
C++ and Fortran Compilers for Intel & AMD
architectures

Georg Zitzlsberger georg.zitzlsberger@vsb.cz

Radim Vav̌ŕık radim.vavrik@vsb.cz

Jakub Beránek jakub.beranek@vsb.cz

14th of January 2019

mailto:georg.zitzlsberger@vsb.cz
mailto:radim.vavrik@vsb.cz
mailto:jakub.beranek@vsb.cz

Agenda

Exercise 1 - Numerical Stability

Exercise 2 - Processor Dispatching

Summary

Exercise 1 - Numerical Stability

Exercise 1 - Numerical Stability

Numerical stability as a problem:
I Run-to-run variations:

> ./ my_app
Result : 1.0109888
> ./ my_app
Result : 1.0109889

I Run between different systems:
System A System B

> ./ my_app
Result : 1.0109888

> ./ my_app
Result : 1.0109889

I Root causes:
I FP numbers have finite resolution and
I Rounding is done for each (intermediate) result

Exercise 1 - Numerical Stability

What has effect on numerical stability?
I Selection of algorithm:

Conditional numerical computation for different systems
and/or input data can have unexpected results.

I Non-deterministic task/thread scheduler:
Asynchronous task/thread scheduling has best performance
but reruns use different threads.

I Alignment (heap & stack):
If alignment is not guaranteed and changes between reruns
the data sets could be computed differently (e.g. vector loop
prologue & epilogue of unaligned data).

⇒ User controls those (direct or indirect)

Exercise 1 - Numerical Stability

Order of FP operations has impact on rounded result, e.g.:
(a + b) + c 6= a + (b + c)

I 2− 63 + 1 +−1 = 2− 63 (mathematical result)
I (2− 63 + 1) +−1 ≈ 0 (correct IEEE result)
I 2− 63 + (1 +−1) ≈ 2− 63 (correct IEEE result)

Effects of optimizations:
I Constant folding: X + 0⇒ X or X ∗ 1⇒ X
I Multiply by reciprocal: A/B ⇒ A ∗ (1/B)
I Approximated transcendental functions (e.g. sqrt, sin)
I For SIMD instructions: flush-to-zero or contractions (FMA)
I Different code paths (e.g. SIMD vs. non-SIMD)
I . . .
⇒ Subject of Optimizations by Compiler & Libraries

Exercise 1 - Numerical Stability

Intel C++/Fortran Compiler:
I Control with -fp-model:

(Image: Intel)

I Changes:
I Value safety (associativity)
I Expression evaluation (interim rounding)
I Exceptions on or off
I FP environment access (e.g. C++ fenv t)
I FP contractions (FMA)

I Default is fast, strict might fall back to x87/no
vectorization

http://en.cppreference.com/w/cpp/numeric/fenv

Exercise 1 - Numerical Stability

Example:
include <iostream >
define N 100
int main()
{

float a[N], b[N];
float c = -1., tiny = 1.e-20F;
for (int i=0; i<N; i++) a[i]=1.0;
for (int i=0; i<N; i++) {

a[i] = a[i] + c + tiny;
b[i] = 1/a[i];

}
std::cout << "a␣=␣" << a[0]

<< "␣b␣=␣" << b[0]
<< "\n";

}

I -fp-model fast (default):
a = 0, b = -nan

I -fp-model precise or -fp-model strict:
a = 1e-20, b = 1e+20

⇒ Disabled reassociation which impacts also performance

Exercise 1 - Numerical Stability

I Options for either code generation or math libraries used
I Code generation:

I -[no-]prec-div and -[no-]prec-sqrt: Improve precision
(default off)

I -[no-]fma: Turn on/off FMA (default on)
I -[no-]fprotect-parens: Honor parentheses (default off)
I . . .

I Math libraries:
I -fimf-precision=[high|medium|low]: Accuracy of math

library functions
I -fimf-arch-consistency=true: Consistent results on

different processor types of same architecture
I -fimf-use-svml: Use SVML also for scalar math (new in

18.0)
I More -fimf-* options available . . .

More information can be found here

https://software.intel.com/en-us/cpp-compiler-18.0-developer-guide-and-reference-floating-point-options

Exercise 1 - Numerical Stability

I Various options between default (favoring performance) and
strict model (best reproducibility)

I Best real life trade-off:
-fp-model precise -fp-model source (or for 17.0+:
-fp-model consistent)
Approx. 12-15% slower performance for SPECCPU2006fp

I Don’t mix math libraries from different compiler versions!
I Using different processor types (of same architecture), specify:

-fimf-arch-consistency=true
I Use -fimf-use-svml -fp-model consistent for 18.0

and later

Very good article about numerical stability can be found here

http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler

Exercise 1 - Numerical Stability
GCC:

I Fast math -ffast-math (off by default):

Category Flags Comments
Trap handlers and ex-
ceptions

-fno-trapping-math,
-fno-signaling-nans

IEEE standard recommends that implementa-
tions allow trap handlers to handle exceptions
like divide by zero and overflow. This flags as-
sumes that no use-visible trap will happen.

Rounding -fno-rounding-math IEEE has four rounding modes. This flag as-
sumes that the rounding mode is round to near-
est.

Languages and com-
pilers

-funsafe-math-optimizations
(incl. -fassociative-math)

Due to roundoff errors the associative law of al-
gebra do not necessary hold for floating point
numbers and thus expressions like (x + y) + z
are not necessary equal to x + (y + z).

Special quantities
(Nans, signed zeros
and infinity)

-ffinite-math-only,
-fno-signed-zeros

Flush to zero

Equivalent to Intel’s -fp-model=consistent
I To get equivalent to Intel’s -fp-model=strict use:

-frounding-math -fsignaling-nans
I Vectorize with -ftree-vectorize (only on with -O3)

See GCC Wiki for more information

https://gcc.gnu.org/wiki/FloatingPointMath

Exercise 1 - Numerical Stability

LLVM/Clang:
I Same as for GCC, fast math -ffast-math (off by default)
I Vectorization on by default; turn off with:

I Loop vectorization: -fno-vectorize
I Superword-level parallelism: -fno-slp-vectorize

See Auto-Vectorization in LLVM for more information

A word on AMD compilers:
I AMD x86 Open64 Compiler Suite deprecated 2013
I Successor is AMD Optimizing C/C++ Compiler (AOCC) :

I Latest version is 1.3.0 with ”Zen” support
I Based on LLVM/Clang 7.0 with DragonEgg (Fortran) and

Flang (alpha) support
I Optimized libraries including AMD LibM (v3.2.2)

https://llvm.org/docs/Vectorizers.html
https://developer.amd.com/x86-open64-compiler-suite/
https://developer.amd.com/amd-aocc/
https://developer.amd.com/amd-cpu-libraries/amd-math-library-libm/

Exercise 1 - Numerical Stability

Vectorized math libraries:
I High level libraries like FFTW, OpenBLAS, ATLAS, Intel

Math Kernel Library, etc.
I Low level extensions of libm

I Intel Short Vector Math Library (SVML):
I Default by Intel C++/Fortran Compiler
I Has its own ABI (proprietary)
I Calls to symbols like svml sin8 z0 (sin(...) with 8

elements of AVX512 vector register)
I Glibc libmvec:

I Default by GCC and LLVM/Clang with Glibc 2.22+
I Used automatically - only add -lmvec for static builds
I Can be used with OpenMP (GCC 4.9.0+) or automatically

(Glibc 2.23+ and GCC 6.1+)
I ABI follows Vector Function ABI Specification for OpenMP SIMD with an

extension

https://software.intel.com/en-us/articles/vector-simd-function-abi
https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt

Exercise 1 - Numerical Stability

I cont’d low level extensions of libm:
I AMD Core Math Library (ACML)

I Last version ACML 6.0.6 (2014); no development anymore(?)
I Only up to AVX (and FMA4)
I Better alternative: libmvec

I OpenPower Mathematical Acceleration Subsystem (MASS)
(more on that later)

I GCC option -mveclibabi=[svml|acml]
I Requires also: -ftree-vectorize and

-funsafe-math-optimizations (or -ffast-math)
I Default: libmvec

I For GFortran, libmvec is work in progress

I LLVM/Clang1 option -fmvec=[Accelerate|SVML|none]

1No support for libmvec yet

https://gcc.gnu.org/ml/gcc/2018-04/msg00101.html
https://groups.google.com/forum/#!topic/llvm-dev/jobYkUo2ivk

Exercise 1 - Numerical Stability
Example (sin.c):
#include <math.h>

int N = 3200;
double b[3200];
double a[3200];

int main (void)
{

int i;
for (i = 0; i < N; i += 1)

b[i] = sin (a[i]);
return (0);

}

Compile (GCC 6.1+ and Glibc 2.23+):
$ gcc -O2 -ftree -loop -vectorize -ffast -math

-lm -mavx2 sin.c -S
$ cat sin.s
...
.L4:
vmovupd (%r15 ,%rbx), %xmm0
addl $1, %r14d
vinsertf128 $0x1 , 16(%r15 ,%rbx), %ymm0 , %ymm0

call ZGVdN4v sin@PLT
vmovups %xmm0 , (%r12 ,%rbx)
vextractf128 $0x1 , %ymm0 , 16(%r12 ,%rbx)
addq $32 , %rbx
cmpl %r14d , -52(%rbp)
ja .L4
...

Attention:
GCC w/ SVML: vmldExp2, vmldLn2, vmldLog102, vmldPow2, vmldTanh2, vmldTan2,
vmldAtan2, vmldAtanh2, vmldCbrt2, vmldSinh2, vmldSin2, vmldAsinh2, vmldAsin2,
vmldCosh2, vmldCos2, vmldAcosh2, vmldAcos2, vmlsExp4, vmlsLn4, vmlsLog104,
vmlsPow4, vmlsTanh4, vmlsTan4, vmlsAtan4, vmlsAtanh4, vmlsCbrt4, vmlsSinh4,
vmlsSin4, vmlsAsinh4, vmlsAsin4, vmlsCosh4, vmlsCos4, vmlsAcosh4, vmlsAcos4
GCC w/ ACML: vrd2 sin, vrd2 cos, vrd2 exp, vrd2 log, vrd2 log2,
vrd2 log10, vrs4 sinf, vrs4 cosf, vrs4 expf, vrs4 logf, vrs4 log2f,
vrs4 log10f, vrs4 powf

⇒ Only SSE!

Exercise 1 - Numerical Stability

Exercises:
1. Compile the provided code fp stability.[cpp|f90] with

Intel C++/Fortran, GCC/GFortran & LLVM/Clang:
I Compile one version optimized for speed and one with

”correct” results; what are the differences?
I Change the code and compiler options to retain correct results

with optimizations (with all compilers).
2. Using vectorized math libraries:

I Compile the provided code (vec.[cpp|f90]) with the Intel
C++/Fortran Compiler and verify the use of SVML

I Compile the same code with GCC and confirm use of libmvec.
I For GCC, change from libmvec to svml or acml, for

LLVM/Clang, change to SVML. What is the difference?

Exercise 2 - Processor Dispatching

Exercise 2 - Processor Dispatching

What we want:
I Manage different SIMD extension sets in one executable
I Run exeutable on wide range of processor generations (incl.

control of numerical stability)
I Support Intel and AMD processors with the same executable

What it does not:
I Cannot mix different instruction set architectures (ISAs) in

one executable (e.g. Power9 with AMD64/x86-64)
I No emulation of newer/future ISAs (use the tool

Intel Software Development Emulator for this)
I Support by compilers others than Intel C++/Fortran Compiler

https://software.intel.com/en-us/articles/intel-software-development-emulator

Exercise 2 - Processor Dispatching

Three different approaches:
I Automatic CPU Dispatching

I Pro:
Easy to use (only compiler options needed)

I Con:
Coarse grained as compiler does the differntiation

I Manual CPU Dispatching
I Pro:

Fine grained control down to function level
I Con:

Only supports Intel processors
I Vendor-neutral CPU Dispatching

I Pro:
Works for both Intel and AMD processors

I Con:
Requires new API

Exercise 2 - Processor Dispatching
Using automatic CPU dispatching:

1. Select baseline:
I Intel only -x<Feature>:

Adds CPU test during link stage which only works for Intel
processors
Example:
icc app.c -xcore-avx2

I Compatible -m<Feature>:
No CPU test is added and user is responsible to run on
compatible processors
Example:
icc app.c -mavx2

2. Extend with Intel only features -ax<Features>:
Add Intel only processor SIMD features
Example:
icc app.c -mavx2 -axsse4.2,core-avx512

For list of features see Intel R© C++ Compiler Developer Guide and Reference

https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-x-qx

Exercise 2 - Processor Dispatching
How automatic CPU dispatching works:

Note:
For -mavx2 options, there is no test for support of AVX2!
Example for Skylake’s AVX5122:
$ icc -xcore-avx512 app.c -o app && ./app

Please verify that both the operating system and the processor support
Intel(R) AVX512DQ, AVX512F, AVX512CD, AVX512BW, AVX512VL and CLWB instructions.

$ icc -march=skylake-avx512 app.c -o app && ./app
Illegal instruction

2-m options are a family of options including -march=

Exercise 2 - Processor Dispatching
Behind the curtain:
$ icc -xsse4 .2 -axcore -avx512 app.c -S
app.c(2): (col. 1) remark: main has been targeted for automatic cpu dispatch

$ cat app.s
...
main
..B1.1:

pushq %rsi

movq $0x20064199d97ff , %rdx

..B1.3:

movl intel cpu feature indicator(%rip), %rax

andq %rdx , %rax
cmpq %rdx , %rax
jne ..B1.6

..B1.4:
addq $8, %rsp

jmp main.V # AVX512

..B1.6:

testb $1, intel cpu feature indicator(%rip)

je ..B1.8
..B1.7:

addq $8, %rsp

jmp main.A # SSE4.2

..B1.8:

call * intel cpu features init@GOTPCREL(%rip)

jmp ..B1.3
...

Exercise 2 - Processor Dispatching

CPUID masks:

I On non-Intel processor: just the generic bit is set
(FEATURE GENERIC IA32)

I Better optimization only with -m options (for automatic CPU
dispatching)

I Full list can be found in immintrin.h of Intel C++ Compiler

Exercise 2 - Processor Dispatching

Manual CPU dispatching:
I Possible to provide specific high level code for different

processors
I Different processors might also require different algorithms
I Usage is simple:

I Declare a function to be multi-versioned3:
__attribute__((cpu_dispatch(generic, ...)))
void my_func() {};

I Define every version explicitly:
__attribute__((cpu_specific(generic)))
void my_func() {
...
}

3 declspec can be also used instead of attribute

Exercise 2 - Processor Dispatching

Manual CPU dispatching example:
#include <stdio.h>

// need to create specific function versions

attribute ((cpu dispatch(generic, core 5th gen avx)))

void dispatch_func () {};

attribute ((cpu specific(generic)))

void dispatch_func () {
printf ("Code for non -Intel processors and generic Intel\n");

}

attribute ((cpu specific(core 5th gen avx)))

void dispatch_func () {
printf ("Code for 5th generation Intel Core processors goes here\n");

}
int main() {

dispatch_func ();
printf (" Return from dispatch_func\n");
return 0;

}

Exercise 2 - Processor Dispatching
Manual CPU dispatching CPUID arguments:

Argument Description
generic Other Intel processors for IA-32 or Intel R© 64 architecture or com-

patible processors not provided by Intel Corporation
core 4th gen avx 4th generation Intel R© CoreTM processor family with support for

Intel R© Advanced Vector Extensions 2 (Intel R© AVX2) including
the RDRND instruction

haswell This is a synonym for core 4th gen avx
skylake Intel R© microarchitecture code name Skylake. This keyword tar-

gets the Client CPU without support for Intel R© AVX-512 instruc-
tions

skylake avx512 Intel R© microarchitecture code name Skylake. This keyword tar-
gets the Server CPU with support for Intel R© AVX-512 instruc-
tions

mic avx512 2nd generation Intel R© Xeon PhiTM processor family with support
for Intel R© Advanced Vector Extensions 512 (Intel R© AVX-512)
Foundation instructions, Intel R© AVX-512 Conflict Detection in-
structions, Intel R© AVX-512 Exponential and Reciprocal instruc-
tions, Intel R© AVX-512 Prefetch instructions . . .

For full list see Intel R© C++ Compiler Developer Guide and Reference

https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-cpu-specific

Exercise 2 - Processor Dispatching

Manual CPU dispatching is typically used with:
I Inline assembler
I Compiler intrinsic functions (see Intel R© Intrinsics Guide)
I Manual specialization for vector lengths (e.g. if dimensions

are known)
I Fortran users can move dispatching to C functions and call

back to Fortran code
⇒ More control over generated object code!

However:
What to do if specialization should also work for non-Intel
processors?

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Exercise 2 - Processor Dispatching
Vendor-neutral CPU dispatching:

I Support of Intel and non-Intel processors
I Get same benefits from manual processor dispatching
I Usage is simple:

I Test whether CPU feature is available on executing processor:
int _may_i_use_cpu_feature(__int64)

I Tell compiler that a code section should use specific features:
void _allow_cpu_features(__int64)

Feature Description
FEATURE GENERIC IA32 Fallback
FEATURE SSE4 2 SSE4.2
FEATURE AVX AVX
FEATURE AVX2 AVX2
FEATURE AVX512F AVX512 Foundation

For list of features, see Intel R© C++ Compiler Developer Guide and Reference

https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-may-i-use-cpu-feature

Exercise 2 - Processor Dispatching
Vendor-neutral CPU dispatching example:
#include <stdio.h>
#include <immintrin.h>

void run_avx2 () {

allow cpu features(FEATURE AVX2);

printf ("AVX2\n");
}
void run_sse4_2 () {

allow cpu features(FEATURE SSE4 2);

printf ("SSE4 .2\n");
}
void run_fallback () {

allow cpu features(FEATURE GENERIC IA32);

printf (" Fallback\n");
}
void my_dispatch () {

if(may i use cpu feature(FEATURE AVX2))

run_avx2 ();

else if(may i use cpu feature(FEATURE SSE4 2))

run_sse4_2 ();
else

run_fallback ();
}
int main(int argc , char **argv) {

my_dispatch ();
return 0;

}

Exercise 2 - Processor Dispatching

Exercises:
1. Multi-version the given example for AVX2 (baseline) and

AVX512 (Skylake-SP) using:
I Automatic CPU dispatching
I Manual CPU dispatching
I Vendor-neutral CPU dispatching

Use Intel Software Development Emulator to execute the
AVX512 code paths (option -skx).

2. For the vendor-neutral case, compile the AVX2 and AVX512
implementations with a different compiler than Intel
C++/Fortran Compiler. What is important for building and
linking?

Summary

We have seen examples on how...
I FP numerical stability is influenced similarly for Intel and

AMD architectures
I Vectorization of trancendentials is needed for performance but

requires additional caution
I SW developers can influence which code paths to use and

generate for different target architectures
I Intel and AMD processors can be supported with the same

executable

Backup

Interprocedural Optimizations (IPO)
There are two IPO modes:

I Single-file IPO -ip:

Optimizations are limited within a
single compilation unit.
Subset is default but not full!

I Multi-file IPO -ipo:

Optimizations are working
accross multiple compilation
units.

(Images: Intel)

IPO - Steps

Multi-file IPO (-ipo) has two phases:
1. Compiling:

icc -c -ipo main.c func1.c func2.c
Only creates intermediate fat object files (unoptimized &
containing IL data!)
Such fat object files are also called link-time optimization
(LTO) object.

2. Linking:
icc -ipo main.o func1.o func2.o
Loads intermediate object files, applies optimizations(!) and
links

⇒ Beware that all optimiztion actually happens at link time!

More Control over IPO
IPO is very memory and time complex - you can control:

I Split object files with -ipo[n] or -ipo-separate:
I By default one single ipo out.o is generated depending on

compiler heuristic
(all IPO objects are merged)

I -ipo[n] creates n ipo out[n].o files plus the first
ipo out.o
(m : n + 1, m > n + 1, m number of source files);

I Recommended:
-ipo-separate keeps source file name for objects (m : m)

I Specify number of parallel IPO jobs with -ipo-jobs[n]
I Runs multiple IPO builds/optimizations in parallel (useful for

multi-core systems)
I Default is one job only!
I Requires independent IPO objects (e.g. via -ipo-separate)

I Stop after object creation with -ipo-c
I Just create assembly file into ipo out.s with -ipo-s

IPO - xi Tools

I xild: Linker
I Use to link IPO fat objects (or use the compiler drivers icc,

icpc or ifort)
I Calls compiler first, then ld
I A normal linker would discard the IL data
I Example: xild -omyapp a.o b.o
I Help: xild -qhelp

I xiar: Archiver
I Use to create static libraries
I A normal archiver would discard the IL data
I Example: xiar cru libmine.a a.o b.o
I Help: xiar -qhelp

Link Time Optimization (LTO)

GCC and LLVM/Clang:
I IPO is Link Time Optimization (LTO) -flto=[n]
I Argument n parallelizes code generation (default 1)
I Also for the Fortran front-ends (GFortran & Flang)
I Attention:

IPO/LTO enable object codes from different compilers are not
compatible!

IPO - Libraries

Caution when using IPO with libraries:
I IPO objects contain IL information!
⇒ Never ship/distribute libraries with IPO objects!

I For Linux*, IPO is only reasonable for static libraries
I Dynamic/shared libraries are only subject to runtime linkage
I Static libraries (or their subset) can be linked to executable or

other libraries
I IPO makes very well sense for static libraries:

I Linker will only use needed functions/symbols from a static
library

I Same static library can be used in different contexts
I Static libraries can save space - IPO can detect dead functions

I Use -qnoipo for xi tools to disable IPO
(e.g. for shared libraries)

Profile Guided Optimizations (PGO)

PGO has three phases:
1. Instrumentation:

icc -prof-gen prog.c

2. Profiling:
Execution of instrumented
executable creates
.dyn/.gcda files

3. Optimization:
icc -prof-use prog.c

(Image: Intel)

For GCC and LLVM/Clang:
Use -fprofile-generate and -fprofile-use, respectively

Why PGO?

I PGO extends compiler optimizations beyond static
optimizations

I More precise weights (e.g. inlining, vectorizations, branches
taken, ...), e.g.:

if (x > y)
do_this ();

else
do that ();

for(i=0; i < count; ++i)
do_work ();

I PGO can improve:
I More accurate branch prediction
I Basic block movement to improve instruction cache behavior
I Better decision of functions to inline (help IPO)
I Can optimize function ordering
I Switch-statement optimization
I Better vectorization decisions

PGO - Handling Profile Information
For Intel C++/Fortran Compiler:

I Instrumented executables leave *.dyn files behind
(one per invokation & proper termination)

I Compiler is using a single *.dpi file with cumulated *.dyn
information when building with -prof use

I If *.dyn files are in working directory during -prof use, all
will be merged to a *.dpi file

I More control about which *.dyn files to select, use
profmerge tool, e.g.:
$ profmerge -prof dpi my results.dpi
-exclude funcs foo,bar -prof dir ../dyns/

I Alternatively, compile with $PROF DIR and/or $PROF DPI set
I Also *.dpi files can be merged (hierarchical profiling)

Note: Newer compiler versions provide individual *.dyn file names
even accross nodes.
More information can be found here

https://software.intel.com/en-us/cpp-compiler-18.0-developer-guide-and-reference-pgo-tools

PGO - Handling Profile Information
For GCC and LLVM/Clang:

I Instrumented executables leave *.gcda (GCC) or *.profraw
(LLVM/Clang) files behind
(one per compilation unit)

I Different to Intel C++/Fortran Compiler, the same profile file
is extended with re-runs

I For optimized build, the *.gcda files are used with
-profile-use

I Different output directories can be used, too with
-fprofile-generate=<path> and -fprofile-use=<path>

I For LLVM/Clang, use llvm-profdata tool for merging or
showing information of *.profraw files

More information can be found...
I GCC: here

I LLVM/Clang: here

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization

Exercise 3 - PGO & IPO

Exercises:
1. IPO:

I Compile the provided example (vec[1|2].[cpp|f90]) with
and without IPO (Intel) or LTO (GCC and LLVM/Clang)

I Measure the speed difference
I Where is the performance boost coming from?

2. PGO:
I Instrument the provided code (pgo.[cpp|f90]) with PGO

(Intel, GCC and LLVM/Clang)
I Collect runtime profiles and build and optimized version of the

executable
I Where is the performance boost coming from?

	Exercise 1 - Numerical Stability
	Exercise 2 - Processor Dispatching
	Summary

