
It’s HIP to be Open
Convert your CUDA Code to C++ Using AMD’s New HIP Tool
The world of HPC as it exists today consists of many GPU-accelerated applications that use the
proprietary CUDA language and infrastructure. The problem with using proprietary software is
that it is almost always tightly controlled and its source code is most often kept secret, and with
CUDA, the hardware options are limited to one vendor.
AMD, a strong proponent of open source and open standards, has created a new tool that will
allow developers to convert CUDA code to common C++. The resulting C++ code can run through
either CUDA NVCC or AMD HCC compilers. This new Heterogeneous-compute Interface for
Portability, or HIP, is a tool that provides customers with more choice in hardware and
development tools.

How does HIP’s portability compare to OpenCL™?
Both AMD and our competitors support OpenCL™ 1.2 on their devices, and this can be used to
write portable code.

HIP offers several benefits over OpenCL:

Developers can code in C++, and mix host and device C++ code in their source files. HIP C++
code can use templates, lamdbas, classes, etc.

HIP API is less verbose than OpenCL, and C++ is familiar to CUDA developers.

Because both CUDA and HIP are C++ languages, porting from CUDA to HIP is significantly
easier than porting from CUDA to OpenCL.

HIP uses the state-of-the-art development tools on each platform: on competitor GPUs,
HIP code is compiled with NVCC and can use nSight profiler and debugger.

HIP provides pointers and host-side pointer-arithmetic.

HIP provides device-level control over memory allocation and placement.

HIP offers an offline compilation model.

Implementation
Header maps hip* calls to CUDA
RT or HSA RT

Strong subset of CUDA RT
functionality, focused on most
commonly used functions like
memory management, events and
streams

Layers on HCC runtime and
C++ support

Can utilize #ifdef for complicated
cases and/or performance tuning

Supported APIs
HIP provides:

Devices
(hipSetDevice(),hipGetDevice(),
hipGetDeviceProperties())

Memory management
(hipMalloc(), hipMemcpy(),
hipMemcpyAsync(),
hipMemSet(), hipFree(), …)

Streams
(hipStreamCreate(),
hipStreamWaitEvent(),
hipStreamSynchronize(),
hipStreamDestroy(),…)

Events
(hipEventRecord(),
hipEventElapsedTime(), etc)

Kernel launching
(hipLaunchKernel is standard C/
C++ function replacing <<< >>>)

CUDA-style kernel indexing
(hipBlockIdx, hipThreadIdx, …)

Device-side math builtins
(200+ functions covering entire
CUDA math library)

Error reporting
(hipGetLastError(),
hipGetErrorString(), …)

HIP DATA SHEET

Code Conversion Workflow Diagram
CUDA RT +

NVCC

HIP Code

NVIDIA
NVCC

Compiler

AMD
HCC C++
Compiler

ISA ISA

AMD
GPU

NVIDIA
GPU

HIP DATA SHEET

Example Code Conversion
Cuda Code

HIP-ify

cudaMalloc((void **) &m_cuda, Size * Size * sizeof(float));
cudaMemcpy(m_cuda, m, Size * Size * sizeof(float),cudaMemcpyHostToDevice);
gpu_kernel<<<dimGridXY,dimBlockXY>>>(m_cuda,a_cuda,b_cuda,Size,Size-t,t);
cudaThreadSynchronize();
cudaMemcpy(m, m_cuda, Size * Size * sizeof(float),cudaMemcpyDeviceToHost);
cudaFree(m_cuda);

__global__ void gpu_kernel(float *m_cuda, float *a_cuda, float *b_cuda,int Size,
int j1, int t)
{

…
}

hipMalloc((void **) &m_cuda, Size * Size * sizeof(float));
hipMemcpy(m_cuda, m, Size * Size * sizeof(float),hipMemcpyHostToDevice);
hipLaunchKernel(gpu_kernel, dim3(dimGridXY), dim3(dimBlockXY), 0, 0,

m_cuda,a_cuda,b_cuda,Size,Size-t,t);
hipDeviceSynchronize();
hipMemcpy(m, m_cuda, Size * Size * sizeof(float),hipMemcpyDeviceToHost);
hipFree(m_cuda);

__global__ void gpu_kernel(hipLaunchParm lp, float *m_cuda, float *a_cuda,
float *b_ cuda,int Size, int j1, int t)
{

…
}

Learn more about AMD and the Heterogeneous computing at http://developer.amd.com/heterogeneous-computing/

Learn about GPUOpen Professional Compute at http://gpuopen.com

 OpenCL is a trademark of Apple Inc. used by permission by Khronos.

Application

Accelerated App Region

hip_runtime.hpp

HCC RT +
Compiler

CUDA RT +
NVCC

New HIP layer
provides portability

