
Methods for Generating and Displaying Stereo

Images on VR Systems using Quad-Buffered

Graphics Adapters

Dimo Chotrov

Technical University Sofia

Sofia, Bulgaria

dchotrov@tu-sofia.bg

Abstract—This paper considers approaches for generating

stereoscopic images by using the left and right video buffers of a

quad-buffered graphics adapter. Sample OpenGL code is given

for specifying camera projection to generate correct stereo pair

images. The paper also shows how by using the outputs of a

quad-buffered graphics adapter the stereo pairs can be displayed

on different 3D capable display systems like monitors, 3D TVs

and Power-wall projection systems. Example setups are

presented and discussed.

Keywords—Virtual Reality; Stereo Visualization; Quad-

Buffered Graphics Adapters

I. Introduction
It is well known that people perceive most of the

information about their surrounding environment through their
eyes. Following, if an artificially generated world, usually
referred to as virtual environment (VE) or virtual reality (VR),
wants to be convincing to the user one of the most important
perception channels that has to be stimulated by it is the visual
channel. The more convincing the visualization – the greater
the feeling of immersion, of being part of the VE. This is
where stereo visualization comes into place. Most of the
displays nowadays still show a two dimensional (2D) image.
Even if the virtual scene that is being visualized is three
dimensional (3D) what the viewer sees is a 2D image of the
3D scene. Thanks to the natural depth perception that we have
stereo displays can be used to present the viewer with a 3D
representation of the scene increasing significantly the
immersion.

This paper presents an overview over the general
workflow for generating and displaying stereo images for
virtual environments by utilizing quad-buffered graphics
adapters. First a short explanation of how do we actually
perceive depth and how this knowledge is used by VR
applications to visualize artificial worlds in depth is provided.
After that a more practical approach is assumed by giving
examples for stereo pair generation, including sample
OpenGL code, and pointing out the differences when
rendering images for mono and for stereo visualization. At the
end different possibilities for the setup of stereo visualization

systems are described and again examples for such systems
are given.

II. Background

A. Depth Perception

There are two ways in which people perceive distance and
depth [2][3] – one is due to personal experience and different
relationships between the observed object and its
surroundings. Some of these depth cues are object occlusion,
movement parallax, perspective, relative size to known
objects, etc.

Fig. 1. Binocular perception of objects

The other reason for depth perception is the so called
binocular disparity – because our eyes are horizontally
separated from each other they actually see and transmit to the
brain slightly different images of our surroundings. From this
difference, called binocular disparity or parallax, the brain
extracts the depth information [1][2].

When we look at something our eyes automatically focus
on that object (see Fig. 1) in this way defining the focus
distance. Depending on how object images are projected on
the retinas the brain decides whether the object is closer or
further away than the focused one.

B. Stereo Projection

Stereo projection is concerned with how to simulate
human visual perception when rendering computer generated
images. For the purpose two cameras are placed in a virtual
scene to imitate the view points of the viewer’s left and right
eye. The resulting left and right images are often regarded as a
stereo pair. The cameras are spatially displaced with a
horizontal distance that should correspond to the user’s eye
separation. They should look in parallel directions and have a
common projection plane (see Fig. 2), otherwise the resulting
images lead to increased eye strain and uncomfortable feeling
for the viewer. To achieve this an asymmetric frustum (also
off-axis projection) has to be calculated for the two cameras.

Fig. 2. Asymmetric (off-axis) stereo projection, redrawn from [3]

Fig. 3. Zero, positive and negative parallax, redrawn from [3]

Objects lying on the projection plane have zero parallax,
objects in front of the projection plane – negative parallax and
objects behind the projection plane – positive parallax. With
the parallax being measured as the difference between the
projection of the object on the projection plane as seen from
the left and right viewpoints (see Fig. 3). Or in other words if
the rays from the two viewpoints towards the object cross
before they reach the projection plane – the object generates
negative parallax, if they cross at the projection plane – zero
parallax, and if they cross after the projection plane – positive
parallax.

Respectively when the user views the images rendered by
the two cameras objects having zero parallax will appear to be
on the screen surface, objects with negative parallax – in front
of the screen and objects with positive parallax – inside the
screen.

More detailed description and explanation about camera
setup for stereo projection can be found in [3] and [4].

C. Stereo Displays

Very important for the successful perception of stereo
images is that the left image must be visible only for the left
eye and the right image – only for the right eye respectively.
Otherwise the viewer will see simply two flat overlapping
images instead of one fused image with depth cues. There are
different ways in which the stereo pair can be transmitted to
the viewer’s eyes separately:

• Anaglyph stereo – the simplest (and already somewhat
outdated) type of stereo presentation using color filters.
The two images are processed with complement colors
(for example cyan-magenta) and the viewer wears
glasses with the same colors.

• Head Mounted Displays (HMD) – the viewer wears a
special device with two screens positioned directly in
front of one of the viewer’s eyes. Thus each eye can
only see the image that is designated for it.

• Active stereo – the left and right images are displayed
alternately on a screen with high refresh frequency.
The viewer wears glasses (called active or also shutter
glasses) that are synchronized with the screen so that
when the left image is displayed the right eye is
blocked by the glasses and vice versa.

• Passive stereo – the left and right images are presented
to the user at the same time. In front of the source of
each image (i.e. beamer) a light polarization filter is
placed with different polarization direction. For
example with horizontal polarization for the left and
vertical polarization for the right image. The viewer
wears respectively polarized glasses (called passive
glasses) so that the horizontally polarized light coming
from the source of the left image can only pass through
the also horizontally polarized glass in front of the left
eye and not through the vertically polarized glass in
front of the right one.

• Auto-stereoscopic displays – these types of displays
use different techniques (parallax barrier, lenticular

sheet, etc.) to direct the light from alternating pixel
columns of a display so that when the viewer is positioned
at specific places in respect to the screen his / her eyes
will see the correct image, thus avoiding the need for
glasses. A detailed description of different types of auto-
stereoscopic displays and how they work can be found in
[5].

D. Quad-Buffered Graphics Adapters

The majority of today’s graphics adapters have two video
buffers – front and back. The idea is that the display is
showing the image in the front buffer while the application
renders the next image in the back buffer. When the next
image is ready the contents of the two buffers are swapped and
the next image is shown onscreen. This ensures that the user
always views at a valid image instead of observing the next
image being rendered. The difference by quad-buffered
graphics adapters is that instead of two there are four video
buffers – a pair of front and back buffers for the left eye and
another pair for the right one.

III. Generating Stereo-Pairs using
Quad-Buffered Graphics Adapters

A. Mono Rendering with Two Video Buffers

When rendering with mono projection the image from a
single camera viewpoint is rendered to the back buffer and
when rendering has finished the front and back buffers are
swapped. A diagram for mono projection is shown on Fig. 4.
The view frustum is symmetrical along the view direction of
the camera. It is defined by near and far distances, the field of
view (FOV) and width to height ratio (aspect ratio). The view
frustum defines the part of the virtual scene visible to the
camera.

Fig. 4. Mono projection camera setup

Below sample OpenGL code follows for setting up the
camera view frustum:

glDrawBuffer(GL_BACK);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glViewport(xpos, ypos, _width, _height);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

//gluPerspective(cam.getFOV(),cam.ratio,cam.getZNear(),
cam.getZFar());

double rad = ANG2RAD * cam.getFOV() / 2;

GLdouble top = tan(rad) * cam.getZNear();

GLdouble bottom = -top;

GLdouble left = bottom * cam.ratio;

GLdouble right = top * cam.ratio;

glFrustum(left,right,bottom,top,cam.getZNear(),cam.getZFar());

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

gluLookAt(cam.getPos().x, cam.getPos().y, cam.getPos().z,

 cam.getTarget().x, cam.getTarget().y, cam.getTarget().z,

 cam.up.x, cam.up.y, cam.up.z);

/*

 ... draw scene ...

*/

GL_SwapBuffers();

The first two lines specify the active buffer to write into
and clear its contents. After that a viewport is defined where
the scene will be rendered. The cam variable is a camera
object instance describing a viewpoint in the scene. The
glMatrixMode function is used to define which matrix is
currently adjusted – the projection or the modelview matrix.
OpenGL provides two functions for setting up the view
frustum – gluPerspective and glFrustum. The difference
between the two is that gluPerspective defines always a
symmetric view frustum, while the glFrustum can be used to
define also asymmetric view frustums (which are necessary
when performing stereo rendering). The top, bottom, left and
right variables describing the view window are calculated for
the near distance of the camera which places the projection
plane on the near distance. The gluLookAt function defines the
position and view direction of the camera. After that the actual
rendering of the scene follows. When the render process is
finished the result is displayed by swapping the front and back
buffers.

B. Stereo Rendering with Four Buffers

When performing stereo rendering the scene has to be
rendered twice – once from the viewpoint for the left eye and
a second time from the viewpoint for the right eye. It is
important that the view directions of the two cameras are
parallel. Otherwise if they are converging to a common target
point (the so called toe-in method) the resulting stereo images
will be uncomfortable for the viewer causing eye strain (the
resulting images will be as if the user keeps his or her eyes
crossed all the time). The correct projection setup for the two
cameras is the asymmetric view frustum, or off-axis
projection.

On Fig. 5 the symmetric frustums of the left and right
cameras are given with black dashed lines. The cameras are
positioned at a horizontal distance equal to the eye separation.
Some considerations about the actual eye separation value and

its relation to the screen size are given in [4]. The eye
separation value should be adjustable as different users can
perceive different parallax amounts comfortably. The actual
image that has to be displayed onscreen is where the two
symmetric frustums overlap on the projection plane. To
achieve this the actual view frustums of the two cameras have
to be offset to receive the asymmetric frustums shown with
red solid lines.

Fig. 5. Asymmetric view frustum

Sample OpenGL code follows for setting up the
asymmetric camera view frustums for the left and the right
cameras. Some of the lines are skipped when they are the
same as the code for the symmetric frustum from the previous
section.

vec_right = cam.X * cam.eyesep / 2.0; //cam.X is a unit vector = view x
up

//top and bottom the same as by symmetric frustum

glDrawBuffer(GL_BACK_LEFT); //draw in left back buffer

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

//offset left and right of the view window

left = - ratio * top + 0.5 * cam.eyesep * cam.getZNear() /
cam.getFocus();

right = ratio * top + 0.5 * cam.eyesep * cam.getZNear()/
cam.getFocus();

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glFrustum(left, right, bottom, top, cam.getZNear(), cam.getZFar());

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

gluLookAt(cam.getPos().x – vec_right.x, cam.getPos().y – vec_right.y,

 cam.getPos().z – vec_right.z, cam.getTarget().x – vec_right.x,

 cam.getTarget().y - right.y, cam.getTarget().z – vec_right.z,

 cam.up.x, cam.up.y, cam.up.z);

/*

 ... draw scene from left view ...

*/

glDrawBuffer(GL_BACK_RIGHT); //draw in right back buffer

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

//offset left and right

left = - ratio * top - 0.5 * cam.eyesep * cam.getZNear() / cam.getFocus();

right = ratio * top - 0.5 * cam.eyesep * cam.getZNear()/ cam.getFocus();

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glFrustum(left, right, bottom, top, cam.getZNear(), cam.getZFar());

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

gluLookAt(cam.getPos().x + vec_right.x, cam.getPos().y + vec_right.y,

 cam.getPos().z + vec_right.z, cam.getTarget().x + vec_right.x,

 cam.getTarget().y + vec_right.y, cam.getTarget().z + vec_right.z,

 cam.up.x, cam.up.y, cam.up.z);

/*

 ... draw scene from right view ...

*/

GL_SwapBuffers();

Notice that this time the scene is first rendered in the left
back buffer and then once again in the right back buffer. The
front and back buffers (both left and right) are swapped only
after both left and right images are ready. In order to keep
camera view directions parallel both the camera positions and
camera directions are moved left and right with half the eye
separation from the original camera position by the call to
gluLookAt. The other important difference from the symmetric
frustum is the coefficient with which the left and right window
definitions are multiplied – this is the offset that makes the
frustum asymmetric and unifies the view window of the two
cameras.

Some considerations – as the resulting images are saved in
different places and the information about the scene is only
being read during the render process the rendering of the
stereo pair images can be seen as two separate processes that
can be easily parallelized. Because the rendering of the two
images can be independently often two computers are used so
that one renders the left image and the other the right. In such
a case sometimes these computers are equipped with quad-
buffered video cards which is unnecessary as each computer
actually outputs only one image. It is better that the computers
be equipped with a higher class dual-buffer video card.

IV. Connecting Stereo Displays to
Quad-Buffered Graphics Adapters

There are multiple ways in which the stereo images
rendered with a quad-buffered video card can be displayed in
stereo. Depending on available or affordable hardware and
software and especially the display systems a suitable

configuration can be chosen. Bellow some examples for stereo
display systems using quad-buffered graphics adapters follow.

A. Easy Solutions

An example of an “easy” solution is using the NVidia 3D
Vision driver. It can automatically generate stereo pairs for
any visualization application which uses the Direct3D
graphics library. Unfortunately this doesn’t apply for OpenGL
used by the majority of science directed stereo visualization
applications. But for quad-buffered graphics adapters the
NVidia 3D Vision driver can take the output written by the
OpenGL application in the left and right buffers and forward it
in the necessary format to the output. Then the 3D Vision
driver and hardware can be used to synchronize a 3D Vision
ready display connected to the output with 3D Vision shutter
glasses. Fig. 6 shows an example with a 3D Vision ready
beamer connected to an NVidia Quadro graphics adapter. The
3D Vision infra-red emitter synchronizes the image from the
beamer with NVidia’s shutter glasses.

Fig. 6. An NVidia 3D Vision ready beamer showing stereo image

B. Third Party Drivers

This part covers setups by which a third party driver is
used to transfer the stereo pairs in an appropriate format to the
graphics adapter output. Examples for such drivers are the
NVidia Quadro video card drivers and the iZ3D drivers. In
this case the application writes the stereo pairs to the video
buffers, the third party driver reads them from there and
converts them to the appropriate format – for example side-by-
side, top-bottom, frame sequential, etc. (see [6] for more
information), and forwards them to the graphics adapter
output. The format should correspond to a format that can be
read by the display connected to the graphics adapter output.

Fig. 7. A laptop with NVidia Quadro video card connected to a 3D TV

display

Fig. 7 shows an example of a laptop with an NVidia
Quadro graphics adapter connected to a 3D TV Display. The
NVidia Quadro driver is setup to deliver a frame sequential
signal which can be interpreted by the 3D TV and displayed in
stereo. On Fig. 8 the necessary settings for the NVidia Quadro
drivers can be seen. The Generic active stereo format
corresponds to a frame sequential (also time-multiplex)
ordering of the left and right stereo images. In this case to
connect the 3D TV to the laptop also a DP (Display Port) to
HDMI (High-Definition Multimedia Interface) adapter was
needed. More information about the exact setup can be found
in [7]. Such configuration is very suitable for creating mobile
virtual reality systems.

Fig. 8. Settings in the Manage 3D Settings tab of the NVidia Quadro Control

Panel to connect to a 3D capable display in frame sequantial mode

C. Using Dual Outputs

Quad-buffered video cards usually also have two or more
outputs. For example two DVI outputs or two Display Port
outputs as with some NVidia Quadro cards. This means that
two displays can be connected to the outputs. This is a typical
setup for example for a power-wall stereo projection system
with two beamers where usually two computers render the
images for the left and right eye and the stereo pairs are then
projected by the two beamers on the projection wall. Instead
of a cluster of two or three computers in this case a single
computer with quad-buffered graphics adapter can be used
where the two beamers are connected to the two outputs of the
graphics adapter.

Fig. 9. Excerpt from NVidia Control Panel Quick Start Quide

Fig. 9 is an excerpt from the NVidia Control Panel Quick
Start Guide showing that nView Clone Mode can be used to
achieve the necessary result. Fig. 10 shows two beamers with
passive polarization filters connected to the outputs of an
NVidia Quadro video card. To connect the beamers two DP to
DVI (Digital Video Interface) adapters were needed.

Fig. 10. Two beamers with passive polarization filters connected to the

outputs of a quad-buffered graphics adapter

At the end Fig. 11 shows the resulting stereo pair projected
on a power-wall.

Fig. 11. Stereo image projected by the beamers on the power-wall

V. Conclusion
This paper provides a necessary foundation for readers that

are interested in stereo visualization and virtual reality. It
explains the basics, gives examples, points out differences and
directs the reader to further useful literature with practical
orientation.

The different visualization systems described at the end
show some of the benefits of using quad-buffered graphics
adapters for stereo visualization which in general are:

• Easy to setup;

• Suitable for creating portable or mobile visualization
systems.

References
[1] N. Qian, “Binocular Disparity and the Perception of Depth”, Neuron,

Vol. 18, Cell Press, 1997, pp. 359-368

[2] J. Behr, D. Reiners, “Class notes: don't be a WIMP: (http://www.not-for-
wimps.org)”, ACM SIGGRAPH 2008 classes, ACM, USA, 2008

[3] P. Bourke, P. Morse, “Stereoscopy, Theory and Practice”, Workshop at
the International Conference on Virtual Systems and Multimedia
VSMM’07, Brisbane, Australia, 2007

[4] S. Gateau, D. Filion, “Stereoscopic 3D Demystified: From Theory to
Implementation in STARCRAFT II”, NVIDIA GDC 2011

[5] N. A. Dogdson, “Autostereoscopic 3D Displays”, Computer , vol.38,
no.8, 2005, pp.31-36

[6] R. Piroddi, “Stereoscopic 3D Technologies”, Snell Ltd. April 2010

[7] Chotrov D., Maleshkov S., “Methods and Tools for Design and
Implementation of an Affordable Mobile Virtual Reality System for
Solving Engineering Problems”, Proceedings of Technical University of
Sofia, Volume 62, Issue 4, 2012, pp. 161 – 168

