
1

AGS Library
Documentation
AMD Graphics Developer Relations Team

Revision 7 – April 28 2015

2

AGS Library Overview

This document provides an overview of the AGS (AMD GPU Services) library, including a presentation of

available functionality and related entry points. The AGS library provides software developers with the ability

to query AMD GPU software and hardware state information that is not normally available through standard

operating system or graphic APIs. Version 1.0 of the library includes support for querying graphics driver

version info, Crossfire (AMD’s multi-GPU rendering technology) configuration info, as well as Eyefinity

(AMD’s multi-display rendering technology) configuration info. AGS is available in dynamic and static

library form for 32 and 64 bit versions of Windows XP, Vista, Windows7 and Windows8.

This paper only presents AGS library APIs and associated functionality. Additional information on Catalyst

drivers, as well as on Crossfire and Eyefinity technologies is available at www.amd.com. Graphics

programming recommendations are detailed in the Harnessing the Performance of CrossfireX and in the

Gaming under Eyefinity whitepapers, both available at developer.amd.com.

Using the AGS library

AGS functionality is accessed through the amd_ags.h header file: this file includes inline functions that

abstract loading and unloading of the AGS dll (if it’s used), as well as provides functionality that any software

developer using the AGS lib or dll would otherwise need to implement. AGS features are built into the dll or

static lib files (amd_ags.dll, amd_ags64.dll, amd_ags.lib, or amd_ags64.lib).

To add AGS support to an existing project, follow these steps:

 Determine if AGS functionality will be accessed through a dll or static lib. If the dll option is chosen,

make sure to define _AMD_AGS_USE_DLL in your project properties. If the static lib option is chosen,

no special token needs to be defined.

 Add to your project the appropriate amd_ags library file (amd_ags.dll, amd_gs64.dll, amd_ags.lib, or

amd_ags64.lib).

 Add the amd_ags.h file to your project and include it from the source file that will call into the AGS

library.

http://www.amd.com/
http://www.amd.com/

3

Initializing the API

The AGS library must be initialised before making any subesquent calls to the API. This can be performed

before the device is created. The API is cleaned up using AGSDeInit().

AGSReturnCode AGSInit ()

Return Code AGS_SUCCESS, AGS_FAILURE, AGS_ERROR_LEGACY_DRIVER, AGS_ERROR_MISSING_DLL

AGSReturnCode AGSDeInit ()

Return Code AGS_SUCCESS, AGS_FAILURE

4

Querying Graphics Driver Version

The AGSDriverGetVersionInfo() function enables developers to query the currently installed version of

AMD graphics drivers. The returned structure contains two strings: the first refers to the build id of the

graphics driver package (“8.723-100406a-098769C-ATI” is returned for Catalyst 10.4 for example), and the

second contains the public release id (“10.4” is returned for Catalyst 10.4 for example). The call to this

function must be made from the same thread that AGSInit()was called from.

AGSReturnCode AGSDriverGetVersionInfo (AGSDriverVersionInfoStruct *lpDriverVersionInfo)

Output Param lpDriverVersionInfo Pointer to an AGSDriverVersionInfoStruct structure that contains
driver version information.

Return Code AGS_SUCCESS, AGS_FAILURE.

Notes Available with Catalyst 10.4 and later driver releases.

AGSDriverVersionInfoStruct structure

strDriverVersion[256] Contains the build id of the currently installed graphics driver package. “8.723-
100406a-098769C-ATI” is returned for Catalyst 10.4 for example

strCatalystVersion[256] Contains the public release id of the currently installed graphics driver package.
“10.4” is returned for Catalyst 10.4 for example

5

Querying Latest Graphics Driver Version

The AGSDriverGetLatestVersionInfo() function enables developers to query the latest version of AMD

graphics drivers for the currently installed AMD hardware from the Internet. The returned structure contains

two strings: the first refers to the public release id of the graphics driver package (“10.4” is returned for

Catalyst 10.4 for example), and the second contains the URL of the latest graphics driver package

(“http://game.amd.com/us-en/drivers_catalyst.aspx?p=win7/windows-7-32bit” is returned for example). The

call to this function must be made from the same thread that AGSInit()was called from.

AGSReturnCode AGSDriverGetLatestVersionInfo (AGSLatestDriverVersionInfoStruct
*lpDriverVersionInfo)

Output Param lpDriverVersionInfo Pointer to an AGSLatestDriverVersionInfoStruct structure that
contains driver version information.

Return Code AGS_SUCCESS or AGS_FAILURE.

Notes Available with Catalyst 10.4 and later driver releases.

AGSLatestDriverVersionInfoStruct structure

strDriverVersion[256] Contains the public release id of the graphics driver package for the currently
installed AMD graphics hardware. “10.4” is returned for Catalyst 10.4 for example

strDriverWebLink[256] Contains the URL of the latest graphics driver package for the currently installed
AMD graphics hardware. “http://game.amd.com/us-
en/drivers_catalyst.aspx?p=win7/windows-7-32bit” is returned for example

6

Querying Crossfire State

The AGSCrossfireGetGPUCount() function returns the number of AMD GPUs that operate in parallel to

accelerate 3D rendering for the specified display.

AGSReturnCode AGSCrossfireGetGPUCount (int iOSDisplayIndex,
 int *lpNumGPUs)

Input Param iOSDisplayIndex This is an operating system specific display index identifier. The
value used should be the index of the display used for rendering
operations.

Output Param lpNumGPUs This is a pointer to an integer that contains the number of GPUs
used to accelerate 3D rendering for the provided display index.

Return Code AGS_SUCCESS or AGS_FAILURE.

Notes Available with Catalyst 9.1 and later driver releases.

7

Querying Eyefinity State

Querying Eyefinity configuration state information can be accomplished with the

AGSEyefinityGetConfigInfo() function which returns the following information:

 Whether Eyefinity is enabled or not;

 The SLS grid configuration of displays used (3x1 layout, 3x2 layout, etc);

 The SLS size of the surface that spans the displays;

 Whether bezel compensation is enabled or not;

 The SLS grid coordinate for each display;

 The total rendering area for each display;

 The visible rendering area for each display;

 The preferred display (to properly position UI elements in games for example).

Remark: This function supports testing Eyefinity support without needing to enable Eyefinity in AMD's

Catalyst Control Center application. This is useful for testing Eyefinity support for a windowed application or

if the necessary hardware is not available, when testing support for a 6 display setup when using a graphic card

that only supports up to 3 displays for example.

This is accomplished by pre-loading the AGSEyefinityInfoStruct structure passed into this function call. The

iSLSWidth, iSLSHeight, iSLSGridWidth, and iSLSGridHeight must *all* contain non-zero values in order for

this functionality to be triggered. When this is set, the amd_ags library is not used, and the values loaded into

the pDisplaysInfo array of structures are simply computed based on the values passed into through the

AGSEyefinityInfoStruct structure.

This functionality is only enabled in the amd_ags.h file if _DEBUG is defined to avoid having shipping

applications use this debug feature.

In the example below, a 3 wide by 2 tall 2400x1200 is simulated, with each hypothetical display resolution

being 800x600. Ideally, the developer using these kinds of values would then create a 2400x1200 window for

rendering and display.

Example:

eyefinityInfo.iSLSWidth = 2400;

eyefinityInfo.iSLSHeight = 1200;

 eyefinityInfo.iSLSGridWidth = 3;

8

 eyefinityInfo.iSLSGridHeight = 2;

 eyefinityInfo.iBezelCompensatedDisplay = TRUE;

AGSReturnCode AGSEyefinityGetConfigInfo (int iOSDisplayIndex,
 AGSEyefinityInfoStruct *lpEyefinityInfo,
 int *lpNumDisplaysInfo,
 AGSDisplayInfoStruct **lppDisplaysInfo)

Input Param iOSDisplayIndex This is an operating system specific display index identifier. The
value used should be the index of the display used for rendering
operations.

In/Out Param lpEyefinitiInfo This is a pointer to an AGSEyefinitiInfoStruct structure that contains
system Eyefinity configuration information. Under normal
circumstances, it is only used as an output parameter.

For testing and debugging purposes, it can be used to fake Eyefinity
modes by setting the iSLSWidth, iSLSHeight, iSLSGridWidth, and
iSLSGridHeight to valid, non-zero values. These entries are then
used to compute the values of the lppDisplayInfoStruct array of
structures. In this case, this parameter serves as both an input and
output parameter. This enables developers to simulate and test
Eyefinity support for various multi-monitor configurations without
needing access to a full Eyefinity setup. This functionality is only
available if the _DEBUG flag is defined.

Output Param lpNumDisplaysInfo

Pointer to the number of AGSDisplayInfoStruct structures stored in
the returned lppDisplayInfoStruct array. The value returned is equal
to the number of displays used for the Eyefinity setup.

Output Param lppDisplayInfoStruct

Pointer to an array of AGSDisplayInfoStruct structures that contains
per display Eyefinity configuration information.

Return Code AGS_SUCCESS or AGS_FAILURE.

Notes Available with Catalyst 10.3 and later driver releases.

9

The AGSEyefinityReleaseConfigInfo() function is used to release memory allocated in the

AGSEyefinityGetConfigInfo() call. The calls to these functions must be made from the same thread that

AGSInit()was called from.

AGSReturnCode AGSEyefinityReleaseConfigInfo (AGSDisplayInfoStruct **lppDisplaysInfo)

Input Param lppDisplaysInfo Pointer to an array of AGSDisplayInfoStruct structures that needs to
be freed.

Output Param None

Return Code AGS_SUCCESS or AGS_FAILURE.

Notes Available with Catalyst 10.3 and later driver releases.

AGSEyefinityInfoStruct structure

iSLSActive Indicates if Eyefinity is active for the operating system display index passed into
AGSEyefinityGetConfigInfo (). 1 if enabled and 0 if disabled.

iSLSGridWidth Contains width of the multi-monitor grid that makes up the Eyefinity Single Large
Surface. For example, a 3 display wide by 2 high Eyefinity setup will return 3 for
this entry.

iSLSGridHeight Contains height of the multi-monitor grid that makes up the Eyefinity Single
Large Surface. For example, a 3 display wide by 2 high Eyefinity setup will return
2 for this entry.

iSLSWidth Contains width in pixels of the multi-monitor SLS. The value returned is a
function of the width of the SLS grid, of the horizontal resolution of each display,
and of whether or not bezel compensation is enabled.

iSLSHeight Contains height in pixels of the multi-monitor SLS. The value returned is a
function of the height of the SLS grid, of the vertical resolution of each display,
and of whether or not bezel compensation is enabled.

iBezelCompensatedDisplay Indicates if bezel compensation is used for the current SLS display area. 1 if
enabled and 0 if disabled.

10

AGSDisplayInfoStruct structure

int iGridCoordX Contains horizontal SLS grid coordinate of the display. The
value is zero based with increasing values from left to right of
the overall SLS grid. For example, the left-most display of a 3x2
Eyefinity setup will have the value 0, and the right-most will
have the value 2.

int iGridCoordY Contains vertical SLS grid coordinate of the display. The value is
zero based with increasing values from top to bottom of the
overall SLS grid. For example, the top display of a 3x2 Eyefinity
setup will have the value 0, and the bottom will have the value
1.

AGSSimpleRectStruct displayRect Contains the base offset and dimensions in pixels of the SLS
rendering area associated with this display. If bezel
compensation is enabled, this area will be larger than what the
display can natively present to account for bezel area. If bezel
compensation is disabled, this area will be equal to what the
display can support natively.

AGSSimpleRectStruct displayRectVisible Contains the base offset and dimensions in pixels of the SLS
rendering area associated with this display that is visible to the
end user. If bezel compensation is enabled, this area will be
equal to what the display can natively, but smaller than the
area described in the displayRect entry. If bezel compensation
is disabled, this area will be equal to what the display can
support natively and equal to the area described in the
displayRect entry. Developers wishing to place UI, HUD, or
other assets on a given display so that it is visible and
accessible to end users need to locate them inside of the
region defined by this rect.

int iPreferredDisplay Indicates whether or not this display is the preferred one for
rendering of game HUD and UI elements. Only one display out
of the whole SLS grid will have this be true if it is the preferred
display and 0 otherwise. Developers wishing to place specific
UI, HUD, or other game assets on a given display so that it is
visible and accessible to end users need to locate them inside
of the region defined by this rect. If no display is marked as
preferred, then it may be either down to the game to
determine where to position the HUD or assume the HUD
should cover the entire SLS such as in the case of 2x1 4k
resolutions.

11

Querying Display ID State

The AGSGetDefaultDisplayIndex() function is simply a helper function used to query the id of the main

display. Its output value can be used as input for AGS functions whose input requires a display index for

developers who only target rendering at the main display. The call to this function must be made from the

same thread that AGSInit()was called from.

AGSReturnCode AGSGetDefaultDisplayIndex (int *lpOSDisplayIndex)

Input Params None

Output Params lpOSDisplayIndex Operating system index identifier for default display.

Return Code AGS_SUCCESS or AGS_FAILURE.

12

Querying GPU memory size

The AGSGPUGetDeviceMemorySize() function returns the memory size of a GPU. The call to this function

must be made from the same thread that AGSInit() was called from.

AGSReturnCode AGSGPUGetDeviceMemorySize (int device, long long *lpSizeInBytes)

Input Params device GPU device number, must be in the range returned by
AGSGPUGetDeviceCount()

Output Params lpSizeInBytes Size of the GPU memory in bytes.

Return Code AGS_SUCCESS or AGS_FAILURE.

