3D Stereo Rendering Using OpenGL (and GLUT) nies ’1/6

3D Stereo Rendering
Using OpenGL (and GLUT)

See also, Calculating Stereo Pairs

Source code for the incorrect (but close) “Toe—in” stereo,
and the correct Offaxis stereo

Written by Paul Bourke
November 1999
Updated May 2002

Introduction

The following is intended to get someone started creating 3D stereo applications
using OpenGL and the associated GLUT library. It is assumed that the reader is
both familiar with how to create the appropriate eye positions for comfortable
stereo viewing (see link in the title of the page) and the reader has an OpenGL
card (or software implementation) and any associated hardware (eg: glasses)
needed to support stereo graphic viewing.

The description of the code presented here will concentrate
on the stereo aspects, the example does however create a
real, time varying OpenGL object, namely the pulsar model
shown on the right. The example also contains examples of
mouse and keyboard controls of the camera position. The
example is not intended to illustrate more advanced OpenGL
techniques and indeed it does not do things particularly
efficiently, in particular it should, but does not, use
display lists. The example does not use textures as that is a
large separate topic and would only confuse the task at hand.

Conventions

The example code conforms to a couple of local conventions. The first is that it
can be run in a window or full screen (arcade game) mode. By convention the
application runs in a window unless the ”“-f” command line option is specified.
Full screen mode is supported in the most recent versions of the GLUT library.
The decision to use full screen mode is made with the following snippet.

glutCreateWindow(“Pulsar model”);
glutReshapeWindow (600, 400) ;
if (fullscreen)

glutFullScreen() ;

It is also useful to be able to run the application in stereo mode or mono mode,
the convention is to run in mono unless the command line switch “-s” is supplied.
The full usage help information in the example presented here is available by
running the application with the “-h” command line option, for example:

http://astronomy. swin. edu. au/ pbourke/opengl/stereogl/ 2005-3-31

3D Stereo Rendering Using OpenGL (and GLUT) g ’2/6

>pulsar —h
Usage: pulsar [-h] [-f] [-s] [-c]
-h this text
—-f full screen
-s stereo
—c¢ show construction lines
Key Strokes
arrow keys rotate left/right/up/down
left mouse rotate
middle mouse roll
toggle construction lines
translate up
translate down
translate left
translate right
roll clockwise
roll anti clockwise
quit

O LI = R0

Stereo

The first thing that needs to be done to support stereo is to initialise the GLUT
library for stereo operation. If your card/driver combination don’t support
stereo this will fail.

glutInit (&argc, argv) ;
if (!stereo)
glutInitDisplayMode (GLUT DOUBLE | GLUT RGB | GLUT _DEPTH):
else
glutInitDisplayMode (GLUT_DOUBLE | GLUT RGB | GLUT DEPTH | GLUT STEREO);

In stereo mode this defines two buffers namely GL_BACK LEFT and GL_BACK_RIGHT.
The appropriate buffer is selected before operations that would affect it are
performed, this is using the routine glDrawBuffer(). So for example to clear the
two buffers:

glDrawBuffer (GL_BACK_LEFT) ;
glClear (GL_COLOR BUFFER BIT | GL_DEPTH BUFFER BIT);
if (stereo) ({
glDrawBuffer (GL_BACK RIGHT) ;
g1Clear (GL_COLOR_BUFFER BIT | GL_DEPTH BUFFER BIT);

}

Note that some cards (eg: Powerstorm 4D51T) are optimised to clear both left and
right buffers if GL_BACK is cleared, this can be significantly faster. In these
cases one clears the buffers as follows.

glDrawBuffer (GL_BACK) ;
glClear (GL_COLOR_BUFFER BIT | GL_DEPTH_BUFFER_BIT):

Projection

A1l that’s left now is to render the geometry into the appropriate buffer. There
are many ways this can be organised depending on the way the particular
application is written, in this example see the Display() handler. Essentially
the idea is to select the appropriate buffer and render the scene with the
appropriate projection.

http://astronomy. swin. edu. au/ pbourke/opengl/stereogl/ 2005-3-31

3D Stereo Rendering Using OpenGL (and GLUT) g ’3/6

Toe—in Method Projection
planes 1

A common approach is the (screen) — _—
S0 called “toe—in” =
method where the camera left e
for the left and right g
eye is pointed towards a T R
single focal point and eye ey o
gluPerspective () 1S separation s
used. l :

glMatrixMode (GL_PROJECTION) ;
glLoadIdentity();
gluPerspective (camera. aperture, screenwidth/ (double) screenheight, 0. 1, 10000. 0) ;

if (stereo) {

CROSSPROD (camera. vd, camera. vu, right) ;
Normalise (&right) ;
right. x *= camera. eyesep / 2.0;
right.y *= camera. eyesep / 2.0;
right.z *= camera. eyesep / 2.0;
glMatrixMode (GL_MODELVIEW) ;
glDrawBuffer (GL_BACK RIGHT) ;
glLoadIdentity();
gluLookAt (camera. vp. x + right. x,

camera. vp.y t right.y,

camera. vp. z + right. z,

focus. x, focus. y, focus. z,

camera. vu. X, camera. vu. y, camera. vu. z) ;
MakeLighting () ;
MakeGeometry () ;

glMatrixMode (GL_MODELVIEW) ;
glDrawBuffer (GL_BACK_LEFT) ;
glLoadIdentity();
gluLookAt (camera. vp. x — right.x,
camera. vp.y — right.y,
camera. vp. z — right. z,
focus. x, focus. y, focus. z,
camera. Vu. X, camera. vu. ¥, camera. vu. z) ;
MakeLighting() ;
MakeGeometry () ;
} else {
glMatrixMode (GL_MODELVIEW) ;
glDrawBuffer (GL_BACK_LEFT) ;
glLoadIdentity () ;
gluLookAt (camera. vp. x,
camera. vp. v,
camera. vp. z,
focus. x, focus. y, focus. z,
camera. Vu. X, camera. vu. y, camera. vu. z) ;
MakeLighting();

http://astronomy. swin. edu. au/"pbourke/opengl/stereogl/ 2005-3-31

3D Stereo Rendering Using OpenGL (and GLUT) g ’4/6

MakeGeometry () ;

}

/% glFlush(); This isn’t necessary for double buffers */
glutSwapBuffers() ;

Correct method Projection

plane
The Toe—in method while (screen) — _—
giving workable stereo P s
pairs is not correct, it left e
also introduces vertical Chgasasee 0
parallax which is most T Y
noticeable for objects eye O
in the outer field of separation h“m
view. The correct method l . e
is to use what 1is
sometimes known as the
“parallel axis
asymmetric frustum .
perspective projection”. .
In this case the view .
vectors for each camera
remain parallel and a
glFrustum() is used to
describe the perspective
projection.

/% Misc stuff */

ratio = camera.screenwidth / (double)camera. screenheight;
radians = DTOR * camera. aperture / 2;

wd2 near * tan(radians);

ndf1l near / camera. focallength;

/% Clear the buffers */
glDrawBuffer (GL_BACK_LEFT) ;
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;
if (stereo) ({
glDrawBuffer (GL_BACK RIGHT) ;
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

if (stereo) ({

/* Derive the two eye positions */
CROSSPROD (camera. vd, camera. vu, T) ;

Normalise (&r) ;

r.x %= camera. eyesep / 2.0;

r.y *= camera.eyesep / 2.0;

r.z *= camera. eyesep / 2.0

glMatrixMode (GL_PROJECTION) ;

glLoadIdentity () ;

left = - ratio * wd2 — 0.5 * camera. eyesep * ndfl;
right = ratio * wd2 — 0.5 * camera. eyesep * ndfl;
top = wd2;

bottom = — wd2;
glFrustum(left, right, bottom, top, near, far) ;

http://astronomy. swin. edu. au/ pbourke/opengl/stereogl/ 2005-3-31

3D Stereo Rendering Using OpenGL (and GLUT) g ’5/6

glMatrixMode (GL_MODELVIEW) ;
glDrawBuffer (GL_BACK_RIGHT) ;
glLoadIdentity () ;
gluLookAt (camera. vp. x + r.X, camera.vp.y + r.y,camera.vp.z + T.z,
camera. vp.X t+ r.x t+ camera. vd. x,
camera.vp.y t+ r.y + camera.vd.y,
camera.vp.z t r.z + camera. vd. z,
camera. vu. X, camera. vu. y, camera. vu. z) ;
MakeLighting() ;
MakeGeometry () ;

glMatrixMode (GL_PROJECTION) ;

glLoadIdentity();

left = — ratio * wd2 + 0.5 * camera. eyesep * ndfl;
right = ratio * wd2 + 0.5 * camera. eyesep * ndfl;
top = wd2;

bottom = — wd2;
glFrustum(left, right, bottom, top, near, far) ;

glMatrixMode (GL_MODELVIEW) ;
glDrawBuffer (GL_BACK_LEFT) ;

glLoadIdentity () ;

gluLookAt (camera. vp. X — . X, camera.vp.y — T.Y, camera.vp.z — T.Z,
camera.vp.X — I.X + camera. vd. x,
camera.vp.y — r.y + camera. vd.y,
camera.vp.z — I.z + camera. vd. z,
camera. Vu. X, camera. vU. ¥, camera. vu. z) ;

MakeLighting() ;

MakeGeometry () ;

} else {

glMatrixMode (GL_PROJECTION) ;

glLoadIdentity();

left = - ratio * wd2;

right = ratio * wd2;

top = wd2;
bottom = — wd2;
glFrustum(left, right, bottom, top, near, far) ;

glMatrixMode (GL_MODELVIEW) ;

glDrawBuffer (GL_BACK_LEFT) ;

glLoadIdentity();

gluLookAt (camera. vp. X, camera. vp. y, camera. vp. z,
camera. vp. X t+ camera. vd. X,
camera. vp.y + camera.vd.y,
camera. vp. z + camera. vd. z,

camera. vu. X, camera. vU. y, camera. vu. z) ;
MakeLighting() ;
MakeGeometry () ;

}

/* glFlush(); This isn’t necessary for double buffers */
glutSwapBuffers () ;

Note that sometimes it is appropriate to use the left eye position when not in
stereo mode in which case the above code can be simplified. It seems more elegant
and consistent when moving between mono and stereo if the point between the eyes
is used when in mono.

On the off chance that you want to write the code differently and would like to
test the correctness of the glFrustum() parameters, here’s an explicit example.

http://astronomy. swin. edu. au/"pbourke/opengl/stereogl/ 2005-3-31

3D Stereo Rendering Using OpenGL (and GLUT) 7 ’6/6

aperture wWidth
45°
- VI ratio = width / height
Frojection
l plane
Focal
Q0
length
Mear
plane aperture = 4§
near = 75
focal length = 100
eve geparation = 40
ratio = 4,3
h i l left = -26. 4214
right = FE6. 4214
top = 31.066
T ' bottom = -31. 066
Left Center Right
- —— 4[] ———-—

Eve
separation

Passive stereo
Updated in May 2002: sample code to deal with passive stereo, that is, drawing

the left eye to the left half of a dual display OpenGL card and the right eye to
the right half. pulsar2.c and pulsar2.h

Macintosh 0S-X example

Source code and Makefile illustrating stereo under Mac 0S-X using “blue line”
syncing, contributed by Jamie Cate.

Demonstration stereo application for Mac 0S-X from the Apple development site

based upon the method and code described above: GLUTStereo.
(Also uses blue line syncing)

http://astronomy. swin. edu. au/ pbourke/opengl/stereogl/ 2005-3-31

