AMDA1

INTRODUCING THE

= FireRays SDK

High-Efficiency, High-
Performance Heterogeneous
Ray Tracing Intersection Library.
Ray Tracing Intersection Library
for GPU and APU on Any
Platform with OpenCL.

INTRODUCTION

FireRays is a GPU intersection acceleration library with basic
support for heterogeneous systems. AMD developed FireRays
to help developers get the most out of AMD GPUs and APUs,
as well as save them from maintaining hardware-dependent
code. FireRays exposes a well-defined C++ API for scene
construction and performing asynchronous ray intersection

. . . LA 0“'
queries. The current implementation is based on OpenCL, (ml.h? ‘
which means FireRays supports execution on all platforms ; w D «\\\ - -
conforming to the OpenCL 1.2 standard. It is not limited to - J
AMD hardware or a specific operating system. FireRays is
released under XXX license, which means you can modify
the library to your specific needs if necessary. However, using
FireRays through its API guarantees compatibility and best
performance across the entire line of current and future
AMD products.

Gl and Shadows

N INTRODUCING THE

FireRays SDK

FirePro W9100
Sponza (273K triangles)

Primary (ms / Mrays/s)

Shadow (2 x primary, ms / Mrays/s)

Secondary (ms / Mrays/s)

VP1 (easy) 6 /384 20/ 230 27] 85
VP2 (medium) 7.8 / 285 26 /177 328 /70
VP3 (hard) 10 / 230 29.8 /154 39.7 /58
Rungholt (6.7M triangles)
VP1 (easy) 5/460 6/768 179 / 85
VP2 (medium) 1.6/199 22.8 [202 334/70
VP3 (hard) 6.6 / 351 204 / 225 73 /315
MacPro (D700 x2)
Sponza (273K triangles) Primary Shadow (double number) Secondary
VP1 (easy) 8 /288 17/ 271 26/ 88
VP2 (medium) 9 /256 24 /200 30/77
VP3 (hard) 13 /177 22 [208 34 /67
Rungholt (6.7M triangles)
VP1 (easy) 6 /384 5.5/837 21/ 83
VP2 (medium) 7 /329 18 /242 56 /40
VP3 (hard) 6 /384 22.5 /204 70 / 31
SYSTEM REQUIREMENTS:

e Apple Mac Pro

. HP Z820 - Intel Xeon E5-2660 @ 2.2 GHz - 32Gb RAM - FirePro W9100 16Gb - Windows 7 x64 15.20 driver

GETTING STARTED WITH THE API

The concept of APl and its workflow is relatively simple. To use the API, include the following header:

#include <intersection/firerays.h>

All classes and functions in FireRays are defined in the corresponding namespace, so to access them the user explicitly
specifies the namespace or inserts the following using statement:

using namespace FireRays;

Device enumeration

Next the user configures the intersection devices by means of the FireRays device enumeration API. FireRays exposes all
devices capable of performing intersection queries with the following static methods of Intersectionapi class:

// Get the information for the specified device

// Get the number of devices available in the system
static int GetIntersectionDeviceCount () ;

static IntersectionDeviceInfo const& GetIntersectionDeviceInfo (int devidx) ;

| AMD¢N

AN

INTRODUCING THE

FireRays SDK

Devices are identified by their indices, so the user needs to check device capabilities and save each device's index somewhere
if the device fits user needs. For example, you can use the following construct to choose the GPU OpenCL device using
enumeration API:

int gpuidx = -1;
for (int idx=0; idx < IntersectionApi::GetIntersectionDeviceCount(); ++idx)
{

IntersectionDeviceInfo consté&

devinfo (IntersectionApi: :GetIntersectionDeviceInfo (idx)) ;

if (devinfo.type == IntersectionDeviceInfo: :kGpu &&
devinfo.apis & IntersectionDevicelInfo::kOpenCl)
{
gpuidx = idx;
}
}
API Initialization

Next the user creates an APl instance based on the device chosen in previous step, as shown in the following code:

int apitype = IntersectionDeviceInfo: :kOpenCl;
api_ = IntersectionApi::Create(0, &gpuidx, &apitype, 1)

Note that the Create() function accepts an array of devices. However, only a single device is supported in the current library
version. The first parameter is also reserved for future use and should be O.

There is a chance an error will occur during library initialization (OpenCL runtime issue, access rights problem, etc.). To
communicate the reason back to the user, the library uses a derivative of the Exception interface so the user can catch it and
get the text description of the error.

Geometry creation

Now that the user has an instance of the API, he or she can move to the geometry creation stage. The current version of the
API supports triangle, quad, and mixed meshes along with the instancing. The following snippet shows how to create a simple
mesh consisting of a single triangle:

// Mesh vertices

float vertices[] = {
0.£,0.£,0.£,
0.£,1.£,0.£,
1.£,0.£,0.£
}i

int indices[] = {0, 1, 2};

// Number of vertices for the face

int numfaceverts[] = { 3 };

Shape* shape = api_->CreateMesh (vertices, 3, 3*sizeof (float), indices,
0, numfaceverts, 1))

Here Q is used for index stride, meaning indices are densely packed. The method is blocking. However, it is safe to call from
multiple threads as long as these calls are not interleaved with ray casting method calls.

| AMD¢N

N INTRODUCING THE

FireRays SDK

The next step is to construct the scene from multiple meshes. To add/remove meshes from the current scene (which is
implicitly defined by APl instance), you can use the following methods:

api_->AttachShape (shape) ;
api_->DetachShape (shape) ;

These methods are fast since they are not going to launch any time-consuming operations. Instead actual data transfers
and acceleration structure constructions are deferred till the call to Commit() method. This method should be called any time
something any time something has changed in the scene:

api_->Commit ()

The method is blocking and can't be called simultaneously with other API methods.

Instancing

The geometry can be instanced in the API, which means the same base geometry is used for different entities with different
world transforms. The following code should be used to instantiate the mesh:

Shape* instance = api_->Createlnstance (shape);

Instance can be attached to the scene the same as any other regular shape. Instancing allows you to create overwhelmingly
complex scenes with a moderate memory footprint by means of geometry reuse.

Simple intersection queries

As soon as the geometry is committed, the user can perform intersection queries. As the library is specifically designed for
heterogeneous architectures, it accepts batches of rays rather than individual rays as an input to intersection query methods.
As a general rule, the larger the batch the better because massively parallel devices can maintain better occupancy and
perform better latency hiding.

There are basically two types of intersection queries:

« Closest hit guery (intersection)

« Any hit guery (occlusion)

The methods for querying closest hit are called IntersectBatch() and methods for occlusion are called IntersectBatch()
(occlusion predicate).

The simplest version of an intersection query looks like this:

// Rays
ray rays[3];

// Prepare the ray

rays[0] .o = float4(0.£,0.£,-10.£, 1000.f);
rays[0].d = float3(0.£,0.£,1.£);
rays[l].o = float4(0.£,0.5£,-10.£, 1000.f);
rays[l].d = float3(0.£,0.£,1.£f);
rays[2] .o = float4(0.5£,0.£,-10.£, 1000.f);
rays[2].d = float3(0.£,0.£,1.£);

// Intersection and hit data
Intersection isect[3];

// Intersect
ASSERT NO THROW (api_->IntersectBatch(rays, 3, isect));

. AMDZU

N INTRODUCING THE

FireRays SDK

This method accepts an array of ray structures. The layout of a ray structure is:

0.Xyz Ray origin

d.xyz Ray direction

o.w Ray maximum distance
d.w Time stamp for motion blur

The resulting information for a closest hit query is returned as an array of Intersection structures with the following layout:

uvwt.xyz Parametric coordinates of a hit (xy for triangles and quads)
uvwt.w Hit distance along the ray

shapeid ID of a shape

primid ID of a primitive within a shape

Shape ID corresponds to a value which is either automatically assigned to a shape at creation time by the APl or manually set
by the user using Shape::Setld() method. Primitive ID is a zero-based index of a primitive within a shape (in the order they
were passed to CreateMesh method). If no intersection is detected, they are both set to kNullld.

An occlusion query has the same format but returns an array of integers, where each entry is either -1 (no intersection) or 1
(intersection).

Asynchronous queries

The methods discussed above are blocking, but there is an option to launch a ray query asynchronously using the following
version of the method:

// Intersect
Event* event = nullptr;
api_->IntersectBatch(rays, numrays, intersections, nullptr, &event);

This method launches an asynchronous query returning the pointer to an Event object. This event can be used to track the
status of execution or to build dependency chains. To track the status, the user can use the following methods:

event->complete () ;
event->Wait () ;

The first call returns true if the method has completed and the contents of the result buffer are available. The second waits
until execution is complete.

In addition, you can pass the Event object to another ray query, thus establishing a dependency. The second ray query in this
case would start only after the first one has finished:

api_->IntersectBatch(rays, numrays, intersections, event, nullptr);

| AMD¢N

AN

INTRODUCING THE

FireRays SDK

Memory API

The previously described intersection queries operate on CPU memory. However, the library provides a memory interface
that you can use to create buffers in device memory (for example GPU memary). The layout of the buffers is essentially
the same as for their CPU counterparts. To create a buffer in remote device memory, use the following method of the
IntersectionApi class:

virtual Buffer* CreateBuffer(size_t size, void* initdata) const = 0;

The buffer can be mapped and unmapped with the following calls:

virtual void MapBuffer (Buffer const* buffer, MapType type, size_t offset, size_t size, void** data,
Event** event) const = 0;

virtual void UnmapBuffer (Buffer const* buffer, void* ptr, Event** event) const = 0;

Note that these operations are asynchronous and you need to establish correct dependencies to intersection queries to ensure
they work as intended.

OpenCL interop

There is a way to use existing OpenCL contexts in the API as well as to share existing OpenCL buffers with the application
code. To create an APl instance using an existing OpenCL context, the user can call the following:

Cl_int status = clGetDevicelIDs (platform[0], type, 1, &device, nullptr);

cl _context rawcontext = clCreateContext(nullptr, 1, &device, nullptr, nullptr, &status);
cl_command queue queue = clCreateCommandQueue (rawcontext, device, 0, &status);

api_ = IntersectionApi::CreateFromOpenClContext (0, rawcontext, &device, &queue, 1);

The user must ensure that there is only one device present in the context passed into the API.

To share the buffer, you can use this code:

cl mem rays buffer = clCreateBuffer (rawcontext, CL MEM READ WRITE | CL MEM COPY HOST PTR,
sizeof (ray), &r, &status);

rays = api_->CreateFromOpenClBuffer (rays_buffer) ;

Global options

Options control various aspects of FireRays behavior. Currently, they are mainly used to control acceleration structure
construction and traversal algorithms. Refer to the header file for the complete set of supported options. For example, to set
an option you use this call:

api_->SetOption(“bvh.builder”, “sah”);

Acceleration strategies

The default acceleration structure is Bounding Volume Hierarchy (BVH) using spatial median splits. It maintains fast build
times and provides decent intersection performance. You can enable SAH builder using the global option and trade off
construction time for better intersection performance.

‘. AMD¢N

N INTRODUCING THE

FireRays SDK

If you need faster refits (for example if geometry is frequently changing position), you can enable two level BVH, which
doesn't get re-created every time the geometry transform is changed.

For scenes containing instances or motion blur, two level BVH is used by default.

Releasing entities

All the entities created via the FireRays interface should be released when an application shuts down. The following methods
are available to release shapes, buffers, and events:

api_->DeleteShape (shape) ;
api_->DeleteBuffer (buffer) ;
api_->DeleteEvent (event) ;

Destroy the APl instance itself with:

IntersectionApi: :Delete (api_) ;

©2015 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc
Other names are for informational purposes only and may be trademarks of their respective owners. PID 157205-A

1 AMDZ

