is not supported.

If SMU becomes in-accessible while profiling is in progress, the behavior will be undefined.

134

AMD uProf User Guide AMDA1

[AMD Public Use]

Chapter 10 Energy Analysis

Power Application Analysis

AMD uProf profiler offers Power Application Analysis to identify energy hotspots in the
application. This is Windows OS only functionality. This profile type is used to analyze the energy
consumption of an application or processes running in the system.

Features

o Profile data
= Periodically RAPL core energy values are sampled using OS timer as sampling event

e Profile mode
= Profile data is collected when the application is running in user and kernel mode

e Profiles
= C, C++, FORTRAN, Assembly applications
= Various software components — Applications, dynamically linked/loaded modules, and
OS kernel modules

o Profile data is attributed at various granularities
= Process/ Thread / Load Module / Function / Source line
= To correlate the profile data to Function and Source line, debug information emitted
by the compiler is required

o Processed profile data is stored in databases, which can be used to generate reports later.
o Profile reports are available in comma-separated-value (CSV) format to use with spreadsheets.

e AMDuProf GUI has various Uls to analyze and view the profile data at various granularities
= Hot spots summary
= Process and function analysis
= Source and disassembly analysis

135

AMD uProf User Guide AMDZ1

[AMD Public Use]

10.1 Profile using GUI

Here are the steps to configure and analyze the profile data:

To configure and start profile:

1.

2.

Clicking PROFILE - Start Profiling will navigate to the Select Profile Target window. After
selecting the appropriate profile target, clicking Next button will take you to Select Profile Type
fragment.

In Select Profile Type fragment selecting Power App Analysis from the drop-down list, will
take you to the below screenshot.

Pa| AMDuProf

#

TIMECHART

PROFILE

Select Profile Type PowerApp Analysis

Saved Configurations

Use this configuration to identify where programs are consuming power.

Advanced Options

Config Name |AMDuProf'Power—S(imarkStable‘ X ‘ Reset Name Previous Next _-

Power App Analysis - Configure

Click Advanced Options to set symbol paths (if the debug files are in different locations) and
other options. Refer this section for more information on this window. Callstack is not supported

for this profile type.

Once all the options are set, the Start Profile button at the bottom will be enabled and you can
click on it to start the profile. After the profile initialization you will see this profile data
collection screen.

136

AMD uProf User Guide AMDA1

[AMD Public Use]

To Analyze the profile data

5. When the profiling stopped, the collected raw profile data will be processed automatically, and
you will the Hot spots window of Summary page. Refer this section for more information on
this window.

6. Clicking ANALY ZE button on the top horizontal navigation bar will go to Function HotSpots
window. Refer this section for more information on this window.

7. Clicking ANALYZE - Metrics will display the profile data table at various granularities -
Process, Load Modules, Threads and Functions. Refer this section for more information on this
window.

8. Double-clicking any entry on the Functions table in Metrics window will make the GUI load
the source tab for that function in SOURCES page. Refer this section for more information on
this window.

10.2 Profile using CLI

To profile and analyze the performance of a native (C/C++) application, you need to follow these
steps:

1. Prepare the application. Refer section on how to prepare an application for profiling
2. Collect the samples for the application using AMDuProfCLI’s collect command

3. Generate the report using AMDuProfCLI’s report command, in readable format for analysis

Preparing the application is to build the launch application with debug information as debug info is
needed to correlate the samples to functions and source lines.

The collect command will launch the application (if given) and collect the profile data and will
generate raw data file (.pdata on Windows) and other miscellaneous files.

The report command translates the collected raw profile data to aggregate and attribute to the
respective processes, threads, load modules, functions and instructions and writes them into a DB
and then generate a report in CSV format.

Example

e Launch classic.exe and collect energy samples for that launch application:

C:\> AMDuProfCLI.exe collect --config power -o c:\Temp\pwrprof classic.exe

e Generate report from the raw .pdata datafile:

137

AMD uProf User Guide AMDZ1

[AMD Public Use]
C:\> AMDuProfCLI.exe report -i c:\Temp\pwrprof.pdata -o c:\Temp\pwrprof-out

e Generate report from raw .pdata file and use Symbol Server paths to resolve symbols:

C:\> AMDuProfCLI.exe report —--symbol-path C:\AppSymbols;C:\DriverSymbols

--symbol-server http://msdl.microsoft.com/download/symbols
--cache-dir C:\symbols -i c:\Temp\pwrprof.pdata -o c:\Temp\pwrprof-out

10.3 Limitations

e Only one energy analysis profile session can run at a time.
e This is Windows OS only feature

138

http://msdl.microsoft.com/download/symbols

AMD uProf User Guide AMDA1

[AMD Public Use]

Chapter 11 Remote Profiling

AMD uProf provides remote profiling capabilities to profile of applications running on a remote
target system. This is useful for working with headless server units. It is supported for all the profile
types. The data collection will be triggered from the AMDuProfCLI and the data will be collected
and processed by the AMDRemoteAgent running in the target system.

Supported configurations:
= Host OS: Windows, Linux
= Target OS: Windows, Linux

11.1 Profile remote targets using CLI

Following steps are to be followed to collect profile data from a remote target system

11.1.1 Adding user-id in the remote target system

Before establishing a connection with the remote agent, the user must add the unique UID generated
in the host client system. The UID can be generated by using AMDuProfCLI.

To generate unique uid using AMDuProfCLI

C:\> AMDuProfCLI.exe info --show-uid
UID : 10976441267198678299

Add this uid to remote agent running on the remote target system
C:\> AMDRemoteAgent.exe —add-user 10976441267198678299

11.1.2 Launching Remote Agent

The uProf remote agent AMDRemoteAgent runs on the remote target system allows AMD uProf
clients installed on other machines to connect to that remote system and execute Performance and
Power profiling sessions of applications running on that remote system.

When remote agent AMDRemoteAgent.exe is launched, it will output to the console a message in
the following format:

c:\Program Files\AMD\AMDuProf\bin> AMDRemoteAgent.exe —--ip 127.0.0.1 --port
20716

Local connection: IP: 127.0.0.1, port 27016

Waiting for a remote connection...

139

AMD uProf User Guide AMDZ1

[AMD Public Use]

11.1.3 Collect data and generate report

Run AMDuProfCLI commands from the client system using --ip and --port option to profile on that
remote target system
C:\> AMDuProfCLI.exe collect --config assess -o c:\Temp\cpuprof-assess --ip

127.0.0.1 -port 27016 AMDTClassicMatMul.exe

C:\> AMDuProfCLI.exe report -i c:\Temp\cpuprof-assess -o c:\Temp\cpuprof-
assess\ --ip 127.0.0.1 -port 27016

C:\> AMDuProfCLI.exe timechart --event core=0-3, frequency --output
C:\Temp\power output.txt --duration 10 --format txt --ip 127.0.0.1 -port
27016

11.2 Limitations

e Only one instance of CLI client process for a user (having unique client id) can establish
connection with AMDRemoteAgent process running on the target system.

o Multiple CLI client processes with different unique client ids (from same or different host
client systems), can establish connection with the AMDRemoteAgent process running on the
target system.

« The AMDRemoteAgent process can entertain either CPU or Power profile session at a time
from a client process.

o The AMDRemoteAgent process can entertain CPU profile request from one client process and
Power profile request from another client process simultaneously.

140

AMD uProf User Guide AMDA1

[AMD Public Use]

Chapter 12 Profile Control APIs

12.1 AMDProfileControl APIs

The AMDProfileControl APIs allow you to limit the profiling scope to a specific portion of the code
within the target application.

Usually while profiling an application, samples for the entire control flow of the application
execution will be collected - i.e., from the start of execution till end of the application execution.
The control APIs can be used to enable the profiler to collect data only for a specific part of
application, e.g., a CPU intensive loop, a hot function, etc.

The target application needs to be recompiled after instrumenting the application to enable/disable
profiling of the interesting code regions only.

Header files

The application should include the header file AMDProfileController.h which declares the
required APIs. This file is available at include directory under AMD uProf’s install path.

Static Library

The instrumented application should link with the AMDProfileController static library. This
is available at:

Windows:

<AMDuProf-install-dir>\1ib\x86\AMDProfileController.1lib
<AMDuProf-install-dir>\1ib\x64\AMDProfileController.1lib

Linux:
<AMDuProf-install-dir>/1lib/x64\1ibAMDProfileController.a

12.1.1 Profile Control APIs
These profile control APIs are available to pause and resume the profile data collection.
amdProfileResume

When the instrumented target application is launched through AMDuProf / AMDuProfCLI, the
profiling will be in the paused state and no profile data will be collected till the application calls this
resume API

bool amdProfileResume (AMD PRPOFILE CPU);

141

AMD uProf User Guide AMDZ1

[AMD Public Use]

amdProfilePause

When the instrumented target application wants to pause the profile data collection, this APl must
be called:

bool amdProfilePause (AMD PRPOFILE CPU);

These APIs can be called multiple times within the application. Nested Resume - Pause calls are not
supported. AMD uProf profiles the code within each Resume-Pause APIs pair. After adding these
APIs, the target application should be compiled before initiating a profile session.

12.1.2 How to use the APIs?

Include the header file AMDProfileController.h and call the resume and pause APIs within the code.
The code encapsulated within resume-pause API pair will be profiled by CPU Profiler.
e These APIs can be called multiple times to profile different parts of the code.

e These API calls can be spread across multiple functions - i.e., resume called from one function
and stop called from another function.

e These APIs can be spread across threads, i.e., resume called from one thread and stop called
from another thread of the same target application.

In the below code snippet, the CPU Profiling data collection is restricted to the execution of
multiply _matrices() function.

#include <AMDProfileController.h>
int main (int argc, char* argv[])
{

// Initialize the matrices

initialize matrices ();

// Resume the CPU profile data collection
amdProfileResume (AMD_PROFILE_CPU);

// Multiply the matrices
multiply matrices ();

// Stop the CPU Profile data collection
amdProfilePause (AMD_PROFILE_CPU);

return 0;

142

AMD uProf User Guide AMDA1

[AMD Public Use]

12.1.3 Compiling instrumented target application

Windows

To compile the application on Microsoft Visual Studio, update the configuration properties to
include the path of header file and link with AMbProfilecontroller.1ib library.

Linux
To compile a C++ application on Linux using g++, use the following command:

$ g++ -std=c++11 <sourcefile.cpp> -I <AMDuProf-install-dir>/include
-L<AMDuProf-install-dir>/1ib/x64/ -1AMDProfileController -1lrt -pthread

Note:
o Do not use -static option while compiling with g++.

12.1.4 Profiling instrumented target application

AMDuProf GUI

After compiling the target application, create a profile configuration in AMDuProf using it, set the
desired CPU profile session options. While setting the CPU profile session options, in the Profile
Scheduling section, select Are you using Profile Instrumentation API?

Once all the settings done, start the CPU profiling. The profiling will begin in the paused state and
the target application execution begins. When the resume API gets called from target application,
CPU Profile starts profiling till pause API gets called from target application or the application gets
terminated. As soon as pause API is called in target application, profiler stops profiling and waits
for next control API call.

AMDuProfCLI
To profile from CLI, option --start-paused should be used to start the profiler in pause state.

Windows:

C:\> AMDuProfCLI.exe collect --config tbp --start-paused -o C:\Temp\prof-tbp
ClassicCpuProfileCtrl.exe

Linux:

$./AMDuProfCLI collect --config tbp --start-paused -o /tmp/cpuprof-tbp
/tmp/AMDuProf/Examples/ClassicCpuProfileCtrl/ClassicCpuProfileCtrl

143

AMD uProf User Guide

AMDZ1

[AMD Public Use]

Chapter 13

Reference

13.1

Preparing an application for profiling

The AMD uProf uses the debug information generated by the compiler to show the correct function
names in various analysis views and to correlate the collected samples to source statements in Source
page. Otherwise, the results of the CPU Profiler would be less descriptive, displaying only the

assembly code.

13.1.1

Generate debug information on Windows:

When using Microsoft Visual C++ to compile the application in release mode, set the following
options before compiling the application to ensure that the debug information is generated and saved
in a program database file (with a .pdb extension). To set the compiler option to generate the debug
information for a x64 application in release mode:

AMDTClassicMatMul Property Pages

Configuration: | Release

4 Configuration Properties
General
Debugging
VC++ Directories
4 C/C++
General
Optimization
Preprocessor
Code Generation
Language
Precompiled Headers
Output Files
Browse Information
Advanced
All Options
Command Line
Linker
Manifest Tool
XML Document Generator
Browse Information
Build Events
Custom Build Step
Code Analysis

v v vvvvw

v | Platform: | Active(Win32)

Additional Include Directories
Additional #using Directories

Debug Information Format Program Database (/Zi)

Commen Language RunTime Support
Consume Windows Runtime Extension
Suppress Startup Banner Yes (/nologo)
Level3 (/W3)

No (fWX-)

Warning Level

Treat Warnings As Errors
Warning Version

SDL checks

Multi-processor Compilation

Debug Information Format

v

? X

Configuration Manager...

Specifies the type of debugging information generated by the compiler. This requires compatible linker settings.

(/Z7, /Zi, /Z71)

Cancel Apply

1. Right click on the project and select Properties menu item.

144

AMD uProf User Guide AMDA1

[AMD Public Use]

In the Configuration list, select Active(Release).
In the Platform list, select Active(Win32) or Active(x64).

4. In the project pane, expand the Configuration Properties item, then expand the C/C++
item and select General.

5. In the work pane, select Debug Information Format, and from the drop-down list select
Program Database (/Zi) or Program Database for Edit & Continue (/Z1).

AMDTClassicMatMul Property Pages ? X
Configuration: | Release v | Platform: | Active(Win32) v Configuration Manager...
Language A Generate Debug Info true
Precompiled Heade Generate Program Database File $(OutDir)S(TargetName).pdb
Output Files Generate Full Program Database File
Browse Information Strip Private Symbols
Advanced Generate Map File No
All Options Map File Name
Command Line Map Exports No
4 Linker Debuggable Assembly
General
Input
Manifest File
System
Optimization

Embedded IDL
Windows Metadata
Advanced
All Options
Command Line
Manifest Tool
XML Document Genera
Browse Information
Build Events
Custom Build Step
Code Analysis

Generate Debug Info
v | | This option enables creation of debugging information for the .exe file or the DLL.

v vvvvw

6. In the project pane, expand the ‘Linker’ item; then select the ‘Debugging’ item.
7. In the ‘Generate Debug Info’ list, select (/DEBUG).

13.1.2 Generate debug information on Linux:

The application must be compiled with the -g option to enable the compiler to generate debug
information. Modify either the Makefile or the respective build scripts accordingly.

145

AMD uProf User Guide AMDZ1

[AMD Public Use]

13.2 CPU Profiling

The AMD uProf CPU Performance Profiling follows a sampling-based approach to gather the
profile data periodically. It uses a variety of SW and HW resources available in AMD x86 based
processor families. CPU Profiling uses the OS timer, HW Performance Monitor Counters (PMC),
and HW IBS feature.

This section explains various key concepts related to CPU Profiling.
13.2.1 Hardware Sources
Performance Monitor Counters (PMC)

AMD’s x86-based processors have Performance Monitor Counters (PMC) that let them monitor
various micro-architectural events in a CPU core. The PMC counters are used in two modes:

= In counting mode, these counters are used to count the specific events that occur in a CPU
core.

= In sampling mode, these counters are programmed to count a specific number of events.
Once the count is reached the appropriate number of times (called sampling interval), an
interrupt is triggered. During the interrupt handling, the CPU Profiler collects profile data.

The number of hardware performance event counters available in each processor is implementation-
dependent (see the BIOS and Kernel Developer’s Guide [BKDG] of the specific processor for the
exact number of hardware performance counters). The operating system and/or BIOS can reserve
one or more counters for internal use. Thus, the actual number of available hardware counters may
be less than the number of hardware counters. The CPU Profiler uses all available counters for
profiling.

Instruction-Based Sampling (IBS)

IBS is a code profiling mechanism that enables the processor to select a random instruction fetch or
micro-Op after a programmed time interval has expired and record specific performance information
about the operation. An interrupt is generated when the operation is complete as specified by IBS
Control MSR. An interrupt handler can then read the performance information that was logged for
the operation.

The IBS mechanism is split into two parts:
= Instruction Fetch performance
= Instruction Execution Performance

Instruction fetch sampling provides information about instruction TLB and instruction cache
behavior for fetched instructions.

Instruction execution sampling provides information about micro-Op execution behavior.

146

AMD uProf User Guide AMDA1

[AMD Public Use]

The data collected for instruction fetch performance is independent from the data collected for
instruction execution performance. Support for the IBS feature is indicated by the
Core::X86::Cpuid::FeatureExtIdEcx[IBS].

Instruction execution performance is profiled by tagging one micro-Op associated with an
instruction. Instructions that decode to more than one micro-Op return different performance data
depending upon which micro-Op associated with the instruction is tagged. These micro-Ops are
associated with the RIP of the next instruction.

In this mode, the CPU Profiler uses the IBS HW supported by the AMD x86-based processor to
observe the effect of instructions on the processor and on the memory subsystem. In IBS, HW events
are linked with the instruction that caused them. Also, HW events are being used by the CPU Profiler
to derive various metrics, such as data cache latency.

IBS is supported starting from the AMD processor family 10h.

L3 Cache Performance Monitor Counters (L3PMC)

A Core Complex (CCX) is a group of CPU cores which share L3 cache resources. All the cores in
a CCX share a single L3 cache. In family 17, 8MB of L3 cache shared across all cores within the
CCX. Family 17 processors support L3PMCs to monitor the performance of L3 resources. Refer
processor family and model specific PPR for more details.

Data Fabric Performance Monitor Counters (DFPMC)

Family 17 processors support DFPMCs to monitor the performance of Data Fabric resources. Refer
processor family and model specific PPR for more details.

13.2.2 Profiling Concepts
Sampling

Sampling profilers works based on the logic that the part of a program that consumes most of the
time (or that triggers the most occurrence of the sampling event) have a larger number of samples.
This is because they have a higher probability of being executed while samples are being taken by
the CPU Profiler.

Sampling Interval

The time between the collection of every two samples is the Sampling Interval. For example, in
TBP, if the time interval is 1 millisecond, then roughly 1,000 TBP samples are being collected every
second for each processor core.

The meaning of sampling interval depends on the resource used as the sampling event.

147

AMD uProf User Guide AMDZ1

[AMD Public Use]

= OS timer - the sampling interval is in milliseconds.
= PMC events - the sampling interval is the number of occurrences of that sampling event
= IBS - the number of processed instructions after which it will be tagged.

Smaller sampling interval increases the number of samples collected and as well the data collection
overhead. Since profile data is collected on the same system in which the workload is running, more
frequent sampling increases the intrusiveness of profiling. Very small sampling interval also can
cause system instability.

Sampling point: When a sampling-point occurs upon the expiry of the sampling-interval for a
sampling-event, various profile data like Instruction Pointer, Process Id, Thread Id, Call-stack will
be collected by the interrupt handler.

Event-Counter Multiplexing

If the number of monitored PMC events is less than, or equal to, the number of available
performance counters, then each event can be assigned to a counter, and each event can be monitored
100% of the time. In a single-profile measurement, if the number of monitored events is larger than
the number of available counters, the CPU Profiler time-shares the available HW PMC counters.
(This is called event counter multiplexing.) It helps monitor more events and decreases the actual
number of samples for each event, thus reducing data accuracy. The CPU Profiler auto-scales the
sample counts to compensate for this event counter multiplexing. For example, if an event is
monitored 50% of the time, the CPU Profiler scales the number of event samples by factor of 2.

13.2.3 Profile Types

Profile types are classified based on the HW or SW sampling events used to collect the profile data.

Time-Based Profile (TBP)

In this profile, the profile data is periodically collected based on the specified OS timer interval. It
is used to identify the hotspots of the profiled applications.

Event-Based Profile (EBP)

In this profile, the CPU Profiler uses the PMCs to monitor the various micro-architectural events
supported by the AMD x86-based processor. It helps to identify the CPU and memory related
performance issues in profiled applications. The CPU Profiler provides several predefined EBP
profile configurations. To analyze an aspect of the profiled application (or system), a specific set of
relevant events are grouped and monitored together. The CPU Profiler provides a list of predefined
event configurations, such as Assess Performance and Investigate Branching, etc. You can select
any of these predefined configurations to profile and analyze the runtime characteristics of your
application. You also can create their custom configurations of events to profile.

148

AMD uProf User Guide AMDA1

[AMD Public Use]

In this profile mode, a delay called skid occurs between the time at which the sampling interrupt
occurs and the time at which the sampled instruction address is collected. This skid distributes the
samples in the neighborhood near the actual instruction that triggered a sampling interrupt. This
produces an inaccurate distribution of samples and events are often attributed to the wrong
instructions.

Instruction-Based Sampling (I1BS)

In this profile, the CPU Profiler uses the IBS HW supported by the AMD x86-based processor to
observe the effect of instructions on the processor and on the memory subsystem. In IBS, HW events
are linked with the instruction that caused them. Also, HW events are being used by the CPU Profiler
to derive various metrics, such as data cache latency.

Custom Profile

This profile allows a combination of HW PMC events, OS timer, and IBS sampling events.

13.2.4 Predefined Core PMC Events

Some of the interesting Core Performance events of AMD Zen processor models are listed here.

Predefined Core PMC Events — EPYC 2" generation

Event Id, Event Abbrev Name & Description

Unit-mask

0x76,0x00 CYCLES NOT_IN_HALT CPU clock cycles not halted

The number of cpu cycles when the thread is not in halt state.

0xCO0, 0x00 = RETIRED_INST Retired Instructions

The number of instructions retired from execution. This count
includes exceptions and interrupts. Each exception or
interrupt is counted as one instruction.

0xC1, 0x00 RETIRED_MICRO_OPS Retired Macro Operations

The number of macro-ops retired. This count includes all
processor activity - instructions, exceptions, interrupts,
microcode assists, etc.

0xC2, 0x00 RETIRED_BR_INST Retired Branch Instructions

The number of branch instructions retired. This includes all
types of architectural control flow changes, including
exceptions and interrupts

149

AMD uProf User Guide

AMDZ1

[AMD Public Use]

0xC3, 0x00

0x03, 0x08

0x29, 0x07

0x60, 0x10

0x60, 0xC8

0x64, 0x01

0x64, 0x08

0x71, Ox1F

0x72, Ox1F

0x64, 0x06

RETIRED_BR_INST_MISP

RETIRED_SSE_AVX_FLOPS

L1 DC_ACCESSES.ALL

L2_CACHE_ACCESS.FROM_L1_
IC_MISS

L2_CACHE_ACCESS.FROM _L1_
DC_MISS

L2_CACHE_MISS.FROM_L1_IC_
MISS

L2_CACHE_MISS.FROM_L1 DC

_MISS

L2_HWPF_HIT_IN_L3

L2_HWPF_MISS_IN_L2 L3

L2_CACHE_HIT.FROM_L1_IC_
MISS

Retired Branch Instructions Mispredicted

The number of retired branch instructions, that were
mispredicted. Note that only EX direct mispredicts and
indirect target mispredicts are counted.

Retired SSE/AVX Flops

The number of retired SSE/AVX flops. The number of events
logged per cycle can vary from 0 to 64. This is large
increment per cycle event, since it can count more than 15
events per cycle. This count both single precision and double
precision FP events.

All Data cache accesses

The number of load and store ops dispatched to LS unit. This
counts the dispatch of single op that performs a memory load,
dispatch of single op that performs a memory store, dispatch
of a single op that performs a load from and store to the same
memory address.

L2 cache access from L1 IC miss

The L2 cache access requests due to L1 instruction cache
misses.

L2 cache access from L1 DC miss

The L2 cache access requests due to L1 data cache misses.
This also counts hardware and software prefetches.

L2 cache miss from L1 IC miss

Count all the Instruction cache fill requests that misses in L2
cache

L2 cache miss from L1 DC miss
Count all the Data cache fill requests that misses in L2 cache
L2 Prefetcher Hits in L3

Counts all L2 prefetches accepted by the L2 pipeline which
miss the L2 cache and hit the L3.

L2 Prefetcher Misses in L3

Counts all L2 prefetches accepted by the L2 pipeline which
miss the L2 and the L3 caches

L2 cache hit from L1 IC miss

150

AMD uProf User Guide AMDA1

[AMD Public Use]

0x64, 0x70

0x70, Ox1F

0x43, 0x01

0x43, 0x02

0x43, 0x08

0x43, 0x10

0x43, 0x40

0x43, 0x5B

0x60, OXFF

0x87, 0x01

0x87, 0x02

L2_CACHE_HIT.FROM_L1 DC_
MISS

L2_ HWPF_HIT_IN_L2

L1_DEMAND_DC_REFILLS.LOC
AL L2

L1 DEMAND_DC_REFILLS.LOC
AL_CACHE

L1_DEMAND_DC_REFILLS.LOC
AL_DRAM

L1_DEMAND_DC_REFILLS.REMOTE
_CACHE

L1_DEMAND_DC_REFILLS.RE
MOTE_DRAM

L1_DEMAND_DC_REFILLS.ALL

L2 REQUESTS.ALL

STALLED_CYCLES.BACKEND

STALLED_CYCLES.FRONTEND

Counts all the Instruction cache fill requests that hits in L2
cache.

L2 cache hit from L1 DC miss
Counts all the Data cache fill requests that hits in L2 cache.
L2 cache hit from L2 HW Prefetch

Counts all L2 prefetches accepted by L2 pipeline which hit in
the L2 cache

L1 demand DC fills from L2

The demand Data Cache (DC) fills from local L2 cache to the
core.

L1 demand DC fills from local CCX

The demand Data Cache (DC) fills from same the cache of
same CCX or cache of different CCX in the same package
(node).

L1 demand DC fills from local Memory

The demand Data Cache (DC) fills from DRAM or 1O
connected in the same package (node).

L1 demand DC fills from remote cache

The demand Data Cache (DC) fills from cache of CCX in the
different package (node).

L1 demand DC fills from remote Memory

The demand Data Cache (DC) fills from DRAM or 10
connected in the different package (node).

L1 demand DC refills from all data sources.

The demand Data Cache (DC) fills from all the data sources.
All L2 cache requests.

Instruction pipe stall

The Instruction Cache pipeline was stalled during this cycle
due to back-pressure.

Instruction pipe stall

151

AMD uProf User Guide AMDZ1

[AMD Public Use]

The Instruction Cache pipeline was stalled during this cycle
due to upstream queues not providing fetch addresses quickly.

0x84,0x00 ' L1_ITLB_MISSES_L2 HITS L1 TLB miss L2 TLB hit

The instruction fetches that misses in the L1 Instruction
Translation Lookaside Buffer (ITLB) but hit in the L2-I1TLB.

0x85, 0x07 L2_ITLB_MISSES L1 TLB miss L2 TLB miss
The ITLB reloads originating from page table walker. The

table walk requests are made for L1-1TLB miss and L2-ITLB
misses.

0x45, 0xFF | L1 DTLB_MISSES L1 DTLB miss
The L1 Data Translation Lookaside Buffer (DTLB) misses

from load store micro-ops. This event counts both L2-DTLB
hit and L2-DTLB miss

0x45, 0xFO L2_DTLB_MISSES L1 DTLB miss

The L2 Data Translation Lookaside Buffer (DTLB) missed
from load store micro-ops

0x47,0x00 = MISALIGNED_LOADS Misaligned Loads

The number of misaligned loads. On Zen3, this event counts
the 64B (cache-line crossing) and 4K (page crossing)
misaligned loads.

0x52, 0x03 = INEFFECTIVE_SW_PF Ineffective Software Prefetches

The number of software prefetches that did not fetch data
outside of the processor core. This event counts the Software
PREFETCH instruction that saw a match on an already -
allocated miss request buffer. Also counts the Software
PREFETCH instruction that saw a DC hit.

Predefined Core PMC Events — EPYC 3" generation

Event Id, Event Abbrev Name & Description

Unit-mask

0x76,0x00 CYCLES NOT _IN HALT CPU clock cycles not halted
The number of cpu cycles when the thread is not in halt state.

0xCO0, 0x00 RETIRED_INST Retired Instructions

152

AMD uProf User Guide AMDA1

[AMD Public Use]

0xC1, 0x00

0xC2, 0x00

0xC3, 0x00

0x03, 0x08

0x29, 0x07

0x60, 0x10

0x60, OXE8

0x64, 0x01

RETIRED_MACRO_OPS

RETIRED_BR_INST

RETIRED_BR_INST_MISP

RETIRED_SSE_AVX_FLOPS

L1 DC_ACCESSES.ALL

L2_CACHE_ACCESS.FROM_L1
_IC_MISS

L2_CACHE_ACCESS.FROM_L1
_DC_MISS

L2_CACHE_MISS.FROM_L1_IC
_MISS

The number of instructions retired from execution. This count
includes exceptions and interrupts. Each exception or interrupt
is counted as one instruction.

Retired Macro Operations

The number of macro-ops retired. This count includes all
processor activity - instructions, exceptions, interrupts,
microcode assists, etc.

Retired Branch Instructions

The number of branch instructions retired. This includes all
types of architectural control flow changes, including
exceptions and interrupts

Retired Branch Instructions Mispredicted

The number of retired branch instructions, that were
mispredicted. Note that only EX direct mispredicts and indirect
target mispredicts are counted.

Retired SSE/AVX Flops

The number of retired SSE/AVX flops. The number of events
logged per cycle can vary from 0 to 64. This is large increment
per cycle event, since it can count more than 15 events per
cycle. This count both single precision and double precision FP
events.

All Data cache accesses

The number of load and store ops dispatched to LS unit. This
counts the dispatch of single op that performs a memory load,
dispatch of single op that performs a memory store, dispatch of
a single op that performs a load from and store to the same
memory address.

L2 cache access from L1 IC miss

The L2 cache access requests due to L1 instruction cache
misses.

L2 cache access from L1 DC miss

The L2 cache access requests due to L1 data cache misses.
This also counts hardware and software prefetches.

L2 cache miss from L1 IC miss

Count all the Instruction cache fill requests that misses in L2
cache

153

AMD uProf User Guide AMDZ1

[AMD Public Use]

0x64, 0x08

0x71, OXFF

0x72, OXFF

0x64, 0x06

0x64, OxFO

0x70, OXFF

0x43, 0x01

0x43, 0x02

0x43, 0x04

0x43, 0x08

0x43, 0x10

L2_CACHE_MISS.FROM L1 D
C_MISS

L2_ HWPF_HIT_IN_L3

L2_HWPF_MISS_IN_L2 L3

L2_CACHE_HIT.FROM_L1_IC_
MISS

L2_CACHE_HIT.FROM_L1 DC
_MISS

L2_HWPF_HIT_IN_L2

L1_DEMAND_DC_REFILLS.LO
CAL_L2

L1_DEMAND_DC_REFILLS.LO
CAL_CACHE

L1_DC_REFILLS.EXTERNAL_C
ACHE_LOCAL

L1_DEMAND_DC_REFILLS.LO
CAL_DRAM

L1_DEMAND_DC_REFILLS.EXTERN
AL_CACHE_REMOTE

L2 cache miss from L1 DC miss
Count all the Data cache fill requests that misses in L2 cache
L2 Prefetcher Hits in L3

Counts all L2 prefetches accepted by the L2 pipeline which
miss the L2 cache and hit the L3.

L2 Prefetcher Misses in L3

Counts all L2 prefetches accepted by the L2 pipeline which
miss the L2 and the L3 caches

L2 cache hit from L1 IC miss

Counts all the Instruction cache fill requests that hits in L2
cache.

L2 cache hit from L1 DC miss
Counts all the Data cache fill requests that hits in L2 cache.
L2 cache hit from L2 HW Prefetch

Counts all L2 prefetches accepted by L2 pipeline which hit in
the L2 cache

L1 demand DC fills from L2

The demand Data Cache (DC) fills from local L2 cache to the
core.

L1 demand DC fills from local CCX

The demand Data Cache (DC) fills from the L3 cache or L2 in
the same CCX.

L1 DC fills from local external CCX caches

The Data Cache (DC) fills from cache of different CCX in the
same package (node).

L1 demand DC fills from local Memory

The demand Data Cache (DC) fills from DRAM or 10
connected in the same package (node).

L1 demand DC fills from remote external cache

The demand Data Cache (DC) fills from cache of CCX in the
different package (node).

154

AMD uProf User Guide AMDA1

[AMD Public Use]

0x43, 0x40

0x43, 0x14

0x43, Ox5F

0x44, 0x01

0x44, 0x02

0x44, 0x08

0x44, 0x04

0x44, 0x10

0x44, 0x40

0x44, 0x14

0x44, 0x48

L1_DEMAND_DC_REFILLS.RE
MOTE_DRAM

L1 DEMAND_DC REFILLS.EX
TENAL_CACHE

L1_DEMAND_DC_REFILLS.AL

L

L1 DC_REFILLS.LOCAL_L2

L1 DC_REFILLS.LOCAL_CAC
HE

L1 DC_REFILLS.LOCAL_DRA
M

L1_DC_REFILLS.EXTERNAL_C
ACHE_LOCAL

L1_DC_REFILLS.EXTERNAL_C
ACHE_REMOTE

L1_DC_REFILLS.REMOTE_DR
AM

L1 DC_REFILLS.EXTENAL_CA
CHE

L1 DC_REFILLS.DRAM

L1 demand DC fills from remote Memory

The demand Data Cache (DC) fills from DRAM or 10
connected in the different package (node).

L1 demand DC fills from external caches

The demand Data Cache (DC) fills from cache of different
CCX in the same or different package (node).

L1 demand DC refills from all data sources.

The demand Data Cache (DC) fills from all the data sources.
L1 DC fills from local L2

The Data Cache (DC) fills from local L2 cache to the core.
L1 DC fills from local CCX cache

The Data Cache (DC) fills from different L2 cache in the same
CCX or L3 cache that belongs to the same CCX.

L1 DC fills from local Memory

The Data Cache (DC) fills from DRAM or 10 connected in the
same package (node).

L1 DC fills from local external CCX caches

The Data Cache (DC) fills from cache of different CCX in the
same package (node).

L1 DC fills from remote external CCX caches

The Data Cache (DC) fills from cache of CCX in the different
package (node).

L1 DC fills from remote Memory

The Data Cache (DC) fills from DRAM or 10 connected in the
different package (node).

L1 DC fills from local external CCX caches

The Data Cache (DC) fills from cache of different CCX in the
same or different package (node).

L1 DC fills from local Memory

The Data Cache (DC) fills from DRAM or 10 connected in the
same or different package (node).

155

AMD uProf User Guide

AMDZ1

[AMD Public Use]

0x44, 0x50

0x44, 0x03

0x44, Ox5F

0x60, OXFF

0x87, 0x01

0x87, 0x02

0x84, 0x00

0x85, 0x07

0x45, OXFF

0x45, OxXFO

0x78, OXFF

L1 DC_REFILLS.REMOTE_NO
DE

L1 DC_REFILLS.LOCAL_CAC
HE L2 L3

L1 DC_REFILLS.ALL

L2 REQUESTS.ALL

STALLED_CYCLES.BACKEND

STALLED_CYCLES.FRONTEN

D

L1_ITLB_MISSES_L2 HITS

L2_ITLB_MISSES

L1 DTLB_MISSES

L2_DTLB_MISSES

ALL_TLB_FLUSHES

L1 DC fills from remote node

The Data Cache (DC) fills from cache of CCX in the different
package (node) or the DRAM / 10 connected in the different
package (node).

L1 DC fills from same CCX

The Data Cache (DC) fills from local L2 cache to the core or
different L2 cache in the same CCX or L3 cache that belongs
to the same CCX

L1 DC fills from all the data sources

The Data Cache fills from all the data sources

All L2 cache requests.

Instruction pipe stall

The Instruction Cache pipeline was stalled during this cycle
due to back-pressure.

Instruction pipe stall

The Instruction Cache pipeline was stalled during this cycle
due to upstream queues not providing fetch addresses quickly.

L1 TLB miss L2 TLB hit

The instruction fetches that misses in the L1 Instruction
Translation Lookaside Buffer (ITLB) but hit in the L2-1TLB.

L1 TLB miss L2 TLB miss

The ITLB reloads originating from page table walker. The
table walk requests are made for L1-1TLB miss and L2-ITLB
misses.

L1 DTLB miss

The L1 Data Translation Lookaside Buffer (DTLB) misses
from load store micro-ops. This event counts both L2-DTLB
hit and L2-DTLB miss

L1 DTLB miss

The L2 Data Translation Lookaside Buffer (DTLB) missed
from load store micro-ops

All TLB flushes

156

AMD uProf User Guide AMDA1

[AMD Public Use]

0x47, 0x03 | MISALIGNED_LOADS Misaligned Loads

The number of misaligned loads. On Zen3, this event counts
the 64B (cache-line crossing) and 4K (page crossing)
misaligned loads.

0x52, 0x03 INEFFECTIVE_SW_PF Ineffective Software Prefetches

The number of software prefetches that did not fetch data
outside of the processor core. This event counts the Software
PREFETCH instruction that saw a match on an already -
allocated miss request buffer. Also counts the Software
PREFETCH instruction that saw a DC hit.

CPU Performance Metrics

CPU Metric Description

Core Effective Frequency Core Effective Frequency (without halted cycles) over the
sampling period, reported in GHz. The metric is based on
APERF and MPERF MSRs. MPERF is incremented by the core
at the PO state frequency while the core is in CO state. APERF is
incremented in proportion to the actual number of core cycles
while the core is in CO state.

IPC Instruction Retired Per Cycle (IPC) is the average number of
instructions retired per cycle. This is measured using Core PMC
events PMCxO0CO [Retired Instructions] and PMCx076 [CPU
Clocks not Halted]. These PMC events are counted in both OS
and User mode.

CPI Cycles Per Instruction Retired (CPI) is the multiplicative inverse
of IPC metric. This is one of the basic performance metrics
indicating how cache misses, branch mis-predictions, memory
latencies and other bottlenecks are affecting the execution of an
application. Lower CPI value is better.

L1 DC REFILLS.ALL The number of demand data cache (DC) fills per thousand

(PTI) retired instructions. These demand DC fills are from all the data
sources like Local L2/L3 cache, remote caches, local memory,
and remote memory.

L1 DC_MISSES (PTI) The number of L2 cache access requests due to L1 data cache
misses, per thousand retired instructions. This L2 cache access
requests also includes the hardware and software prefetches.

157

AMD uProf User Guide AMDZ1

[AMD Public Use]

L1 DC_ACCESS_RATE

L1 DC_MISS_RATE

L1 DC_MISS_RATIO

13.25 IBS Derived

AMD uProf translates the

The DC access rate is the number of DC accesses divided by the
total number of retired instructions

The DC miss rate is the number of DC misses divided by the
total number of retired instructions.

The DC miss ratio is the number of DC misses divided by the
total number of DC accesses.

Events

IBS information produced by the hardware into derived event sample

counts that resemble EBP sample counts. All IBS-derived events have “IBS” in the event name and
abbreviation. Although 1BS-derived events and sample counts look similar to EBP events and
sample counts, the source and sampling basis for the IBS event information are different.

Arithmetic should never be performed between IBS derived event sample counts and EBP event
sample counts. It is not meaningful to directly compare the number of samples taken for events that
represent the same hardware condition. For example, fewer IBS DC miss samples is not necessarily
better than a larger quantity of EBP DC miss samples.

IBS Fetch events

All IBS fetch samples

IBS fetch killed

IBS fetch attempted

The number of all IBS fetch samples. This derived event counts the
number of all IBS fetch samples that were collected including IBS-
killed fetch samples

The number of IBS sampled fetches that were killed fetches. A fetch
operation is killed if the fetch did not reach ITLB or IC access. The
number of killed fetch samples is not generally useful for analysis and
are filtered out in other derived IBS fetch events (except Event Select
0xF000 which counts all IBS fetch samples including IBS killed fetch
samples.)

The number of IBS sampled fetches that were not killed fetch
attempts. This derived event measures the number of useful fetch
attempts and does not include the number of IBS killed fetch samples.
This event should be used to compute ratios such as the ratio of IBS
fetch 1C misses to attempted fetches. The number of attempted fetches
should equal the sum of the number of completed fetches and the
number of aborted fetches.

158

AMD uProf User Guide

AMDZ1

[AMD Public Use]

IBS fetch completed

IBS fetch aborted

IBS ITLB hit

IBS L1 ITLB misses
(and L2 ITLB hits)

IBSL1L2ITLB miss
IBS instruction cache
misses

IBS instruction cache
hit

IBS 4K page
translation

IBS 2M page
translation

IBS fetch latency

IBS fetch L2 cache
miss

The number of IBS sampled fetches that completed. A fetch is
completed if the attempted fetch delivers instruction data to the
instruction decoder. Although the instruction data was delivered, it
may still not be used (e.g., the instruction data may have been on the
“wrong path” of an incorrectly predicted branch.)

The number of IBS sampled fetches that aborted. An attempted fetch
is aborted if it did not complete and deliver instruction data to the
decoder. An attempted fetch may abort at any point in the process of
fetching instruction data. An abort may be due to a branch redirection
as the result of a mispredicted branch. The number of IBS aborted
fetch samples is a lower bound on the amount of unsuccessful,
speculative fetch activity. It is a lower bound since the instruction data
delivered by completed fetches may not be used.

The number of IBS attempted fetch samples where the fetch operation
initially hit in the L1 ITLB (Instruction Translation Lookaside
Buffer).

The number of IBS attempted fetch samples where the fetch operation
initially missed in the L1 ITLB and hit in the L2 ITLB.

The number of IBS attempted fetch samples where the fetch operation
initially missed in both the L1 ITLB and the L2 ITLB.

The number of IBS attempted fetch samples where the fetch operation
initially missed in the IC (instruction cache).

The number of IBS attempted fetch samples where the fetch operation
initially hit in the IC.

The number of IBS attempted fetch samples where the fetch operation
produced a valid physical address (i.e., address translation completed
successfully) and used a 4-KByte page entry in the L1 ITLB.

The number of IBS attempted fetch samples where the fetch operation
produced a valid physical address (i.e., address translation completed
successfully) and used a 2-MByte page entry in the L1 ITLB.

The total latency of all IBS attempted fetch samples. Divide the total
IBS fetch latency by the number of IBS attempted fetch samples to
obtain the average latency of the attempted fetches that were sampled.

The instruction fetch missed in the L2 Cache.

159

AMD uProf User Guide AMDZ1

[AMD Public Use]

IBS ITLB refill
latency

IBS Op events

All IBS op samples

IBS tag-to-retire cycles

IBS completion-to-
retire cycles

IBS branch op

IBS mispredicted
branch op

IBS taken branch op
IBS mispredicted

taken branch op

IBS return op

The number of cycles when the fetch engine is stalled for an ITLB
reload for the sampled fetch. If there is no reload, the latency will be
0.

The number of all IBS op samples that were collected. These op
samples may be branch ops, resync ops, ops that perform load/store
operations, or undifferentiated ops (e.g., those ops that perform
arithmetic operations, logical operations, etc.). IBS collects data for
retired ops. No data is collected for ops that are aborted due to
pipeline flushes, etc. Thus, all sampled ops are architecturally
significant and contribute to the successful forward progress of
executing programs.

The total number of tag-to-retire cycles across all IBS op samples.
The tag-to-retire time of an op is the number of cycles from when the
op was tagged (selected for sampling) to when the op retired.

The total number of completion-to-retire cycles across all IBS op
samples. The completion-to-retire time of an op is the number of
cycles from when the op completed to when the op retired.

The number of IBS retired branch op samples. A branch operation is
a change in program control flow and includes unconditional and
conditional branches, subroutine calls and subroutine returns. Branch
ops are used to implement AMDG64 branch semantics.

The number of IBS samples for retired branch operations that were
mispredicted. This event should be used to compute the ratio of
mispredicted branch operations to all branch operations.

The number of IBS samples for retired branch operations that were
taken branches.

The number of IBS samples for retired branch operations that were
mispredicted taken branches.

The number of IBS retired branch op samples where the operation
was a subroutine return. These samples are a subset of all IBS retired
branch op samples.

160

AMD uProf User Guide

AMDZ1

[AMD Public Use]

IBS mispredicted
return op

IBS resync op

IBS all load store ops

IBS load ops

IBS store ops

IBS L1 DTLB hit

IBS L1 DTLB misses
L2 hits

IBSL1and L2 DTLB
misses

IBS data cache misses

IBS data cache hits

IBS misaligned data
access

IBS bank conflict on
load op

The number of IBS retired branch op samples where the operation
was a mispredicted subroutine return. This event should be used to
compute the ratio of mispredicted returns to all subroutine returns.

The number of IBS resync op samples. A resync op is only found in
certain micro-coded AMDG64 instructions and causes a complete
pipeline flush.

The number of IBS op samples for ops that perform either a load
and/or store operation. An AMDG64 instruction may be translated into
one (“single fast path”), two (“double fast path”), or several (“vector
path”) ops. Each op may perform a load operation, a store operation
or both a load and store operation (each to the same address). Some
op samples attributed to an AMD64 instruction may perform a
load/store operation while other op samples attributed to the same
instruction may not. Further, some branch instructions perform
load/store operations. Thus, a mix of op sample types may be
attributed to a single AMD64 instruction depending upon the ops that
are issued from the AMDG64 instruction and the op types.

The number of IBS op samples for ops that perform a load operation.

The number of IBS op samples for ops that perform a store
operation.

The number of IBS op samples where either a load or store operation
initially hit in the L1 DTLB (data translation lookaside buffer).

The number of IBS op samples where either a load or store operation
initially missed in the L1 DTLB and hit in the L2 DTLB.

The number of IBS op samples where either a load or store operation
initially missed in both the L1 DTLB and the L2 DTLB.

The number of IBS op samples where either a load or store operation
initially missed in the data cache (DC).

The number of IBS op samples where either a load or store operation
initially hit in the data cache (DC).

The number of IBS op samples where either a load or store operation
caused a misaligned access (i.e., the load or store operation crossed a
128-bit boundary).

The number of IBS op samples where either a load or store operation
caused a bank conflict with a load operation.

161

AMD uProf User Guide AMDZ1

[AMD Public Use]

IBS bank conflict on
store op

IBS store-to-load
forwarded

IBS store-to-load
cancelled

IBS UC memory
access

IBS WC memory
access

IBS locked operation

IBS MAB hit

IBS L1 DTLB 4K page

IBS L1 DTLB 2M page

IBS L1 DTLB 1G page

IBS L2 DTLB 4K page

IBS L2 DTLB 2M page

IBS L2 DTLB 1G page

The number of IBS op samples where either a load or store operation
caused a bank conflict with a store operation.

The number of IBS op samples where data for a load operation was
forwarded from a store operation.

The number of IBS op samples where data forwarding to a load
operation from a store was cancelled.

The number of IBS op samples where a load or store operation
accessed uncacheable (UC) memory.

The number of IBS op samples where a load or store operation
accessed write combining (WC) memory.

The number of IBS op samples where a load or store operation was a
locked operation.

The number of IBS op samples where a load or store operation hit an
already allocated entry in the Miss Address Buffer (MAB).

The number of IBS op samples where a load or store operation
produced a valid linear (virtual) address and a 4-KByte page entry in
the L1 DTLB was used for address translation.

The number of IBS op samples where a load or store operation
produced a valid linear (virtual) address and a 2-MByte page entry in
the L1 DTLB was used for address translation.

The number of IBS op samples where a load or store operation
produced a valid linear (virtual) address and a 1-GByte page entry in
the L1 DTLB was used for address translation.

The number of IBS op samples where a load or store operation
produced a valid linear (virtual) address, hit the L2 DTLB, and used
a 4 KB page entry for address translation.

The number of IBS op samples where a load or store operation
produced a valid linear (virtual) address, hit the L2 DTLB, and used
a 2-MByte page entry for address translation.

The number of IBS op samples where a load or store operation
produced a valid linear (virtual) address, hit the L2 DTLB, and used
a 1-GByte page entry for address translation.

162

AMD uProf User Guide

AMDZ1

[AMD Public Use]

IBS data cache miss
load latency

IBS load resync

IBS Northbridge local

IBS Northbridge
remote

IBS Northbridge local
L3

IBS Northbridge local
core L1 or L2 cache

IBS Northbridge local
core L1, L2, L3 cache

IBS Northbridge local
DRAM

IBS Northbridge
remote DRAM

IBS Northbridge local
APIC MMIO Config
PCI

IBS Northbridge
remote APIC MMIO
Config PCI

The total DC miss load latency (in processor cycles) across all IBS
op samples that performed a load operation and missed in the data
cache. The miss latency is the number of clock cycles from when the
data cache miss was detected to when data was delivered to the core.
Divide the total DC miss load latency by the number of data cache
misses to obtain the average DC miss load latency.

Load Resync.

The number of IBS op samples where a load operation was serviced
from the local processor. Northbridge IBS data is only valid for load
operations that miss in both the L1 data cache and the L2 data cache.
If a load operation crosses a cache line boundary, then the IBS data
reflects the access to the lower cache line.

The number of IBS op samples where a load operation was serviced
from a remote processor.

The number of IBS op samples where a load operation was serviced
by the local L3 cache.

The number of IBS op samples where a load operation was serviced
by a cache (L1 data cache or L2 cache) belonging to a local core
which is a sibling of the core making the memory request.

The number of IBS op samples where a load operation was serviced
by a remote L1 data cache, L2 cache or L3 cache after traversing one
or more coherent HyperTransport links.

The number of IBS op samples where a load operation was serviced
by local system memory (local DRAM via the memory controller).

The number of IBS op samples where a load operation was serviced
by remote system memory (after traversing one or more coherent
HyperTransport links and through a remote memory controller).

The number of IBS op samples where a load operation was serviced
from local MMIO, configuration or PCI space, or from the local
APIC.

The number of IBS op samples where a load operation was serviced
from remote MMIO, configuration or PCI space.

163

AMD uProf User Guide AMDZ1

[AMD Public Use]

IBS Northbridge cache The number of IBS op samples where a load operation was serviced

modified state from local or remote cache, and the cache hit state was the Modified
(M) state.

IBS Northbridge cache The number of IBS op samples where a load operation was serviced

owned state from local or remote cache, and the cache hit state was the Owned
(O) state.

IBS Northbridge local The total data cache miss latency (in processor cycles) for load

cache latency operations that were serviced by the local processor.

IBS Northbridge The total data cache miss latency (in processor cycles) for load

remote cache latency operations that were serviced by a remote processor.

13.3 Useful links

For the processor specific PMC events and their descriptions, refer AMD developer documents.

Processor Programming Reference (PPR) for AMD Family 17h Processors:
https://developer.amd.com/resources/developer-guides-manuals/

Software Optimization Guide for AMD Family 17h Processors:
https://developer.amd.com/wordpress/media/2013/12/55723 3 00.ZIP

Software Optimization Guide for AMD Family 19h Processors:
https://www.amd.com/system/files/TechDocs/56665.zip

164

https://developer.amd.com/resources/developer-guides-manuals/
https://developer.amd.com/wordpress/media/2013/12/55723_3_00.ZIP
https://www.amd.com/system/files/TechDocs/56665.zip

