
Name

 AMD_vertex_shader_tessellator

Name Strings

 GL_AMD_vertex_shader_tessellator

Contact

 Bill Licea-Kane, AMD (Bill.Licea-Kane 'at' amd.com)

Status

 Complete

Version

 Last Modified Date: 2009-03-06
 Author Revision: 8

Number

 363

Dependencies

 OpenGL 2.0 is required.

 EXT_gpu_shader4 affects the definition of this extension.

 EXT_geometry_shader4 affects the definition of this extension.

 This extension interracts with AMDX_vertex_shader_tesselator.

 This extension is written against the OpenGL Shading Language
 1.20 Specification.

 The extension is written against the OpenGL 2.1 Specification.

Overview

 The vertex shader tessellator gives new flexibility to the shader
 author to shade at a tessellated vertex, rather than just at a
 provided vertex.

 In unextended vertex shading, the built-in attributes such as
 gl_Vertex, gl_Normal, and gl_MultiTexcoord0, together with the
 user defined attributes, are system provided values which are
 initialized prior to vertex shader invocation.

 With vertex shading tessellation, additional vertex shader special
 values are available:

 ivec3 gl_VertexTriangleIndex; // indices of the three control
 // points for the vertex
 vec3 gl_BarycentricCoord; // barycentric coordinates
 // of the vertex

 i o
 |\
 | \
 --
 |\ |\
 | \| \
 ----*
 |\ |\ |\
 | \| \| \
 j o--*--*--o k

 Figure 1 A Tessellated Triangle
 o = control point (and tessellated vertex)
 * = tessellated vertex

 ivec4 gl_VertexQuadIndex; // indices for the four control
 // points for the vertex
 vec2 gl_UVCoord; // UV coordinates of the vertex

 i o--*--*--o k
 |\ |\ |\ |
 | \| \| \|
 ----*--*
 |\ |\ |\ |
 | \| \| \|
 ----*--*
 |\ |\ |\ |
 | \| \| \|
 j o--*--*--o l

 Figure 2 A Tessellated Quad
 o = control point (and tessellated vertex)
 * = tessellated vertex

 When this extension is enabled, conventional built-in attributes
 and user defined attributes are uninitialized. The shader writer
 is responsible for explicitly fetching all other vertex data either
 from textures, uniform buffers, or vertex buffers.

 The shader writer is further responsible for interpolating
 the vertex data at the given barycentric coordinates or uv
 coordinates of the vertex.

IP Status

 No known claims.

New Procedures and Functions

 void TessellationFactorAMD(float factor);
 void TessellationModeAMD(enum mode);

New Types

 (None.)

New Tokens

 Returned by the <type> parameter of GetActiveUniform:

 SAMPLER_BUFFER_AMD 0x9001
 INT_SAMPLER_BUFFER_AMD 0x9002
 UNSIGNED_INT_SAMPLER_BUFFER_AMD 0x9003

 Accepted by TessellationModeAMD

 DISCRETE_AMD 0x9006
 CONTINUOUS_AMD 0x9007

 Accepted by GetIntegerv

 TESSELLATION_MODE_AMD 0x9004

 Accepted by GetFloatv

 TESSELLATION_FACTOR_AMD 0x9005

Additions to Chapter 2 of the OpenGL 2.1 Specification
(OpenGL Operation)

 Modify section 2.15.3, "Shader Variables", page 75

 Add the following new return types to the description of
 GetActiveUniform on p. 81.

 SAMPLER_BUFFER_AMD,
 INT_SAMPLER_BUFFER_AMD,
 UNSIGNED_INT_SAMPLER_BUFFER_AMD.

 Replace section "Samplers" p. 83 with:

 Samplers

 Samplers are special uniforms used in the OpenGL Shading Language
 to identify the texture object or vertex buffer object used for
 each lookup.

 Samplers and Texture objects

 If the sampler is one of the texture types, the value of a sampler
 indicates the texture image unit being accessed. Setting a
 sampler's value to i selects texture image unit number i. The values

 of i range from zero to the implementation dependent maximum
 supported number of texture image units.

 The type of the sampler identifies the target on the texture image
 unit. The texture object bound to that texture image unit's target
 is then used for the texture lookup. For example, a variable of type
 sampler2D selects target TEXTURE 2D on its texture image unit.
 Binding of texture objects to targets is done as usual with
 BindTexture. Selecting the texture image unit to bind to is done as
 usual with ActiveTexture.

 It is not allowed to have variables of different sampler types
 pointing to the same texture image unit within a program object.
 This situation can only be detected at the next rendering command
 issued, and an INVALID OPERATION error will then be generated.

 Samplers and vertex buffer objects

 If the sampler is one of the vertex types, the value of a sampler
 indicates the vertex array being accessed. Setting a sampler's
 value to i selects vertex array i. The values of i range from zero
 to the implementation dependent maximum supported max vertex
 attributes. Binding of vertex buffer objects to vertex arrays is
 done as usual with BindBuffer.

 It is not allowed to have multiple variables of samplers to the same
 vertex array within a program object. This situation can only be
 detected at the next rendering command issued, and an INVALID
 OPERATION error will then be generated.

 All samplers

 The location of a sampler needs to be queried with
 GetUniformLocation, just like any uniform variable. Sampler values
 need to be set by calling Uniform1i{v}. Loading samplers with any
 of the other Uniform* entry points is not allowed and will result
 in an INVALID OPERATION error.

 Active samplers are samplers actually being used in a program
 object. The LinkProgram command determines if a sampler is active or
 not. The LinkProgram command will attempt to determine if the active
 samplers in the shader(s) contained in the program object exceed the
 maximum allowable limits. If it determines that the count of active
 samplers exceeds the allowable limits, then the link fails (these
 limits can be different for different types of shaders). Each active
 sampler variable counts against the limit, even if multiple samplers
 refer to the same texture image unit. If this cannot be determined
 at link time, for example if the program object only contains a
 vertex shader, then it will be determined at the next rendering
 command issued, and an INVALID OPERATION error will then be
 generated.

 Insert section prior to "Validation" on p. 87

 Tessellation

 If a vertex shader enables GL_AMD_vertex_shader_tessellation, then
 the shader writer is responsible for fetching and evaluating the
 vertex attributes at the barycentric coordinates of the vertex.
 (See the shading language specification.)

 Only indexed triangles or indexed quads may be drawn with such a
 shader. Each triangle or quad will introduce generated vertices
 (including the original vertices of the triangle or quad)
 controlled by:

 void TessellationFactorAMD(float factor);

 where the factor is a value between 1.0 and 15.0 inclusive

 The introduction of generated vertices is further controlled by:

 void TessellationModeAMD(enum mode);

 where mode is either DISCRETE_AMD or CONTINUOUS_AMD.

 Add to the list of "begin errors":

 * any two samplers of vertex type refer to the same vertex array.

 * Any sampler bound to a vertex array has vertex buffer object 0
 bound.

 * A vertex shader enables GL_AMD_vertex_shader_tessellation,
 statically reads gl_VertexTriangleIndex or gl_BarycentricCoord
 and the Implicit Begin mode is NOT GL_TRIANGLES

 * A vertex shader enables GL_AMD_vertex_shader_tessellation,
 statically reads gl_VertexQuadIndex or gl_UVCoord and
 the Implicit Begin mode is NOT GL_QUADS

 * A vertex shader enables GL_AMD_vertex_shader_tessellation and
 the command is RasterPos.

Additions to Chapter 3 of the OpenGL 2.1 Specification (Rasterization)

Additions to Chapter 4 of the OpenGL 2.1 Specification (Per-Fragment
Operations and the Frame Buffer)

Additions to Chapter 5 of the OpenGL 2.1 Specification
(Special Functions)

Additions to Chapter 6 of the OpenGL 2.1 Specification (State and State
Requests)

Additions to Appendix A of the OpenGL 2.1 Specification (Invariance)

Modifications to The OpenGL Shading Language 1.20 Specification

 Including the following line in a shader can be used to control the
 language features described in this extension:

 #extension GL_AMD_vertex_shader_tessellator : <behavior>

 where <behavior> is as specified in section 3.3.

 A new preprocessor #define is added to the OpenGL Shading Language:

 #define GL_AMD_vertex_shader_tessellator 1

Additions to Chapter 1 of the OpenGL Shading Language 1.20 Specification
(Introduction)

Additions to Chapter 2 of the OpenGL Shading Language 1.20 Specification
(Overview of OpenGL Shading)

 2.1 Vertex Processor

 Change 2nd paragraph to:

 The vertex processor operates on one vertex at a time. It does not
 replace graphics operations that require knowledge of several
 vertices at a time. While a tessellated vertex however has LIMITED
 knowledge of the immediately adjacent control points (three for a
 triangle, four for a quad), the vertex processor is still operating
 on one tessellated vertex at a time. The vertex shaders running on
 the vertex processor must compute the homogeneous position
 of the incoming vertex.

Additions to Chapter 3 of the OpenGL Shading Language 1.20 Specification
(Basics)

 3.6 Keywords

 Add the keywords

 __samplerVertexAMD
 __isamplerVertexAMD
 __usamplerVertexAMD

Additions to Chapter 4 of the OpenGL Shading Language 1.20 Specification
(Variables and Types)

4.3.4 Attribute, Change third sentence:

 "Attribute values are read-only as far as the vertex shader is
 concerned, unless GL_AMD_vertex_shader_tessellator is enabled. If
 GL_AMD_vertex_shader is enabled, they are read-write with undefined
 initial values."

Additions to Chapter 5 of the OpenGL Shading Language 1.20 Specification
(Operators and Expressions)

Additions to Chapter 6 of the OpenGL Shading Language 1.20 Specification
(Statements and Structure)

Additions to Chapter 7 of the OpenGL Shading Language 1.20 Specification
(Built-in Variables)

7.1 Vertex Shader Special Variables

Add the list of intrinsically declared with the following types:

 // if GL_AMD_vertex_shader_tessellator enabled

 ivec3 gl_VertexTriangleIndex; // may be read
 // indices of the three control
 // points for the vertex
 vec3 gl_BarycentricCoord; // may be read
 // barycentric coordinates of the
 // vertex

 ivec4 gl_VertexQuadIndex; // may be read
 vec2 gl_UVCoord; // may be read

 If gl_VertexTriangleIndex and/or gl_BarycentricCoord is statically
 read by the shader, the shader is a Triangle Tessellator shader.

 If gl_VertexQuadIndex and/or gl_UVCoord is statically read by the
 shader, the shader is a Quad Tessellator shader.

 It is a link error if both a Triangle Tessellator shader and a Quad
 Tessellator shader are attached to a program.

7.3 Vertex Shader Built-In Attributes

Add the following paragraph.

 If GL_AMD_vertex_shader_tessellator is enabled, the values of the
 built-in Attributes are undefined.

Additions to Chapter 8 of the OpenGL Shading Language 1.20 Specification
(Built-in Functions)

8.7 Texture Lookup Functions

Rename section to "Lookup Functions"

Add in front of first sentence:

 Vertex lookup functions are available to the vertex shader.

Add to the front of the table of functions:

 Syntax:
 vec4 vertexFetchAMD(__samplerVertexAMD sampler, int i);
 ivec4 vertexFetchAMD(__isamplerVertexAMD sampler, int i);
 uvec4 vertexFetchAMD(__usamplerVertexAMD sampler, int i);

 Description:

 If GL_AMD_vertex_shader_tessellator is enabled, fetch the "ith"
 element from the vertex buffer bound to the vertex array bound to
 the sampler.

Additions to Chapter 9 of the OpenGL Shading Language 1.20 Specification
(Shading Language Grammar)

Additions to Chapter 10 of the OpenGL Shading Language 1.20
Specification (Issues)

Additions to the AGL/EGL/GLX/WGL Specifications

 None

Dependencies on ARB_vertex_shader

 ARB_vertex_shader is required.

Interactions with EXT_gpu_shader4

 If EXT_gpu_shader4 is not supported, remove all references to:

 __isamplerVertexAMD
 __usamplerVertexAMD
 ivec4 vertexFetchAMD
 uvec4 vertexFetchAMD

Interactions with EXT_geometry_shader4

 If EXT_geometry_shader4 is supported, change the last
 paragraph of Section 2.16, Geometry Shaders to:

 A program object that includes a geometry shader must also include
 a vertex shader; otherwise a link error will occur. If a program
 object that includes a geometry shader also includes a vertex shader
 with that has enabled GL_AMD_vertex_shader_tessellator, a link error
 will occur.

Interactions with AMDX_vertex_shader_tessellator

 This extension is symantically identical to the experimental
 AMDX_vertex_shader_tessellator. (It has been "promoted" to
 non-experimental status.)

 Only the prefix AMDX has been changed to AMD.
 Only the suffix AMDX has been changed to AMD.

 We encourage applications and shader writers to migrate from
 AMDX to AMD. However, the AMDX entry points, enums, keywords
 and function names are not yet deprecated.

Errors

New State

Add to Table 6.5 Vertex Array Data

 Get Value Type Get Command Value
Description Sec. Attribute
 --------- ---- --------------- ------- ----
---------------- ---- ---------
 TESSELLATION_FACTOR_AMD R GetFloatv 1.0
tessellation factor 2.8 vertex-array
 TESSELLATION_MODE_AMD Z_2 GetIntegerv DISCRETE_AMD
tessellation mode 2.8 vertex-array

New Implementation Dependent State

 None.

Sample Code

#extension GL_AMD_vertex_shader_tessellator : require

__samplerVertexAMD Vertex;
__samplerVertexAMD Normal;
__samplerVertexAMD Texcoord0;
__samplerVertexAMD Temperature;
__samplerVertexAMD Pressure;

attribute float myTemperature;

void main (void)
{
 gl_Vertex = vec4(0.0);
 gl_Normal = vec4(0.0);
 gl_MultiTexCoord0 = vec4(0.0);
 myTemperature = 0.0;
 float myPressure = 0.0; // Don't have to interpolate to attribute

 for (int i=0; i<3; i++)
 {
 float weight = gl_BarycentricCoord[i];

 gl_Vertex += weight*vertexFetchAMD(Vertex,
gl_VertexTriangleIndex[i]);
 gl_Normal += weight*vertexFetchAMD(Normal,
gl_VertexTriangleIndex[i]);

 gl_MultiTexCoord0 += weight*vertexFetchAMD(Texcoord0,
gl_VertexTriangleIndex[i]);
 myTemperature += weight*vertexFetchAMD(Temperature,
gl_VertexTriangleIndex[i]).x;
 myPressure += weight*vertexFetchAMD(Pressure,
gl_VertexTriangleIndex[i]).x;

 }
 // Rest of vertex shader goes here....
}

Issues

1) Does this belong conceptually in the pipe as subsuming geometry
 shader (after primitive combine) or vertex unpack.

 Vertex unpack. Even though there is "primitive information" it
 is limited to the immediate neighborhood.

2) Do we need a new stage?

 If we add a "tessellation" stage:

 Input to the tessellator is the unpacked vertex attributes, but
 each attribute is now an array of size 3, the "superprim" attributes,
 plus a barycentric coordinate.

 The output of the tessellator is the varying.

 The varying output of the tessellator then becomes the attributes
 input to the vertex shader.

 Alternatively, we can make the "unpack" part of the vertex shader
 responsibility.

 No. We'll just make the attributes undefined, and the
 "vertex unpack" stage naturally collapses into the vertex shader.

3) Why make attributes undefined but writable?

 This is the easiest way to have an unpack shader merged into
 existing shaders.

4) What variants of vertexFetch do we need.

 1D is probably all we need, and probably all we will ever need.
 The return types should be vec4, ivec4 and uvec4.
 So, we need:

 vec4 vertexFetchAMD(__samplerVertexAMD sampler, int i);
 ivec4 vertexFetchAMD(__isamplerVertexAMD sampler, int i);
 uvec4 vertexFetchAMD(__usamplerVertexAMD sampler, int i);

5) How does __samplerVertexAMD and vertexFetchAMD interact with vertex
arrays?

 The __samplerVertexAMD becomes an active uniform. As existing
 samplers are bound to texture units, the samplerVertex is bound to a
 VertexAttrib array, and similarly, the "enable" of the
 VertexAttribArray is ignored. vertexFetchAMD will use the size,
 type, normalized and stride to fetch the "ith" element from the array
 as the following pseudocode:

 if (generic vertex attribute j array normalization flag is set, and
 type is not FLOAT or DOUBLE)
 VertexAttrib[size]N[type]v
 (j, generic vertex attribute j array element i);
 else
 VertexAttrib[size][type]v
 (j, generic vertex attribute j array element i);

6) What happens if a buffer object is not bound to an array?

 There is no reason why it shouldn't work, but there's also no good
 reason to make it work. Undefined.

7) What about "conventional" OpenGL array state (Vertex, Color, Normal,
 TexCoord, etc....)?

 By binding the buffer objects to the appropriate vertexAttrib array,
 and setting appropriate size, type, normalized and stride, the
 application programmer can access all "conventional" OpenGL array
 state?

8) Are attributes declared or used in the shader "active?"

 For the purposes of GetActiveAttrib, GetAttribLocation and
 BindAttribLocation, no.

9) What about geometry shaders and tessellation?

 Future hardware may relax this restriction, but you can not
 successfully link a program that includes a vertex shader that has
 enabled GL_AMD_vertex_shader_tessellator and a geometry shader.

10) What draw calls do we support?

 To the shader writer, everything looks like indexed triangles or
 indexed quads, with discrete and continuous tessellation. These
 indexed triangles result from a polygon Begin/End object, a
 triangle resulting from a triangle strip, triangle fan, or series
 of separate triangles, or a quadrilateral arising from a
 quadrilateral strip, series of separate quadrilaterals, or a Rect
 command.

 Points, Lines and pixel rectangles and bitmaps are unsupported by
 a tessellation shader.

11) Do we need additional enables?

 Lets first see how "implicit" enable of vertex arrays and
 tessellation draw calls works. The first follows precedent (samplers
 override texture enable hierarchy.) The second seems to follow.

11) What about begin errors?

 They are evil, but I don't see how they can be avoided.
 Clearly sampler validation needs to follow precedent.

12) What about quads?

 Quads are necessary for subdivision surfaces such as Catmull-Clark.
 We have received several significant requests to support subdivision
 surfaces.

Revision History

 Revision 1, 2007-06-26 wwlk
 Preliminary review document

 Revision 2, 2007-08-16 wwlk
 Review document

 Correct spelling of "tessellate" throughout. Blush.
 Rename special variables.
 Add additional sampler types.
 Remove "1D" from sampler types and vertex fetches.
 Add core OpenGL api spec changes.
 Add interactions with EXT_gpu_shader4.
 Add many issues.
 Expanded example shader.

 Revision 3, 2007-08-17 wwlk
 Correct edit headers
 (OpenGL 1.5 -> OpenGL 2.0)
 (Shading Language 1.10 -> Shading Language 1.20)

 Revision 4, 2007-09-21 wwlk
 Fix typo in reserved keywords (remove "1D")
 Added support for all polygon calls, explicitly disallowing points
 lines and RasterPos,
 List additional BEGIN errors - yes they are evil.

 Revision 5, 2008-05-22 wwlk
 Add quad support

 Revision 6, 2009-03-05 wwlk
 General cleanup to ready for posting to repository

 Revision 7, 2009-03-05 wwlk
 Promote from AMDX to AMD.

 Revision 8, 2009-03-06 wwlk
 Minor update to enums section.
 Cleaned up typos and <cr><lf>.

